用户名: 密码: 验证码:
金属离子对铝硅矿物选择性分散影响的理论研究与实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的铝土矿资源类型主要为一水硬铝石型铝土矿,铝硅比低,硅含量高。选矿脱硅是有效利用这类铝土矿资源的关键技术途径。正浮选脱硅工艺已得到了推广应用,但其精矿脱水困难,残余药剂对后续拜耳法工艺有不利影响。反浮选脱硅因微细粒浮选效率低,浮选流程长等问题,至今仍未实现工业应用。选择性分散絮凝脱硅已被证明是铝土矿选矿脱硅的一种有前景的工艺。无论怎样,在铝土矿选矿脱硅过程中,由于矿物破碎、溶解和水质条件等原因,矿浆中不可避免存在各种金属离子。这些金属离子或吸附于矿物表面改变矿物表面性质,或与选矿药剂发生作用,并影响矿物颗粒的分散与凝聚行为。系统研究金属离子对铝、硅矿物分散凝聚行为的影响规律及其作用机理,对铝土矿选矿脱硅工艺的发展和工业应用具有重要理论指导意义。
     本文以河南低铝硅比铝土矿矿石,以及一水硬铝石和高岭石为研究对象,系统考察了不同价态的金属离子对铝土矿矿石,以及一水硬铝石和高岭石单矿物分散凝聚行为的影响及其作用机理。考察了不同分散剂对金属离子存在时,铝土矿矿石及一水硬铝石和高岭石分散凝聚行为的影响和机理,得到以下基本结论:
     1.一价钠、钾金属离子对一水硬铝石的分散性几乎没有影响;价金属离子在酸性条件下对一水硬铝石的分散凝聚行为影响较小,但在碱性条件下促使一水硬铝石强烈聚沉;三价铁离子使一水硬铝石在酸性和中性条件下能够充分分散,在碱性条件下明显聚沉;铝离子使一水硬铝石的分散性增强。各种金属离子对高岭石的分散都几乎没有影响。由此可见,金属离子价态是影响一水硬铝石和高岭石分散性的重要因素,金属离子价态越高对一水硬铝石和高岭石分散性影响越大。
     2.碳酸钠和六偏磷酸钠对一水硬铝石和高岭石有良好的分散作用;钙离子存在时,碳酸钠和焦磷酸钠对一水硬铝石的分散效果很差,六偏磷酸钠、三聚磷酸钠和软水剂则可实现一水硬铝石和高岭石的有效分散;镁离子水体系中,碳酸钠对一水硬铝石的分散效果很差,六偏磷酸钠也不能实现一水硬铝石的有效分散;相同钙、镁离子浓度条件下,软水剂和三聚磷酸钠均可实现铝硅矿物的有效分散,但软水剂的用量远低于三聚磷酸钠的用量。
     3.通过动电位测试、溶液化学计算、红外光谱分析和DLVO理论计算,探讨了三种不同价态金属离子和常用分散剂对一水硬铝石和高岭石分散凝聚行为影响的机理。金属离子的羟基络合物在矿物表面的吸附是金属离子与一水硬铝石和高岭石的主要作用形式。分散剂通过调节矿浆pH值或在矿物表面产生化学吸附而改变矿物表面电性,从而改变矿物颗粒间的相互作用能,进而对矿物产生分散作用。钙、镁离子存在时,分散剂的存在形式及组分浓度是影响其对铝硅矿物分散作用的主要原因。
     4.水的硬度是水质对铝土矿选择性分散与絮凝过程影响的主要因素。实际矿石试验表明:低浓度钙、镁离子水体系中,单用碳酸钠作分散剂时,铝土矿的选择性分散与絮凝脱硅效果好。当碳酸钠用量为2500g/t时,矿浆即得到强化分散。添加聚丙烯酸钠有利于提高精矿中A1203的回收率,其用量为10g/t时,精矿Al2O3的回收率为91.96%,精矿铝硅比为7.16。实际矿石采用强擦洗,并经过两次分散与絮凝脱硅后,精矿A1203的回收率达到85.45%,精矿铝硅比达到8.59,精矿质量可满足拜耳法生产氧化铝的要求。高浓度钙离子水体系下,碳酸钠、六偏磷酸钠和水玻璃对铝土矿的选择性分散效果明显变差。以碳酸钠3000g/t,水玻璃1000g/t组合作为分散剂,以聚丙烯酸钠为絮凝剂时,精矿A1203的回收率为84.74%,精矿铝硅比仅为7.5。同样在高浓度镁离子水体系下,以碳酸钠2500g/t和水玻璃3000g/t组合作为分散剂时,精矿A1203的回收率为90%,精矿铝硅比只达到7.0。添加聚丙烯酸钠或磷酸酯淀粉只略微提高了精矿中A1203的回收率,其絮凝的选择性明显地降低了。由此可见,钙、镁离子的浓度越高,对铝土矿的选择性分散与絮凝脱硅过程就越不利。扩大连续试验结果表明:铝土矿选择性分散与絮凝脱硅工艺有可能实现工业应用,但河南地区的水质硬度大,对该工艺的工业应用非常不利。软水剂的使用可显著改善水质,大幅度地减少钙、镁离子对铝土矿选择性分散与絮凝脱硅工艺过程的不利影响。
Most of bauxite resources in China are diasporic bauxite with low ratio of Al2O3/SiO2. Desilication by the use of mineral processing is a necessary and effective way to use this kind of bauxite resources. Direct flotation process has been widely studied and used in industrial process, but its concentrate is difficult to be dewatered and the residual reagent in concentrate also has negative impact on Bayer dissolution process. Reverse flotation process is not used in induxtrial process due to the low flotation efficiency of fine silicates and long flotation procrdure. Selective dispersing-flocculating process has been proved as an effective way to remove silicates from bauxite. Anyway, there is inevitably a wide variety of metal ions generated from mineral crushing, mineral dissolving and water conditions in the beneficiation process. Metal ions adsorb on the mineral surface to change the nature or interact with the beneficiation agents, and then affect the dispersion and agglomeration of minerals. A systematic research on the influence of metal ions on the dispersion and flocculation of aluminum and silicate minerals has great significance to the development and application of bauxite beneficiation process.
     For diasporic bauxite from Henan province, diaspore and kaolinite, the influences of metal ions valences and dispersants on the dispersion and flocculation of diaspore and kaolinite, and its mechanisms have been systematically studied in this dissertation:
     1. Na and K ions with monovalence have little effect on the dispersion of diaspore and kaolinite. Divalent metal ions have some effect on the dispersion of diaspore in the acidic condition, but make an obvious coagulation of diaspore in alkaline condition. Trivalent ferric ion makes diaspore fully dispersed in the acid and neutral conditions, but makes an obvious coagulation of diaspore in alkaline condition. Aluminium ion can improve the dispersion of diaspore to a certain extent. Metal ions with different valences have shown not great impact on the dispersion of kaolinite. Valancy of metal ions is the key factor to influence dispersion of diaspore and kaolinite, and divalent metal ions have greater effect than monovalent metal ions on the dispersion of minerals.
     2. Sodium carbonate and sodium hexametaphosphate can make diaspore and kaolinite well dispersed. In the presence of calcium ions, sodium carbonate and sodium pyrophosphate make diaspore dispersed poorly, but sodium hexametaphosphate, sodium tripolyphosphate and water softener can achieve an effective dispersion on diaspore and kaolinite. In the presence of magnesium ions, sodium carbonate makes a poor dispersion of diaspore, but sodium hexametaphosphate can not achieve an effective dispersion of diaspore. At the same concentration of calcium and magnesium ions, the dosage of water softener is far less than sodium tripolyphosphate to achieve the effective dispersion of aluminium-silicate minerals.
     3. In this disseration, zeta potential measurement, infrared spectroscopy, solution chemistry calculation and DLVO theoretical calculation were carried out to disclose the interaction mechanism of metal ions on the dispersion of diaspore and kaolinite. It can be concluded that hydroxy complexes of metal ions are paly an important role on the dispersion of diaspore and kaolinite.
     4. The hardness of water is the key factor to influence the selective dispersion and flocculation of bauxite. Test results show that, in the presence calcium and magnesium ions at low concentration, sodium carbonate can achieve well selective dispersing and flocculating for the desilicication of bauxite. When the dosage of sodium carbonate is2500g/t, the dispersion of slurry is improved, and the addition of sodium polyacry late can improve the Al2O3recovery of concentrate. When the dosage of sodium polyacrylate is10g/t, the Al2O3recovery of concentrate is91.96%with the Al2O3/SiO2ratio of7.16. After strong scrubbing and twice dispersing-flocculating desilicication, the Al2O3recovery of concentrate decreases to85.45%, but the Al2O3/SiO2ratio increases to8.59, this concentrate meets the requirment of Bayer process.
     In the presence of calcium ion at high concentration, it is obviously that the desilicication by selective dispersing-flocculating process for bauxite becomes wores when sodium carbonate, sodium hexametaphosphate and sodium silicate are used as dispersant. Using3000g/t sodium carbonate and1000g/t sodium silicate as combined dispersant, sodium polyacrylate as flocculant, the Al2O3recovery of concentrate is84.74%with the Al2O3/SiO2ratio of7.5. In the presence of magnesium ions at high concentration,2500g/t sodium carbonate and3000g/t sodium silicate were used as combined dispersants, the Al2O3recovery of concentrate is90%with the Al2O3/SiO2ratio of7.0. The addition of sodium polyacrylate or phosphate eater starch will only improve the Al2O3recovery a little, but they significantly reduce the selectivity of dispersing-flocculating process. The higher concentration of calcium or magnesium ions is, the more harmful to the removal of silicates by selective dispersing-flocculating process for bauxite. The pilot test results show that selective dispersing-flocculating process for bauxite is possible to be used in industry, but the high hardness water has huge negative impacts on this process. However, the use of a new water softener can improve the water quality, and reduce the negative effects of calcium and magnesium ions on the selective dispersing-flocculating desilication process of bauxite.
引文
[1]张安朝,徐靖,李建政.铝土矿资源选矿技术分析[J].河南冶金,2009(17):20-23
    [2]马茁卉,范振林.浅谈利用国外铝土矿资源的风险与策略[J].中国金属通报,2010,42:18-19
    [3]范振林,马茁卉.利用国外铝土矿资源的安全与策略[J].中国矿业,2010,19(3):13-15
    [4]张莓.我国铝土矿资源开发的实况与问题[J].中国金属通报,2010,17:36-38
    [5]孙志伟,鹿爱莉,盖静,等.山西铝土矿资源开发利用的先、问题与对策[J].中国矿业,2010,19(11):49-51
    [6]田凤鸣,范娜.广西铝土矿资源的潜力及可行性分析[J].中国矿业,2010,19(5):10-12
    [7]鄢艳.我国铝土矿资源现状[J].有色矿冶,2009,25(5):58-60
    [8]Wang Hui, Gu Guohua, FU Jiangang, et al. Study of the interfacial interactions in the molybdenite floatation system[J]. Journal of China University of Mining and Technology,2008,18(1):82-87
    [9]孙莉,肖克炎,王全明,等.中国铝土矿资源现状和潜力分析[J].地质通报,2011,30(5):722-728
    [10]徐爱勤,张正基.国内氧化铝的生产及发展状况[J].氯碱工业,2010,46(3):1-3
    [11]余传敏.铝土矿选矿为氧化铝工艺发展开辟一条新路[J].轻金属,2000,9:3-6
    [12]钮因键,夏忠.铝土矿选矿-我国氧化铝工业的希望[J].轻金属,2000,12:3-7
    [13]I.A.Murashkin, S.P.Dmitriev, E.B.Aleksandrov. Pilot-plant tests of the technology for magnetic roasting of highly ferrous Kazkhstan bauxites in the furnace for roasting ores in the stepwise suspended states [J]. Obogashch, Rud (Leningrad),1980,25 (1):29-32
    [14]E. Folcy, K. Tittle. Removal of iron oxides from bauxite ores [J]. Inst. Mining. Met. Proc,1971,239:59-65
    [15]李光辉.铝硅矿物的热行为及铝土矿的热化学活化脱硅[D].长沙:中南大学,2002
    [16]罗琳,刘永康.一水硬铝石—高岭石型铝土矿焙烧脱硅热力学机理研究[J].有 色金属,1999,51(1):25-30
    [17]马跃如,罗琳.铝土矿的化学选矿[J].中国锰业,1999,17(2):25-28
    [18]罗琳,何伯泉.高硅铝土矿焙烧预脱硅研究现状评述[J].金属矿山,1999(1):31-35
    [19]魏以和,钟康年,王军.生物技术在矿物工程中的应用[J].国外金属矿选矿,1996(1):1-13
    [20]方启学,黄国智.我国铝土矿资源特征及其选矿脱硅技术[J].国外金属矿选矿,2000(5):11-16
    [21]姜涛,邱冠周,李光辉,等.中低品位铝土矿选矿预脱硅的新进展[J].矿冶工程,1999,19(2):3-6
    [22]V.I.Grondeva,仲崇波.铝土矿的微生物选矿[J].国外金属矿选矿,1989(11):9-11
    [23]S. Willseher, K. Bosecker. Studies on the leaching behaviour of heterotrophic microorganisms isolated from an alkaline slag dump [J]. Hydrometallurgy,2003, 71(10):257-264
    [24]I.Styriakoca, I.Styriak, I.Kraus. Biodestruetion and deferritization of quartzs ands by bacillus species [J]. Mineral s Engineerin g,2003,16(8):709-713
    [25]惠明,侯银臣,田青,窦丽娜.硅酸盐细菌GSY-1胞外多糖的性质及其对铝土矿的脱硅效果[J].河南师范大学学报,2010,38(1):142-145
    [26]欧阳坚,卢寿慈.国内外铝土矿选矿研究的现状[J].矿产保护与利用,1995(6)40-43
    [27]V.V.Ishchenko, G.S.Berger, V.P.Kuznetsov.Action of sodium hexametaphosphate and sodium oleate upon bauxite mineral[J]. Izw VYZ Tsvet Metall,1972,5:8-12
    [28]V.V.Ishchenko. Pysicochemical interaction of bauxite-forming minerals with flotation reagentS[J]. Nauch Tech Konf Ureal Politeckh Inst,1973,1:8-12
    [29]D.Salatic. Floatability of boehmite and kaolin with anionic collectors[J]. Traw Com Int Etude bauxite,Alumina Alum,1979,15:157-159
    [30]陈志友,李旺兴,陈湘清,等.三水铝石型铝土矿的浮选脱硅试验研究[J].轻金属,2008(7):7-10
    [31]黄开国,胡为柏,张国祥,等.一水硬铝石堆积型铝土矿的分支浮选[J].轻金属,1982(2):1-4
    [32]杨彩云.中低品位铝土矿选冶工艺研究[J].矿产综合利用,1989(6)6-11
    [33]关明久.我国冶金级一水硬铝石-高岭石型(或水云母型)铝土矿的选矿试验研究概况[J].矿产综合利用,1989(4):13-18
    [34]刘广义.一水硬铝石型铝土矿浮选脱硅研究[D].长沙:中南工业大学硕士学位论文,1999
    [35]张国范.铝土矿浮选脱硅基础理论及工艺研究[D].中南大学博士学位论文,2001
    [36]刘逸超,杨彩云,程学志.水云母-一水硬铝石型铝土矿浮选试验[J].有色金属(选矿部分),1984,(1):11-13
    [37]温英,甘怀俊,王巧华.阳泉铝矾土富铝除铁的研究[J].中国锰业,1995,(6):26-29
    [38]刘三军.一水硬铝石浮选体系中表面活性剂的作用[D].中南大学硕士学位论文,2005
    [39]张国范,冯其明,卢毅屏,等.油酸钠对一水硬铝石和高岭石的捕收机理[J].中国有色金属学报,2001,4(2):298-301
    [40]蒋昊,李光辉,胡岳华.铝土矿的铝硅分离[J].国外金属矿选矿,2001(5):24-29
    [41]胡岳华,蒋昊,邱冠周,等.一水硬铝石型铝土矿铝硅浮选分离溶液化学[J].中国有色金属学报,2001(1):125-130
    [42]任建伟.铁矿高效反浮选药剂理论和应用研究[D].中南大学硕士学位论文,2004
    [43]V.V.Ishchenko, V.M.Korous, F.F.Fedyaev. Flotation of silica from bauxites[J]. Izv Vuz Tsvet Metall.1974,17(03):7-11
    [44]D.T.Ray. Enrichment of bauxite in the Tatun volcanic area [J]. Taiwan, Kuang Yeh Chi Shu,1980(18):69-81
    [45]Z.S.Sillag. Enrichment of bauxites by selective agglomeration [J]. Trav CSOBA,1976(13):271-284
    [46]N.M.Anishchenko, P.I.Andreev, T.F.Kirichenko. Interaction of cation reagents in the flotation of chamosite-gibbisite bauxite [J]. Izv Vyssh Uchebn Zaved Tsvet Metall,1972,4:12-16
    [47]李全元.浮选铝土矿时胺类捕收剂的作用机理[J].国外金属矿选矿1976(8):47-49
    [48]刘晓文.一水硬铝石和层状硅酸盐矿物的晶体机构和表面性质研究[D].中南大学博士学位论文,2003
    [49]胡岳华,王毓华,王淀佐.铝硅矿物浮选化学与铝土矿脱硅[M].北京:科学出版社,2004:13-47
    [50]印万忠,韩跃新.一水硬铝石和高岭石可浮性的晶体化学分析[J].金属矿 山,2001,(6):29-33
    [51]蒋昊.铝土矿浮选脱硅过程中阳离子捕收剂与铝矿物和含铝硅酸盐矿物作用的溶液化学研究[D].中南大学博士学位论文,2004
    [52]Zhong Hong, Liu Guangyi, Xia Liuyin, et al. Flotation separation of diaspore from kaolinite, pyrophyllite and illite using three cations collectors[J]. Minerals Engieering,2008(21):1055-1061
    [53]Xia Liuyin, Zhong Hong, Liu Guangyi, et al. Flotation separation of the aluminosilicates from diaspore by a Gemini cationic collector[J]. International Journal of Mineral Processing,2009(02):25-57
    [54]Guan Feng, Zhong Hong, Liu Guang-yi, et al. Flotation of aluminosilicate minerals using alkylguanidine collectors [J]. Transactions of Nonferrous Metals Society of China,2009(19):228-234
    [55]刘长淼.铝硅矿物的叔胺类捕收剂的合成、性能及作用机理研究[D].中南大学博士学位论文,2009
    [56]曹学锋,刘长淼,胡岳华.十二叔胺系列捕收剂对一水硬铝石的浮选行为[J].中南大学学报(自然科学版),2010,41(2):411-415
    [57]余新阳,钟宏,刘广义,等.铝土矿反浮选新型捕收剂QAS224的应用研究[J].金属矿山,2009(10):86-89
    [58]章晓林,徐瑾.新型阳离子捕收剂在极难选高硅铝土矿反浮选中的应用[J].轻金属,2010(2):6-8
    [59]Sun Wei, Ouyang Kui, Zhang Limin, et al. Preparation of hydrolyzate of hogwash oil (HHO) and its application in separating diaspore from kaolinite [J]. Minerals Engineeing,2010(23):670-675
    [60]顾国华,朴正杰,邹毅仁,等.阴离子淀粉对铝硅酸盐矿物浮选的影响及机理研究[J].矿冶工程,2010,30(2):28-34
    [61]李松清,成新潮.C01和B01等药剂在铝土矿反浮选中的应用[J].有色金属,2008(2):97-98
    [62]张丽敏.烷氧基硅烷对十二胺浮选铝硅矿物的影响研究[D].中南大学硕士学位论文,2009
    [63]陈湘清.硅酸盐矿物强化捕收与一水硬铝石选择性抑制的研究[D].中南大学博士学位论文,2004
    [64]李海普.改性高分子药剂对铝硅矿物浮选作用机理及其结构-性能研究[D].中南大学博士学位论文,2002
    [65]张云海,魏德州,曾克文,等.选择性抑制剂BK501A在铝土矿反浮选脱硅 中的应用[J].有色金属(选矿部分),2007(5):42-45
    [66]王毓华,胡岳华.物理因素对铝土矿反浮选的影响[J].中国矿业,2001,(6):37-39
    [67]王毓华.物料粒度组成对铝土矿反浮选的影响[J].金属矿山,2002(08):29-41
    [68]王毓华,胡岳华,何平波,等.铝土矿选择性脱泥试验研究[J].金属矿山,2004(4):38-40
    [69]孙伟,耿志强,易峦,等.旋流浮选器在铝土矿反浮选中的应用[J].中国有色金属学报,2010,20(3):557-564
    [70]周长春,刘迥天,黄根,等.铝土矿浮选柱选矿脱硅试验研究[J].中南大学学报(自然科学版),2010,41(3):845-851
    [71]周长春,刘炯天,李振,等.中低品位铝土矿浮选柱短流程分选研究[J].中国矿业大学学报,2010,39(1):116-120
    [72]吴国亮,黄国智,方启学.选别铝土矿合理磨矿工艺流程的研究[J].有色金属:选矿,2000,19(5):1-4
    [73]张建伟,王中原.选择性絮凝的方法及其机理(I)—增加或减少颗粒上的活性质点数法[J].过滤与分离,2005(01):1-4
    [74]张建伟,王中原.选择性絮凝的方法及其机理(Ⅱ)[J].过滤与分离,2005(02):1-3
    [75]刘苗华,石云良,朱红英.选择性分散絮凝赤铁矿新工艺[D].湖南大学硕士论文,2008
    [76]骆兆军,胡岳华,王毓华,等.铝土矿反浮选体系分散与凝聚理论[J].中国有色金属学报,2001(08):680-684
    [77]J.E.Gebhardt, D.W.Fuerstenau,袁继祖.用聚丙烯酸絮凝的细粒赤铁矿的浮选行为[J].国外金属选矿,1988,(4):50-58
    [78]于洋,牛福生,李凤久,等.微细粒鲕状赤铁矿颗粒分散特征研究[J].金属矿山,2009,1:62-65
    [79]李凤久,牛福生,倪文.微细粒鲕状赤铁矿颗粒絮凝行为研究[J].金属矿山,2009,11:54-57
    [80]袁继祖,龚文琪,曹明礼,等.江西抚州砂子岭高岭土选择性分散-絮凝试验研究[J].非金属,1994,102:32-35
    [81]邓斌,叶丽娟,侯耀永,等.几种分散剂对亚微米ZnO粉体在水中分散的影响[J].郴州师范高等专科学校校报,2002,23(2):37-40
    [82]余木龙,胡平.微粒菱锰矿脱磷的控制分散-剪切絮凝浮选研究[J].有色金 属,1988,40(2):43-52
    [83]魏新超,韩跃新,印万忠,等.铝土矿选择性磨矿的必要性与可行性研究[J].金属矿山,2001(10):29-31
    [84]骆兆军,胡岳华,王毓华,等.铝土矿反浮选体系分散与凝聚理论[J].中国有色金属学报,2001,11(4):680-683
    [85]王毓华,陈兴华,胡业民.碳酸钠对细粒铝硅酸盐矿物分散行为的影响[J].中国矿业大学学报,2007(3):292-297
    [86]王毓华,陈兴华,胡业民,兰叶.磷酸盐对细粒铝硅酸盐矿物分散行为的影响[J].中南大学学报:自然科学版,2007(4):238-244
    [87]陈兴华.铝土矿高效分散与选择性脱泥工艺研究[D].中南大学硕士学位论文,2006
    [88]黄传兵.铝土矿选择性絮凝分离新工艺研究[D].中南大学硕士学位论文,2006
    [89]Wang Yuhua, Huang Chuanbing, Hu Yuehua etc. Beneficiation of diasporic-bauxite ore by selective flocculation with a polyacrylate flocculant[J]. Minerals Engineering 21 (2008):664-672
    [90]张云海,魏德洲,徐敬尧.选择性絮凝分离—水硬铝石和伊利石[J].金属矿山,2003,(12):31-33
    [91]毛钜凡,张勇.多价金属离子对菱锰矿可浮性的影响[J].中国锰业,1994,12(6):23-28
    [92]杨久流,罗家珂,王淀佐.微细粒钨矿选择性絮凝工艺中调整剂的研究[J].矿冶,1995,4(4):26-30
    [93]D.福马西罗,等.Cu(Ⅱ)和Ni(Ⅱ)在石英、蛇纹石和绿泥石浮选中的活化作用[J].国外金属矿选矿,2006:16-20
    [94]刘谷山,冯其明,欧乐明,等.铜离子和镍离子对滑石浮选的影响及作用机理[J].硅酸盐学报,2005,33(8):1018-1022
    [95]董宏军,陈荩,毛钜凡.金属离子对蓝晶石可浮性的影响及机理研究[J].非金属,1996(109):27-30
    [96]陈玉千,松全元.尾矿回水中的几种离子对铁正浮选影响[J].中国矿业,1996,5(2): 32-36
    [97]李晔,雷东升,许时.矿浆中金属离子对硅线石与石英浮选分离的影响[J].硅酸盐学报,2002,30(3):362-365
    [98]M.C. FUERSTENAU, FLOTATION MC[M]. Fuerstenau Ed. A.M. Gaudin Memorial volume 1,1976:148-150
    [99]董宏军,陈荩.金属离子对红柱石的吸附与活化[J].有色金属,1996,48(2):35-40
    [100]王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1988:132-156
    [101]吴宏海,刘佩红,张秋云,等.高岭石对重金属离子的吸附机理及其在溶液的pH条件[J].高校地质学报,2005,11(1):85-91
    [102]王学松,王静,胡海琼,等.高岭石吸附水溶液中铜离子的研究[J].淮海工学院学报(自然科学版),2007,16(1):39-44
    [103]Gu Xueyuan, Les J.Evans. Modelling the adsorption of Cd(Ⅱ),Cu(Ⅱ),Ni(Ⅱ),Pb(Ⅱ) and Zn(Ⅱ) onto Fithian illite[J]. Colloid and Interface Science,2007(307):317-325
    [104]张明青,刘炯天,李小兵.煤泥水中黏土颗粒对钙离子的吸附实验研究及机理探讨[J].中国矿业大学学报,2004(5):547-551
    [105]K.L.Konan, C.Peyratout, J.P.Bonnet, et al. Surface properties of kaolin and illite suspensions in concentrated calcium hydroxide medium[J]. Journal of Colloid and Interface Science,2007,307(1):101-108
    [106]刘亚川,张克仁,龚焕高.金属离子对浮选药剂作用的影响[J].金属矿山,1994(2):45-48
    [107]张琪,方和平.Fe3+对A13+活化微斜长石产生屏蔽的机理[J].中国有色金属学报,1999,9(4):158-161
    [108]张琪,方和平.金属离子对硅线石和微斜长可浮性的影响[J].矿产资源保护和利用,1999(1):34-37
    [109]郭德,张秀梅,吴大为.对Ca2+影响煤泥浮选和凝聚作用机理的认识[J].煤炭学报,2008,8:433-435
    [110]湛含辉,罗彦伟,李伟,等.钙离子形态对吸附效果的影响研究[J].湖南科技大学学报(自然科学版),2007,6:115-118
    [111]何廷树,松全元.细粒弱磁性铁矿的选择性絮凝—脱泥研究[J].中国矿业.1996,(3):40-42
    [112]孙致安,卢寿慈.钙镁离子对石英/赤铁矿凝聚与絮凝的作用[J].矿冶工程,1992(12):19-22
    [113]卢寿慈,方启学.钙镁离子对微细粒弱磁性铁矿复合高分子聚团分选过程的影响及其消除研究[J].国外金属矿选矿,1996,33(4):35-38.
    [114]方启学.钙镁对微细矿粒分散稳定性的影响及其机理研究[J].国外金属矿选矿,1998.6:42-45
    [115]A.Van Lierde. Behaviour of quartz suspensions in the presence of calcium ions and aCry late polymers [J]. International Journal of Mineral Processing,1980,7(3):235-243
    [116]A.DiFeo, J.A.Finch and Z.H. Xu. Sphalerite-silica interactions:effect of pH and calcium ions[J]. International Journal of Mineral Processing,2001.61(1):57-71
    [117]王毓华,陈兴华,周瑜林.金属离子对细粒硅酸盐矿物分散行为的影响[J].金属矿山,2007(5):38-43
    [118]M.GSong, J.Y.Kim and J.D. Kim. Effect of sodium stearate and calcium ion on dispersion properties of precipitated calcium carbonate suspensions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2003(3): 75-83
    [119]R.Nystrom, G.Hedstrom, J.Gustafsson, et al. Mixtures of cationic starch and anionic polyacrylate used for flocculation of calcium carbonate-influence of electrolytes[J]. Colloids and Surfaces A-physiochemical and Engineering Aspects,2004,234 (1-3):85-93
    [120]F.Andreola, E.Castellini, J.M.F.Ferreira, et al. Effect of sodium hexametaphosphate and ageing on the rheological behaviour of kaolin dispersions [J]. Applied Clay Science,2006(31):56-64
    [121]F.Andreola, E.Castellini, T.Manfredini, et al. The role of sodium hexametaphosphate in the dissolution process of kaolinite and kaolin[J]. Journal of the European Ceramic Society,2004(24):2113-2124
    [122]A.S.Lesley Parolis, Rene van der Merwe, Gary V. Groenmeyer, et al. The influence of metal cations on the behaviour of carboxymethly celluloses as talc depressants[J]. Colloids and Surface A:Physicochemical Aspects,2008(317):109-115
    [123]朱济成.硬水[M].北京:地质出版社,1981:12
    [124]杨久流,罗家珂,李颖,等.Ca2+、Mg2+对黑钨矿选择性絮凝的影响及其机理研究[J].矿冶,1998(1):29-32
    [125]W.B.Gan, B.Crozier, Q.Liu. Effect of citric acid on inhibiting hexadecane-quartz coagulation in aqueous solutions containing Ca2+, Mg2+ and Fe3+ ions[J]. Int J.Miner.Process,2009,92(1-2):84-91
    [126]F.Rashchi, J.A.Finch. Polyphosphates:A review their chemistry and application with particular reference to mineral processing[J]. Minerals Engineering,2000,13(10-11):1019-1035
    [127]Riyad, R.Irani, Clayton. Calcium and Magnesium Sequestration by Sodium and Potassium Polyphosphates[J]. The Journal of the American Oil Chemists' Society,1962,3:156-159
    [128]A.Papo, L.Piani, R.Ricceri. Sodium tripolyphosphate and polyphosphate as dispering agents for kaolin suspensions:rheological characterization[J]. Colloids and Surfaces,2002,201(1-3):219-230
    [129]周闯.三聚磷酸钠的水解及水合问题初探[J].贵州化工,2002(08):43
    [130]刘康莲,况紫燕,雷莉莉.三聚磷酸钠螯合钙能力的测试[J].黔南民族师范学院学报,2008(03):78-80.
    [131]榕嘉.三聚磷酸钠的性能和应用[J].四川丝绸,1996(4):39-41
    [132]P.Pathomrungsiyounggul, M.J.Lewis, A.S.Grandison. Effects of calcium-chelating agents and pasteurisation on certain properties of calcium-fortified soy milk [J]. Food Chemistry,2010,118(3):808-814
    [133]卢寿慈,翁达.界面分选原理及应用[M].北京:冶金工业出版社,1992:130-166
    [134]H.C.Hamaker,(1937),Phvsica 4,PP 1058-1072
    [135]J.N.Israclachvili. Intermolecular and Surface Forces[M]. London:Academic Press Inc LTD.,1985.295
    [136]P.C.Hiemenz. Principles of Colloid and Surface Chemistry. New York:Marcel Dekker inc.1977
    [137]卢寿慈.工业悬浮液[M].北京:化学工业出版社,2003.113
    [138]邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选[M].长沙:中南工业大学出版社,1993.34
    [139]王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1988:132-156
    [140]朱友益,毛钜凡.六偏磷酸钠等分散剂对微细粒菱锰矿的分散作用研究[J].金属矿山,1990(12),51-54
    [141]刘亚川,龚焕高,张克仁.六偏磷酸钠的作用机理研究[J].东北工学院学院,1993,14(3):231-235
    [142]夏启斌,李忠,邱显扬,等.六偏磷酸钠对蛇纹石的分散机理研究[J].有色金属,1991,43(4):33-40
    [143]丁浩,崔林.六偏磷酸钠在金红石与硅钙质矿物浮选分离中的作用机理[J].有色金属,1982,34(1):38-42
    [144]刘传麟.应用焦磷酸钠浮选分离铜铅精矿[J].有色金属,1982,34(1):38-42
    [145]钱蕴,吉静,王峰.刘景军.焦磷酸钠对改性膨润土分散性的影响[J].涂料工业,2010,40(10):8-14
    [146]张琪,方和平.焦磷酸钠在硅线石和微斜长石表面选择性吸附的机理研究[J].硅酸盐学报,1999,27(3):376-379
    [147]周骏宏,况紫燕,雷莉莉.三聚磷酸钠的钙螯合力影响因素研究[J].无机盐工业,2009,41(4):38-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700