用户名: 密码: 验证码:
裂缝性地层钻井液漏失动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
井漏是一种钻井中较为常见的井下复杂情况,井漏不仅会延长钻井周期,损失大量人力物力,造成储层损害,而且井漏一旦控制不力,还可能会诱发井塌、井喷等重大事故。随着油气资源勘探、开发的深入,常规油气资源越来越少,钻井工程已逐步走向深层、超深层和深水、压力衰竭地层及复杂地层,井漏问题更加突出,制约了安全、快速、高效钻井,成为油气勘探与开发的瓶颈。
     井漏问题亦是当前研究的热点和难点,已引起众多国内外学者的关注,开展了大量实验及模拟研究,形成了针对孔隙性及微裂缝地层的防漏堵漏技术。然而,裂缝性地层漏失方面还存在许多挑战,钻井液漏失理论研究比较薄弱,远未达到模型化、定量化和科学化的程度。因此,认清裂缝性地层漏失特征及规律,开展裂缝性地层钻井液漏失动力学研究,是解决钻井液漏失问题的关键。
     选择川东北及塔河地区碳酸盐岩地层为主要研究对象,统计分析了150余口井、483次井漏资料,明确了碳酸盐岩地层钻井液漏失特征及分布规律。在漏失机理综合研究基础上,将井漏划分为:压裂性漏失、扩展性漏失和压差性漏失三大类,给出了漏失类型的工程识别方法,并建立了缝洞性地层漏失压力模型,为预防钻井液漏失和漏失压力调控提供了理论依据。
     建立了非牛顿(赫巴)流体在一维线性及二维平面裂缝中的运动方程,明确了流量与压力梯度的非线性函数关系。为节约数值求解时间,对运动方程进行了简化,定量分析了模型线性化的误差。研究表明,误差随着裂缝宽度、压力梯度和流型指数增加而降低,随着动切力增加而增加。钻井液漏失时,压力梯度及裂缝宽度一般较大,模型简化所带来的误差对漏失早期行为几乎没有影响,能够满足研究的需要。
     研制了高温高压钻井液漏失动态评价仪。仪器主要由钻井液供给系统、钻井液循环系统、裂缝模块系统、控制系统和数据采集系统等五部分组成。模拟缝长1m、缝宽1-10mm、缝高50mm,且考虑了裂缝壁面滤失功能,能够满足大裂缝漏失动态评价。应用高温高压钻井液漏失动态评价仪,初步开展了钻井液漏失实验。研究表明,所建的一维钻井液漏失模型误差低于12%,证实了模型的有效性。
     建立了综合考虑非牛顿赫巴流体、裂缝指数(或线性)变形规律、裂缝壁面滤失、钻井液微可压缩性等因素的一维线性及二维平面裂缝钻井液漏失模型,使用有限差分法对模型进行了求解。模拟了无限长及有限长裂缝的钻井液漏失行为,研究了钻井液漏失曲线特征,明确了裂缝应力敏感程度、压差、裂缝产状及尺寸、钻井液流变性和裂缝壁面滤失特性等参数对漏失的影响。
     基于分形理论,探讨了粗糙裂缝的合成方法,编制了二维粗糙裂缝的计算机生成程序,建立了粗糙裂缝非牛顿(赫巴)流体钻井液漏失模型,研究了分形维数、标准差、网格尺寸等参数对漏失动态的影响规律,揭示了非牛顿流体在粗糙裂缝中的漏失规律。研究表明,裂缝粗糙度对非牛顿流体漏失的影响大于牛顿流体,且当裂缝表面接触率大于零时,会显著地抑制钻井液漏失。
     以蒙特卡罗随机建模理论为基础,建立了二维及三维离散裂缝网络几何模型,并编制了离散裂缝网络生成程序SFNM2D和SFNM3D。结合单裂缝钻井液漏失模型,建立了裂缝网络地层钻井液漏失动力学模型,并通过有限差分法和有限元法实现了模型的求解,重点研究了二维离散裂缝网络钻井液漏失特征及规律,并初步开展了三维离散裂缝网络钻井液漏失模拟。研究揭示,裂缝网络地层钻井液漏失曲线出现波动现象,波动的频率及幅度与裂缝网络空间结构密切相关。
     采用岩石断裂力学和天然裂缝非牛顿流体漏失动力学理论,建立了考虑了裂缝扩展的拟三维压裂性漏失模型,研究了裂缝动态扩展过程和漏失速率的变化特征及规律,发现裂缝扩展时漏失速率曲线及缝内压力均出现周期性波动现象,该现象与现场水力压裂测试曲线类似,验证了模型的有效性。
Lost circulation is severe while drilling fractured formations, which will not only cost drilling time, lose expensive drilling fluid, cause the reservoir damage, but also can cause the terrible accidents such as well collapsed, blowout and so on. Nowadays, with the oil and gas resources exploration and development improving and conventional oil and gas resources becoming fewer and fewer, the drilling engineering has been gradually moving towards deep and extra-deep formation, deep-water, pressure depletion formation and the complex formation. Mud losses has restricted the safe, rapid, efficient drilling and become the bottleneck of gas exploration and development. Lost circulation has become the biggest barrier for drilling safely, quickly, and efficiently.
     After years of research, the leak resistant and sealing technology for pores and micro fractures has already formed. However, there are still many challenges on controlling the mud losses in fractured formations, the theory of the drilling fluid losses is relatively weak and far from the level of modeling, quantitative and scientific. Therefore, it is crucial to understand the characteristics and regularity of drilling fluids losses and modeling drilling fluid losses in the fractured formations.
     This thesis chooses carbonate formations in northeastern of Sichuan and Tahe oilfield as the main research objects, statistically analyzed the data of more than150wells and loss information of483times and confirmed the characteristics and distribution of drilling fluid losses in the carbonate formations. Based on the comprehensive studies on the loss mechanism, mud losses are classified into three types:fracturing loss, fracture propagation loss and Pressure difference loss. Then a lost circulation pressure model of carbonate formations were established, which provides a basic theory for preventing the drilling fluid losses and changing the loss pressure.
     This paper presented the flow equations of non-Newtonian (Herschel-Bulkley) fluids in the1D-linear and2D-plane fracture, confirmed the non-linear function relationship between flow and pressure gradient. In order to save the numerical time, this paper simplified the motion equation and analyzed the error quantitatively. Results show that the error decreases with the increase of fracture aperture, the pressure gradient and flow behavior index and increased with the increase of the yield stress. The pressure gradient and fracture aperture are usually large when lost circulation occurs. Therefore, the error of simplified model is very small, which can satisfy the simulation requirement.
     This paper designed the high temperature and pressure mud losses dynamic evaluation apparatus, which concludes five sections, such as drilling fluids supply system, drilling fluids circulation system, fracture module, control system and data acquisition system. This apparatus can model lm length,1-10mm aperture and50mm height fractures, which satisfies the requirement of big-fracture losses evaluation. The results show that the error of1D loss model didn't exceed12%, which demonstrated the effective of this model.
     This paper proposed the drilling losses models in the1D-linear and2D-plane fracture which considered the non-Newtonian fluids, the exponential (and linear) fracture deformation law, the fluid leak-off, the slightly compressibility of drilling fluids, and this model was solved by the finite-difference method. Then, the drilling fluids losses behavior in the infinite and finite fractures was simulated. The characteristics of drilling fluids losses curve and the factors, such as pressure sensitivity, overbalance pressure, fracture orientation and size, rheological properties of drilling fluids and fluid leak-off through the fracture wall which influence mud loss were analyzed.
     Based on the fractal theory, this paper probed the method of generating the rough fracture, compiled the computer procedure of generating2D rough fracture, established the model of non-Newtonian fluids (Herschel-Bulkley) losses in the rough fracture, investigated the effect of fractal dimension, standard deviation and grid size on mud losses, and demonstrated how the roughness can influence non-Newtonian fluids losses. The results show that the roughness has more influence on the non-Newtonian fluids than the Newtonian fluids. What's more, the roughness can prevent the drilling fluids losses when the fracture surface touch rate is greater than zero.
     Based on the Monte-Carlo stochastic simulation theory, this paper constructed the2D and3D discrete fracture network (DFN) models and compiled the procedure of generating2D and3D discrete fracture network, SFNM and SFNM3D. Integrated with the drilling fluids losses in the single fracture, this paper established the model of drilling fluids losses in the fracture network, and the methods of finite difference and finite element are used to solve this model, laid emphasis on studying the characteristics and laws of drilling fluids losses in the2D discrete fracture networks, and carried out the preliminary.(?)imulation of drilling fluids losses in the3D discrete fracture networks. The results show that the curve of drilling fluids losses in the fracture networks had the fluctuation phenomenon and the fluctuation frequency and range was largely related to the construction of fracture networks.
     According to the theory of rock fracture mechanics and non-Newtonian fluids losses dynamics in the nature fracture, this paper constructed the pseudo3D model of drilling fluids losses in the induced fracture mud loss, and the process of fracture propagation and the characteristics and laws of mud loss rate was investigated. Results show that both the mud loss rate curve and the pressure in the fracture had the periodical fluctuation phenomenon when the fracture was spreading, which was similar to the curve of hydraulic fracture and proved the effective of the model.
引文
[1]http://business.sohu.com/20110127/n279111390.shtml
    [2]http://acs.mofcom.gov.cn/sites/aqzn/nyaqnr.jsp?contentld=2527526880857
    [3]李大奇.深井裂缝性储层钻井液漏失发生机理研究[D].成都:西南石油大学,2009.
    [4]徐同台,刘玉杰,申威.钻井工程防漏堵漏技术[M].北京:石油工业出版社,1997.
    [5]Catalin I, James B, Ben B. Lost circulation can be managed better than ever [J]. World Oil,2003, 224(6):35-41.
    [6]Joseph U. Lost circulation [M]. Printed in the United States of America,1963.
    [7]Fred E. Fracture closure stress (FCS) and lost returns practices [R]. SPE 92192,2005.
    [8]赵良孝.重泥浆压裂漏失的机理和测井诊断方法[J].天然气工业,1996,16(2):19-22.
    [9]曾义金.塔北地区碳酸盐岩储层欠平衡压力钻井技术[J].石油钻探技术,2001,29(2):7-9.
    [10]王维斌,马延虎,邓团.川东宣汉一开江地区恶性井漏特征及地质因素[J].天然气工业,2005,25(2):90-92.
    [11]杨健.MP46井复杂井漏的特殊处理[J].钻采工艺,2006,29(4):122-124.
    [12]郭红峰,卜震山,秦长青.桥塞堵漏工艺及堵剂研[J].石油钻探技术,2000,28(5):39-40.
    [13]杨振杰.国外礁灰岩漏失地层钻井技术[J].钻井液与完井液,2004,21(1):45-49.
    [14]Maury V, Guenot A. Practical advantages of mud cooling systems for drilling [R]. SPE 25732,1995.
    [15]Tang L, Luo P. The effect of thermal stress on wellbore stability [R]. SPE 39505,1998.
    [16]Schmidt J H, Friar W L, Bill M L, et al. Large-scale injection of north slope drilling cuttings[R]. SPE 52738,1999.
    [17]Manuel E G, James B B, John E L, et al. Increasing effective fracture gradients by managing wellbore temperatures [R]. SPE 87217,2004.
    [18]李大奇,康毅力,刘大伟,等.温度对超深井非水化地层安全钻井的影响[J].石油钻采工艺,2008,30(6):52-57.
    [19]Lavrov A, Tronvoll J. Mud loss into a single fracture during drilling of petroleum wells:Modeling Approach [C].6th International Conference on Analysis of Discontinuous Deformation, Trondheim, 2003,189-198.
    [20]Lavor A, Tronvoll J. Modeling mud loss in fractured formations [R]. SPE 88700,2004.
    [21]Lavor A, Tronvoll J. Mechanics of borehole ballooning in naturally-fractured formations [R]. SPE 93747,2005.
    [22]Lavrov A. Newtonian fluid flow from an arbitrarily-oriented fracture into a single sink [J]. Acta Mechanica,2006,186 (1-4):55-74.
    [23]Tempone P, Lavrov A. DEM modeling of mud losses into single fractures and fracture network [C]. The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics, India,2008,2475-2482.
    [24]Adachi, Baliey, Houwen. Depleted zone drilling:reducing mud losses into fracture [R]. SPE 87224, 2004.
    [25]Majidi R, Miska S Z, Yu M, et al. Quantitative analysis of mud losses in naturally fractured reservoirs:the effect of rheology [R]. SPE 114130,2008.
    [26]Majidi R, Miska S Z, Yu M, et al. Drilling fluid losses in naturally fractured formations [R]. SPE 114630,2008.
    [27]Majidi R, Miska S Z, Yu M, et al. Fracture ballooning in naturally fractured formations:mechanism and controlling factors [R]. SPE 115526,2008.
    [28]Ozdemirtas M, Babadagli T, Kuru E. Effects of fractal fracture surface roughness on borehole ballooning [J]. Vadose Zone Journal,2009,8(1):1-8.
    [29]Ozdemirtas M, Babadagli T, Kuru E. Experimental and numerical investigations of borehole ballooning in rough fractures [J]. SPE Drilling & Completion,2009,24 (2):256-265.
    [30]Ozdemirtas M, Kuru E, Babadagli T. Experimental investigation of borehole ballooning due to flow of non-Newtonian fluids into fractured rocks [J]. International Journal of Rock Mechanics & Mining Sciences,2010,47:1200-1206.
    [31]Pordel Shahri M, Zeyghami M, Majidi R. Investigation of fracture ballooning and breathing in naturally fractured reservoirs:effect of fracture deformation law [R]. SPE 115526,2011.
    [32]鄢捷年.钻井液工艺学[M].东营:石油大学出版社,2001.
    [33]胥永杰.高陡复杂构造地应力提取方法与井漏机理研究[D].四川成都:西南石油学院,2005.
    [34]金衍,陈勉,刘晓明,等.塔中奥陶系碳酸盐岩地层漏失压力统计分析[J].石油钻采工艺,2007,29(5):82-84.
    [35]石晓兵,熊继有,陈平,等.高陡复杂构造裂缝漏失堵漏机理研究[J].钻采工艺,2007,30(5):24-26.
    [36]Morita N, Black A D, Fuh G F. Theory of lost circulation pressure [R]. SPE 20409,1990.
    [37]朱亮,张春阳,楼一珊,等.两种漏失压力计算模型的比较分析[J].天然气工业,2008,28(12):60-61,67.
    [38]石林,蒋宏伟,郭庆丰.易漏地层的漏失压力分析[J].石油钻采工艺,2010,32(3):40-44.
    [39]Fatt Ⅰ, Davis D H. Reduction in permeability with overburden pressure [J]. Petroleum Transactions, AIME,1952,195:329.
    [40]Fatt Ⅰ. The effect of overburden pressure on relative permeability [J]. Petroleum Transactions, AIME, 1953,198:236.
    [41]Wyble D O. Effect of applied pressure on conductivity, porosity and permeability of sandstones [J]. Petroleum Transactions, AIME,1958,231:430-432.
    [42]Dobrynin V M. The effect of overburden pressure on some properties of sandstones [J]. SPE Journal, 1962,2 (4):360-366.
    [43]Morita N,Gray K E, Sroujl Fariz A A, et al. Rock property change during reservoir compaction[R]. SPE 13059,1984.
    [44]Gray H D, Fatt 1, Bergamini G. The effect of stress on permeability of sandstone cores [J]. SPE Journal,1963,3 (2):95-100.
    [45]Wilhelmi B, Somerton W H. Simultaneous Measurement of pore and elastic properties of rocks under triaxial stress conditions [R]. SPE 1706,1967.
    [46]Holt R M. Permeability reduction induced by a non-hydrostatic stress field [R]. SPE 19595,1989.
    [47]Bernabe Y. The effective pressure law for permeability in Chelmsford granite and Barre granite [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1986, 23 (3):267-275.
    [48]张有天.岩石水力学与工程[M].中国水利水电出版社,2005.
    [49]朱珍德,郭海庆.裂隙岩体水力学基础[M].科学出版社,2007.
    [50]张浩,康毅力,陈一健,等.致密砂岩油气储层岩石变形理论与应力敏感性[J].天然气地球科学,2004,15(5):482-486.
    [51]闫丰明,康毅力,李松,等.裂缝—孔洞型碳酸盐岩储层应力敏感性实验研究[J].天然气地球科学,2010,21(3):489-493.
    [52]Louis C. Rock hydraulics [A]//Muller L(ed). Rock Mechanics[M]. New York:Elsevier Science, 1974.
    [53]Ali H S, Al-Marhoun M A, Abu-Khamsin S A, et al. The effect of overburden pressure on relative permeability [R]. SPE 15730,1987.
    [54]Bruel D, Cacas M C, Ledoux E, et al. Modeling storage behavior in a fractured rock mass [J]. Journal of Hydrology,1994,162 (3/4):267-278.
    [55]蒋官澄.裂缝性储层应力敏感性研究[J].钻井与完井夜,1998,15(5):12-14.
    [56]Nelson. Fracture permeability in porous reservoirs:experimental and field approach [D]. Texas: Department of Geology, Texas A and M University,1975.
    [57]Kranz R L, Frankel A D, Engelder T, et al. The permeability of whole and jointed Barre granite [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1979, 16 (2):225-234.
    [58]Gale J E. The effects of fracture type (induced versus natural) on the stress-fracture closure-fracture permeability relationships [A]. In:Proc.23rd Symp. on Rock Mech.[C]. Berkeley:August 25-27,1982.
    [59]Jones F O. A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rocks [R]. SPE 4569,1975.
    [60]Jones F O, Owens W W. A laboratory study of low permeability gas sands [R]. SPE 3634,1980.
    [61]Walsh J B. Effect of pore pressure and confining pressure on fracture permeability [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1981,18(5):429-435.
    [62]兰林,康毅力,陈一健,等.储层应力敏感性评价实验方法与评价指标探讨[J].钻井液与完井液,2005,22(3):1-4,79.
    [63]薛永超,程林松.微裂缝低渗透岩石渗透率随围压变化实验研究[J].石油实验地质,2007,29(1):108-110.
    [64]仵彦卿.岩土水力学[M].北京:科学出版社,2009.
    [65]Abrams. A mud design to minimize rock impairment due to particle invasion [J]. JPT,1977,29 (5): 586-592.
    [66]罗向东,罗平亚.屏蔽式暂堵技术在储层保护中的应用研究[J].钻井液与完井液,1992,9(2):19-27.
    [67]Nick Hands, Kevin Kowbel, Sven Maikranz, et al. Drill-in fluid reduces formation damage, increases production rates [J]. Oil & Gas,1998,96 (28):65-69.
    [68]Dick M A, Heinz TJ, Svoboda C F, et al. Optimizing the selection of bridging particles for reservoir drilling fluids [R]. SPE 58793,2000.
    [69]Yan Jienian, Feng Wenqiang. Design of drill-in fluids by optimizing selection of bridging particles [R]. SPE 104131,2006.
    [70]Vickers S, Cowie M, Jones T, et al. A new methodology that surpasses current bridging theories to efficiently seal a varied pore throat distribution as found in natural reservoir formations[C]. AADE 2006 Fluids Conference, Houston,2006,501-505.
    [71]崔迎春,张炎.分形几何理论在屏蔽暂堵剂优选中的应用[J].石油大学学报(自然科学版),2000,24(4):17-20.
    [72]Fuh G F, Morita N, Boyd P A, et al. A new approach to preventing lost circulation while drilling [R]. SPE 24599,1992.
    [73]Alberty M W, Mclean M R. Formation gradients in depleted reservoirs:drilling wells in late reservoir life[R]. SPE 67740,2001.
    [74]Sweatman R, Kelley S, Heathman J. Formation pressure integrity treatments optimize drilling and completion of HTHP production hole sections [R]. SPE 68946,2001.
    [75]Alberty M W, McLean M R. A physical model for stress cages [R]. SPE 90432,2004.
    [76]Dupriest F E. Fracture closure stress (FCS) and lost returns treatments [R]. SPE 92192,2005.
    [77]王业众,康毅力,游利军,等.裂缝性储层漏失机理及控制技术研究进展[J].钻井液与完井液,2007,24(4):74-77.
    [78]刘加杰,康毅力,王业众.扩展钻井液安全密度窗口理论与技术进展[J]钻井液与完井液,2007,24(4):67-73.
    [79]Wang H, Towler B F, Soliman M. Fractured wellbore stress analysis:sealing cracks to strengthen a wellbore[R]. SPE 104947,2007.
    [80]Wang H, Soliman M Y, Towler B F. Investigation of factors for strengthening a wellbore by propping [R]. SPE 112629,2008.
    [81]Wang H, Sweatman R, Engelman B, et al. Best practice in understanding and managing lost circulation challenges [R]. SPE 95895,2008.
    [82]Li Daqi, Kang Yili, Liu Jiajie. The mechanism study on lost circulation prevention and plugging of marine fractured carbonate formation [C].2009 International Forum on Porous Flow and Application, Wuhan, China,2009,04,24-26.
    [83]Van Oort E, Friedheim J. Avoiding losses in depleted and weak zones by constantly strengthening wellbore[R]. SPE 125093,2009.
    [84]Mehdi L, Karim S Z, Zhai Z Y, et al. Borehole strengthening and injector plugging:the common geomechanics thread [R]. SPE 128589,2010.
    [85]许成元,康毅力,李大奇.提高地层承压能力研究新进展[J].钻井液与完井液,2011,28(5):81-85.
    [86]Schafer D M, Loeppke G E, Glowka D A, et al. An evaluation of flowmeters for the detection of kicks and lost circulation during drilling [R]. SPE 23935,1992.
    [87]Dyke C G, Wu B, Milton-Tayler D. Advances in characterizing natural-fracture permeability from mud-log data [R]. SPE 25022,1992.
    [88]Beda G, Carugo C. Use of mud microloss analysis while drilling to improve the formation evaluation in fractured reservoirs [R]. SPE 71737,2001.
    [89]李松,康毅力,刘修善,等.先兆漏失诊断——钻井液漏失控制的一个关键[J].钻井液与完井液,2011,28(2):80-83.
    [90]Lietard O. Fracture width LWD and drilling mud/LCM selection guidelines [R]. SPE 36832,1996.
    [91]Sanfillippo F, Brignoli M. Characterization of conductive fractures while drilling [R]. SPE 38177, 1997.
    [92]Maglione R, Marsala A. Drilling mud losses:problem analysis. AGIP Internal Report (1997).
    [93]Bertuzzi F, Sanfilippo F, Bngnoli M, et al. Characterization of flow within natural fractures:numerical simulations and field [R]. SPE 47268,1998.
    [94]Verga F, Carugo C, Chelini V, et al. Detection and characterization of fractures in naturally fractured reservoirs [R]. SPE 63266,2000.
    [95]Salimi S, Ghalambor A, Tronvoll J, et al. A simple analytical approach to simulate underbalanced-drilling in naturally fractured reservoirs-The effect of short overbalanced conditions and time effect [J]. Energies,2010,3 (10):1639-1653.
    [96]Huang Jinsong, Griffiths D V, Wong Sau-Wai. Characterizing natural-fracture permeability from mud-loss data [J]. SPE Journal,2011,16 (1):111-114.
    [97]练章华,康毅力,徐进,等.裂缝宽度预测的有限元模拟[J].天然气工业,2001,21(3):47-50.
    [98]练章华,康毅力,唐波,等.井壁附近垂直裂缝宽度预测[J].天然气工业,2003,23(3):44-46.
    [99]陈艳华,朱庆杰,苏幼坡,等.基于格里菲斯准则的地下岩体天然裂缝分布的有限元模拟研究[J].岩石力学与工程学报,2003,22(3):364-369.
    [100]刘向君,李战君,李允,等.裂缝闭合规律研究及其对油气田开发的影响[J].天然气工业,2004,24(7):39-41.
    [101]李相臣,康毅力,张浩,等.致密砂岩与井筒连通2条垂直裂缝宽度变化的计算机模拟[J].钻井液与完井液,2007,24(4):55-59.
    [102]张浩,康毅力,陈景山,等.致密砂岩成组裂缝宽度变化计算机模拟.中国石油学会天然气专业委员会2006年学术年会优秀论文,云南昆明,2006,11.
    [103]李大奇,康毅力,曾义金,等.缝洞型储层缝宽动态变化及其对钻井液漏失的影响[J].中国石油大学学报(自然科学版),2011,31(5):76-81.
    [104]Civan F. Rasmussen M L. Further discussion of fracture width logging while drilling and drilling mud/loss-circulation-material selection guidelines in naturally fractured reservoirs [J]. SPE Drilling & Completion,1999,14 (3):249-250.
    [105]Sawaryn S J. Discussion of fracture width logging while drilling and drilling mud/loss-circulation-material selection guidelines in naturally fractured reservoirs [J]. SPE Drilling & Completion,1999,16 (4):268-269.
    [106]Di Federico, V.:"Non-Newtonian Flow in a Variable Aperture Fracture", Transport in Porous Media (1998) 30, No.1,75.
    [107]Majidi R. Modeling of yield-power-law type of drilling fluid losses in naturally fractured reservoirs [C]. TUDRP Advisory Board Meeting Report, The University of Tulsa,2006,11.
    [108]马光长,吉永忠,熊焰.川渝地区井漏现状及治理对策[J].钻采工艺,2006,29(2):25-27.
    [109]刘四海,崔庆东,李卫国.川东北地区井漏特点及承压堵漏技术难点与对策[J].石油钻探技术,2008,36(3):20-23.
    [110]窦斌,胡永东,段明成,等.川东北地区井漏特征及建议[J].钻采工艺,2009,32(5):114-116.
    [111]闫丰明,康毅力,游利军,等.塔河油田缝洞型储层漏失特征及控制技术实践[J].钻井液与完井液,2010,27(1):41-43,46.
    [112]李传亮,孔祥言.油井压裂过程中岩石破裂压力计算公式的理论研究[J].石油钻采工艺,2000,22(2):54-56.
    [113]金衍,张旭东,陈勉.天然裂缝地层中垂直井水力裂缝起裂压力模型研究[J].石油学报,2005,26(6):113-114,118.
    [114]邓金根,刘杨,蔚宝华,等.高温高压地层破裂压力预测方法[J].石油钻采工艺,2009,37(5):43-46.
    [115]郑有成.川东北部飞仙关组探井地层压力测井预测方法与工程应用研究[D].成都:西南石油大学,2004.
    [116]Aadnoy B S, Belayneh M, Arriado M, et al. Design of well barriers to combat circulation losses [R]. SPE 105449,2007.
    [117]T D范高尔夫-拉特.裂缝性油藏工程基础[M].北京:石油工业出版社,1989.
    [118]A R纳尔逊.天然裂缝性储集层地质分析[M].北京:石油工业出版社,1991.
    [119]刘向君,罗平亚.岩石力学与石油工程[M].北京:石油工业出版社,2004.
    [120]徐光黎,潘别桐,唐辉明,等.岩体岩体结构模型与应用[M].武汉:中国地质大学出版社,1993.
    [121]陈剑平,肖树芳,王清.随机不连续面三维网络计算机模拟原理[M].长春:东北师范大学出版社,1995.
    [122]贾洪彪,唐辉明,刘佑荣,等.岩体结构面三维网络模拟理论与工程应用[M].北京:科学出版社,2008.
    [123]汪小刚,贾志新,张发明,等.岩体结构面网络模拟原理及其工程应用[M].北京:中国水利水电出版社,2010.
    [124]伍友佳.石油矿场地质学[M].北京:石油工业出版社,2004.
    [125]王媛,速宝玉.单裂隙面渗流特性及等效水力隙宽[J].水科学进展,2002,13(1):61-68.
    [126]刘永良.裂缝性碳酸盐岩储层漏失损害机理及计算机模拟[D].成都:西南石油大学,2008.
    [127]伍法权.统计岩体力学原理[M].北京:中国地质大学出版社,1993,5.
    [128]Mandelbrot B B, Passoja D E, Paullay A J. Fractal character of fracture surfaces of metals [J]. Nature, 1984,308:721-722.
    [129]Brown S R, Scholz S H. Broad bandwidth study of the topography of natural rock surfaces [J]. Journal of Geophysical Research,1985,90:12575-12582.
    [130]Brown S R. A note on the description of surface roughness using fractal dimension [J]. Geophysical Research Letter,1987,14 (11):1095-1098.
    [131]Brown S R. Fluid flow through rock joints:The effect of surface roughness [J]. Journal of Geophysical Research,1987,92 (B2):1337-1347.
    [132]Turk N, Greig M J, Dearman W R, et al. Characterization of rock joint surfaces by fractal dimension [C]. The 28th U.S. Symposium on Rock Mechanics, Tucasan,1987,1223-1236.
    [133]Huang S L, Oelfke S M, Speck R C. Applicability of fractal characterization and modeling to rock joint profiles [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1992,29:89-98.
    [134]Odling N E. Natural fracture profiles, fractal dimension and joint roughness coefficient [J]. Rock Mechanics and Rock Engineering,1994,27:135-53.
    [135]Den Outer A, Kaashoek J F, Hack HRGK. Difficulties with using continuous fractal theory for discontinuity surfaces [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abbstracts,1995,32:3-9.
    [136]Develi K, Babadagli T. Quantification of natural fracture surfaces using fractal geometry [J]. Mathematical geology,1988,30:971-998.
    [137]王媛,速宝玉.单裂隙面渗流特性及等效水力隙宽[J].水科学进展,2002,13(1):61-68.
    [138]Fournier A, Fussel D, Carpenter L. Computer rendering of stochastic models [J]. Communications of the ACM,1982,25:371-384.
    [139]Voss, R F. Random fractal forgeries [A]//Earnshaw R A(ed). Fundamental algorithms for computer graphics [M]. Berlin:Springer-Verlag,,1985.
    [140]Wong P, Howard J, Lin J. Surface roughening and the fractal nature of rocks [J]. Physical Review Letters,1986,57:637-640.
    [141]Brown S R. Fluid flow through rock joints:The effect of surface roughness [J]. Journal of Geophysical Research,1987,92 (B2):1337-1347.
    [142]Saupe D. Algorithms for random fractals [A]//Saupe D and Peitgen H-O (ed). The science of fractal images [M]. New York:Springer-Verlag,1988.
    [143]Wang J S Y, Narasimhan T N, Scholz C H. Aperture correlation of a fractal fracture [J]. Journal of Geophysical Research,1988,93 (B3):2216-2224.
    [144]Lee Y H. Fractal dimension as a measure of the roughness of rock discontinuity profiles [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1990, 27 (6):453-464.
    [145]Huang J, Turcotte D L. Fractal mapping of digitized images:application to the topography of Arizona and comparisons with synthetic images [J]. Journal of Geophysical Research,1989,94:7491-7495, 7999.
    [146]周创兵,叶自桐,韩冰.岩石节理面形态与水力特性研究[J].水科学进展,1997,8(3):233-239.
    [147]王锦国,周志芳.基于分形理论的裂隙岩体地下水溶质运移模拟[J].岩石力学与工程学报,2004,23(8):1358-1358.
    [148]周志芳,王锦国.裂隙介质水动力学[M].北京:中国水利水电出版社,2004.
    [149]Eriksson M, Stille H. A modification of the random midpoint displacement method for generating rock fracture similar surfaces[C]. The 11th International Conference on Fracture Division of Soil-and Rock Mechanics, Royal Institute of Technology, SE-100 44 Stockholm Sweden.
    [150]Mandelbrot B B. The fractal geometry of nature [M]. San Francisco:W. H. Freeman and Company, 1982.
    [151]Emanuel A S, Alameda G K, Behrens R A, et al. Reservoir performance prediction methods based on fractal geostatistics [J]. SPE Reservoir Eng.,1989,4:311-318.
    [152]冯学敏,陈胜宏.含复杂裂隙网络岩体渗流特性研究的复合单元法[J].岩石力学与工程学报,2006,25(5):918-924.
    [153]邬爱清,周火明,任放.岩体三维网络模拟技术及其在三峡工程中的应用[J].长江科学院院报,1998,15(1):15-22.
    [154]陈剑平.岩体随机不连续面三维网络数值模拟技术[J].岩土工程学报,2001,23(3)):397-402.
    [155]宋晓晨,徐卫亚.裂隙岩体渗流模拟的三维离散裂隙网络数值模型:裂隙网络的随机生成[J].岩石力学与工程学报,2004,23(12):2015-2020.
    [156]张发明,汪小刚,贾志欣,等.三维结构面连通率的随机模拟计算[J].岩石力学与工程学报,2004,23(9):1486-1490.
    [157]李阳,刘建民.油藏开发地质学[M].北京:石油工业出版社,2007.
    [158]徐钟济.蒙特卡罗方法[M].上海:上海科学技术出版社,1985.
    [159]刘晓丽,王恩志,王思敬,等.裂隙岩体表征方法及岩体水力学特性研究[J].2008,岩石力学与工程学报,27(9):1814-1821.
    [160]赵洪亮,陈建平.裂隙岩体三维网络流的渗透路径搜索[J].岩石力学与工程学报,2005,24(4):622-627.
    [161]Lee S H, Durlofsky L J, Lough M F, et al. Finite difference simulation of geologically complex reservoirs with tensor permeabilities [C]. SPE Reservoir Simulation Symposium, Texas,1997,6.
    [162]徐维胜,龚彬,何川,等.基于离散裂缝网络模型的储层裂缝建模[J].大庆石油学院学报,2011,35(3):13-16.
    [163]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社,1998.
    [164]葛家理.现代油气藏渗流力学原理[M].北京:石油工业出版社,2001.
    [165]Lipscomb G G, Denn M M. Flow of Bingham fluids in complex geometries [J]. Journal of Non-Newtonian Fluid Mechanics,1984,14:337-346.
    [166]Bingham EC. Fluidity and plasticity [M]. New York:McGraw-Hill,1922.
    [167]Herschel W H, Bulkley R. Konsistenzmessungen von Gummi-Benzol-Loesungen [J]. Kolloid Z. 1926,39:291-300.
    [168]Casson N. Rheology of disperse systems [M]. London:Pergamon Press,1959.
    [169]Mitsoulis E. Flows of viscoplastic materials:models and computations [J]. Rheology Reviews,2007, 135-178.
    [170]樊洪海,王果,张辉,等.四参数流变模式及其水力计算模型[J].石油学报,2010,31(3)511-515.
    [171]Huitt J L. Fluid flow in simulated fractures [J]. AIChE Journal,1955,2 (2):259-264.
    [172]Neuzil C E, Tracy J V. Flow through fractures [J]. Water Resource Research,1981,17(1) 191-194.
    [173]Bandis S C, Lumsden A C, Barton N R. Fundamentals of rock joint deformation [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1983,20(6):249-268.
    [174]赵阳升,杨,栋,郑少河,等。三维应力作用下岩石裂缝水渗流物性规律的实验研究[J].中国科学(E辑),1990,9(1):82-86.
    [175]Howard G C, Fast C R. Optimum fluid characteristics for fracture extension [J]. Drilling and Production Practice (API),1957,261-270.
    [176]NaTY, Hasen A G. Radial flow of viscous non-Newtonian [J]. International Journal of Non-Linear Meckcmics,1967,2 (3):261-273.
    [177]宋晓晨,徐卫亚.裂隙岩体渗流概念模型研究[J].岩土力学,2004.25(2):226-232.
    [178]黄勇,周志芳.岩体渗流模拟的二维随机裂隙网络模型[J].河海大学学报(自然科学版),2004,32(1):92-94.
    [179]范天佑.断裂理论基础[M].北京:科学出版社,2003.
    [180]谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700