用户名: 密码: 验证码:
反应萃取法分离发酵液中2,3-丁二醇的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物法制备的2,3-丁二醇(2,3-butanediol, BD)具有原料可再生、生产条件温和的优点,是一种非常有潜力的化工产品和替代能源。但是由于2,3-丁二醇特殊物性和发酵液成份复杂,使得2,3-丁二醇分离纯化困难,制约了生物基2,3-丁二醇的工业应用。
     本文重点研究了发酵液中的高效分离2,3-丁二醇过程,针对2,3-丁二醇发酵液特殊的物性,提出了反应萃取-水解耦合分离工艺路线,论文研究的主要结果如下:
     (1)由于2,3-丁二醇的高沸点和高亲水性,以及2,3-丁二醇发酵液复杂的组成,传统蒸馏工艺从发酵液中直接分离2,3-丁二醇能耗较大,无法得到高纯度的2,3-丁二醇产品。本文针对2,3-丁二醇的特殊物性以及2,3-丁二醇发酵液的特点首次设计开发了反应萃取-水解耦合工艺路线。在反应萃取单元2,3-丁二醇和醛类反应生成疏水性缩醛,并以缩醛的形式进入有机相和发酵液分离;在水解单元,反应萃取的有机相中的缩醛水解生成2,3-丁二醇。反应萃取-水解耦合工艺利用缩醛反应的高度选择性,以反应促进萃取提高了发酵液中2,3-丁二醇的萃取率和选择性;通过反应促进水解,达到2,3-丁二醇分离和浓缩的目的。整个工艺中反应剂和萃取剂可以循环利用,达到了节能、减排的目标。
     (2)为减少2,3-丁二醇反应萃取过程中的乳化现象,本文分别对絮凝和膜分离预处理发酵液进行了考察。确定了合适的发酵液预处理方法,为后续分离工艺奠定基础。
     (3)根据本文提出的工艺路线,分别对2,3-丁二醇-乙醛体系、2,3-丁二醇-丙醛体系和2,3-丁二醇-正丁醛体系的反应动力学和热力学进行了研究,得到了反应焓数据和拟均相反应动力学方程。由于反应动力学和热力学数据是反应萃取过程必不可少的基础数据,对反应萃取过程的开发和具有理论指导作用,而之前未见文献报道,故此次实验测定补充了2,3-丁二醇反应基础数据。
     (4)在反应动力学和热力学研究的基础上,研究了2,3-丁二醇-乙醛-环己烷体系、2,3-丁二醇-丙醛体系和2,3-丁二醇-正丁醛体系的不同特性。设计了相应的2,3-丁二醇分离工艺路线。实验证明反应萃取法具有很好的选择性,三个不同体系的2,3-丁二醇萃取率均在95%以上。对于2,3-丁二醇含量低的发酵液,新工艺的优势尤为明显。
     (5)考察了反应萃取有机相的水解情况,并对水解工艺条件进行了优化。在合适的条件下,缩醛水解率在90%以上,未水解的缩醛返回反应萃取单元。
     (6)最后以2,3-丁二醇发酵液为原料,对不同体系的分离工艺过程进行耦合。通过反应萃取-水解耦合工艺2,3-丁二醇产品浓度可达99%以上,2,3-丁二醇总收率90%以上,说明根据本文的工艺来分离纯化2,3-丁二醇是合理可行的。对比三个体系的分离耦合结果,最终确定正丁醛为反应萃取-水解耦合工艺合适的反应萃取剂。
     本文提出了一条从发酵液中通过反应萃取、水解分离纯化2,3-丁二醇的新工艺。该工艺对发酵液具有广泛的适应性,特别适合处理低浓度发酵液,溶剂用量少,所得产品为无色透明液体,纯度在99%以上,性状稳定。研究成果为生产装置的开发和设计提供了理论和实验基础。
2,3-Butanediol is an important chemical and potential fuels, which is widely used as raw material in chemical industry, food industry and aerospace industry. Now biotechnology makes it possible to produce2,3-butanediol from fermentation broth in commercial scale. However the high boiling point and high hydrophilicity of2,3-butanediol and complex of fermentation broth make separation2,3-butanediol directly from fermetantion broth very hard, which limits the use of bio-based2,3-butanediol.
     In this paper, an effective separation process has been studied. An innovative process including reactive-extraction and hydrolysis has been presented, which can effective recover2,3-butanediol from fermentation broth. The main contents and conclusions are as follows:
     (1) Conversional distillation process for2,3-butanediol fermentation broth is high energy-consuming and hard to get pure product, due to the high boiling point and high hydrophilicity of2,3-butanediol and the complex of fermentation broth. An innovation reactive-extraction and hydrolysis couple process has been provided in this paper to separate2,3-butanediol from fermentation broth. The process contains pretreatment, reactive-extraction, hydrolysis and purification. In the reactive-extraction unit,2,3-butanediol reacts with aldehyde to form corresponding acetal which is extracted into the organic phase in sequence. Due to the high selectivity of reaction, effective separation of2,3-butanediol has been achieved. The reactive-extraction and hydrolysis couple process requires less solution and less energy.
     (2) Pretreatment is used to remove cells and proteins from fermentation broth to avoid emulsion in reactive-extraction. Flocculation and membrane separation have been studied. Feasible pretreatment has been chosen for the following separation process.
     (3) The thermodynamics and kinetic study of2,3-butanediol-acetaldehyde,2,3-butanediol-propionaldehyde,2,3-butanediol-n-butylaldehyde have been studied to provide basic data for reactive-extraction and process development.
     (4) Reactive-extraction condition selection have been done for2,3-butanediol-acetaldehyde-cyclohexane system,2,3-butanediol-propionaldehyde system and2,3-butanediol-n-butylaldehyde sytem. The results have revealed that reactive-extraction can extracted95%of2,3-butanediol from fermentation broth with less solution.
     (5) Hydrolysis is studied in the paper. The results reveal that with feasible hydrolysis conditions, hydrolysis rate can be over90%.
     (6) Finally, using2,3-butanediol solution with10%mass concentration as raw material, the final concentration of2,3-butanediol can be over99%, the total recover rate of2,3-butanediol is more than90%. That means the new process can effective separate and purify2,3-butanediol from fermentation broth. And compared the results of three reactive-extraction system, the n-butyl aldehyde system is the most feasible system to run the process.
     The innovative process for separation and purification of2,3-butanediol from fermentation broth has been depicted in this paper. This research provides the experimental data for the industrial application.
引文
[1]http://www.newenergy.org.cn/html/0123/3131245036.html.
    [2]戴建英,孙亚琴,孙丽慧,李丹,董悦生,修志龙.生物基化学品2,3-丁二醇的研究进展[J].过程工程学报.2010,10(1):200-208.
    [3]刘光启,马连湘,刘杰.化学化工物性数据手册[M].化学工业出版社,2002.
    [4]J.W. Knowlton, N.C. Schieltz, D. Macmillan. Physical Chemical Properties of the 2,3-Butanediols[J]. J. Am. Chem. Soc.1946,68(2):208-210.
    [5]吴艳阳.生物基化学品2,3-丁二醇分离纯化的研究[D].华东理工大学,2008:2-4.
    [6]Jacco van Haverenl, Elinor L. Scott, Johan Sanders. Bulk chemicals from biomass[J]. Biofuels Bioprod. Bioref.2008,2:41-57.
    [7]郭赞,程可可,张建安,姚俊学.木质纤维素原料发酵法生产2,3-丁二醇的研究进展[J].现代化工.2009,29:49-52.
    [8]http://baike.baidu.com/view/7177885.htm.
    [9]王迪,王凡强,王建华.发酵法生2,3-丁二醇[J].精细与专用化学品.2000,7:20-21.
    [10]A. Converti, P. Perego. Use of carbon and energy balances in the study of the anaerobic metabolism of Enterobacter aerogenes at variable starting glucose concentrations [J]. Appl Microbiol Biotechnol.2002,59:303-309.
    [11]Danilo De Faveria, Paolo Torrea, Francesco Molinarib, Patrizia Peregoa, Attilio Converti. Carbon material balances and bioenergetics of 2,3-butanediol bio-oxidation by Acetobacter hansenii[J]. Enzyme Microb. Technol.2003,33:708-719.
    [12]N.B. Jansen, M.C. Flickinger, G.T. Tsao. Production of 2,3-butanediol from D-xylose by Klebsiella oxytoca ATCC8724[J]. Biotechnol. Bioeng.1984,26:362-369.
    [13]H. R. Bungay, Energy, the Biomass Option[M]. New York,1981.
    [14]Yu E.K.C., Levitin N. Production of 2,3-butanediol by Klebsiella pneumoniae grown on aicd hydrolysed wood hemicellulose[J]. Biotechnol. Lett.1982,4:741-746.
    [15]Flickinger M.C. Current biological research in conversion of cellulosic carbohydrates into liquid fuels:how far have we come[J]. Biotechnol. Bioengng.1980,22:27-48.
    [16]纪晓俊,聂志奎,黎志勇,高振,黄和.生物制2,3-丁二醇:回顾与展望[J].化学进展.2001,22:2450-2461.
    [17]杨光.用产酸克雷伯氏菌突变株生产1,3-丙二醇和2,3-丁二醇[D].中国农业大学,2006:17.
    [18]Haren A., Walpole G.S.2,3-Butylene fermentation by Aerobacter aerogenes[J]. Proc Royal Soc. B.1906,77:399-405.
    [19]司阳,夏黎明.利用玉米秸秆水解液发酵生产2,3-丁二醇[J].食品与发酵工业.2010, 2:26-29.
    [20]张刚,杨光,李春,裴海生,曹竹安.生物法生产2,3-T二醇研究进展[J].中国生物工程杂志.2008,28(6):133-140.
    [21]刘国兴,王元好,孙丽慧,戴建英,孙亚琴,董悦生,修志龙.盾叶薯蓣糖化液发酵生产2,3-丁二醇[J].过程工程学报.2009,9(1):95-99.
    [22]张根林,江英兰,班丽丽.棉秆脱毒水解液发酵生产2,3-丁二醇的工艺优化[J].农业工程学报.2011,5:287-291.
    [23]李丹.以菊芋茎叶及块茎为原料发酵生产2,3-丁二醇[D].大连理工大,2009:4-6.
    [24]李元芳,徐勤,曹学,王学东,沈亚领,魏东芝.粘质沙雷氏菌产2,3-丁二醇培养基的优化[J].工业微生物.2007,37(3):24-28.
    [25]陈广银,郑正,常志州,叶小梅,罗艳.不同氮源对麦秆厌氧消化过程的影响[J].中国环境科学.2011,31(1):73-77.
    [26]孙金杰,郝英利,周文瑜,魏东芝,朱家文,沈亚领.2,3-丁二醇发酵过程的菌体生物质回收利用初步研究[J].化学与生物工程.2010,27:73-76.
    [27]周卫斌,周祥山,张元兴.毕赤酵母发酵液的脱色和重组水蛭素的分离[J].生物工程学报.2001,17:683-687.
    [28]邓禹,堵国成,李秀芬,刘登如.基于发酵液特性的透明质酸提取预处理工艺[J].过程工程学报.2007,7(2):380-384.
    [29]吴艳阳,朱家文,陈葵,武斌.2,3-丁二醇的絮凝预处理研究[J].化学工程.2009.37(11):47-50.
    [30]张江红,孙丽慧,修志龙.2,3-丁二醇发酵液的絮凝除菌与絮凝细胞的循环利用[J].过程工程学报.2008,8(4):779-783.
    [31]刘路,刘玉荣.膜分离技术在林可霉素发酵液分离浓缩中的应用[J].水处理技术.2000,26(3):169-171.
    [32]张月萍,赵平,焦运伏,杨伯伦.膜分离技术及其在发酵液后处理中的应用[J].河北科技大学学报.2002,23(3):21-25.
    [33]A.J. Liebmann. Butanediol-A new polyhydric alcohol[J]. J. Ame. Oil Chem.'Soc.1945, 22:31-34.
    [34]Murray Senkus. Recovery of 2,3-Butanediol Produced by Fermentation[J]. Ind. Eng. Chem.1946,38(9):913-916.
    [35]Tomkiins R.V., Wheat J.A. Production and properties of 2,3-butanediol.ⅩⅩⅥ Vapor-liquid equilibria of the system levo-2,3-butanediol-wate from whole wheat mashes fermented by Aerobacillus polymxa[J]. Can. J. Res, Sect F.1947,26:168-174.
    [36]Wheat J.A., Leslie J.D. Production and properties of 2,3-butanediol.ⅩⅩⅧ Pilot plant recovery of levo-2,3-butanediol from whole wheat mashes fermented by Aerobacillus polymxa[J]. Can. J. Res, Sect F.1948,26:469-496.
    [37]Wheat J.A. Recovery of 2,3-Butanediol from Fermented Beet Molasses Mashes[J]. Ind. Eng. Chem.; 1953,45(11):2387-2394.
    [38]Blom R.H., Reed D.L. Revovery of 2,3-butylene glycol from fermentation liquors[J]. Ind. Eng. Chem.1945,37(9):865-870.
    [39]Othmer D.F, Berger W.S, et al. Liquid-liquid extraction data system used in butadiene manufacture from butylenes glycol[J]. Ind Eng Chem,1945,37:890-894.
    [40]Tsao G.T. Conversion of biomass from agriculture into useful products[R]. Final report, USDDE, Contract No, EG-77-S-02-4298,1978-07-31.
    [41]L.H. Sun, B. Jiang, Z.L. Xiu. Aqueous two-phase extraction of 2,3-butanediol from fermentation broths by isopropanol/ammonium sulfate system[J]. Biotechnol. Lett.2008, 31(3):371-376.
    [42]张江红,江波,李志刚,孙丽慧,孙亚琴,戴建英,修志龙.2,3-丁二醇发酵液的双水相萃取[J].过程工程学报.2008,8(5):897-900.
    [43]Jianying DAI, Yuanli ZHANG, Zhilong XIU. Salting-out Extraction of 2,3-Butanediol from Jerusalem artichoke-based Fermentation Broth[J]. Chinese J. Chem. Eng.2011, 19(4):682-686.
    [44]江波,张江红,李志刚,戴建英,修志龙.2,3-丁二醇的发酵及盐析分离工艺[J].生物加工过程.2009,1:44-47.
    [45]钱国强,林雪.硼酸与多羟基化合物的反应及硼选择性树脂[J].离子交换与吸附.1994,4:375-382.
    [46]黄和,纪晓俊,李霜等.一种利用疏水硅沸石吸附分离发酵液中2,3-丁二醇的方法[P].中国专利.2008,CN 200810024865.6.
    [47]雷引林,刘坐镇,邬行彦.硼酸络合法脱糖的研究[J].中国抗生素杂志.1999,1-6:334-337.
    [48]Yanyang Wu, Jiawen Zhu, Kui Chen, Bin Wu, Yaling Shen. Vapor-liquid equilibria for the binary mixtures of 2,3-butanediol with n-butanol, butyl acetate and ethyl acetate at 101.3kPa[J]. Fluid Phase Equilibria.2007,262:169-173.
    [49]Yanyang Wu, Jiawen Zhu, Kui Chen, Bin Wu, Jiang Fang, Yaling Shen. Liquid-liquid equilibria of Water+2,3-Butanediol+Butyl acetate at T=298.15K, T=308.15K and T=318.15K[J]. J. Chem. Eng. Data.2008,53(2):559-563.
    [50]Yanyang Wu, Jiawen Zhu, Kui Chen, Bin Wu, Jiang Fang, Yaling Shen. Liquid-liquid equilibria of Water+2,3-Butanediol+l-Butanol at T=298.15K, T=308.15K and T=318.15K[J]. Fluid Phase Equilibria.2008,265:1-6.
    [51]Yanyang Wu, Jiawen Zhu, Kui Chen, Bin Wu, Jiang Fang, Yaling Shen. Liquid-liquid equilibria of Water+2,3-Butanediol+Ethyl acetate at different temperatures. Fluid Phase Equilibria[J].2008,266:42-46.
    [52]朱家文,吴艳阳,沈亚领,陈葵,武斌,纪利俊,方江,李琰君.一种分离提取2,3-丁二醇的方法[P].中国专利.CN200810202188.2.
    [53]吴艳阳,朱家文,陈葵,武斌,沈亚领.2,3-丁二醇萃取-精馏耦合工艺开发研究[J].化学工程.2011,39(8):91-94.
    [54]Shao P., Kumar A. Recovery of 2,3-butanediol from water by a solvent extraction and pervaporation separation scheme[J]. J. Mem. Sci.2009,329:160-168.
    [55]单欣昌,秦炜,戴猷元.三烷基氧膦反应萃取一元羧酸的规律[J].化工学报.2005,56(12):2346-2350.
    [56]陈英.反应-萃取技术促进酯交换法合成碳酸二甲酯反应研究[D].河北工业大学.2005:8-13.
    [57]刘光虎,任钟旗,张卫东,陈星群.反应萃取耦合技术合成硫酸羟胺的研究[J].北京化工大学学报.2006 33(4):5-8.
    [58]罗学辉,秦炜,戴猷元.三烷基胺萃取丙酸的动力学特性[J].化学工程.2003 31(4):8-11.
    [59]胡宏文.有机化学:下[M].北京:高等教育出版社,1991:442-444.
    [60]Jian Hao, Hongjuan Liu, and Dehua Liu. Novel Route of Reactive Extraction To Recover 1,3-Propanediol from a Dilute Aqueous Solution[J]. Ind. Eng. Chem. Res..2005,44 (12): 4380-4385.
    [61]Janusz J. Malinowski. Reactive Extraction for Downstream Separation of 1,3-Propanediol[J]. Biotechnology progress 2000,16(1):76-79.
    [62]Zhi-Long Xiu, An-Ping Zeng. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol[J]. Applied Microbiology and Biotechnology.2008,78(6):917-926.
    [63]李凡锋,周玉杰等.1,3-丙二醇发酵液的絮凝预处理研究[J].微生物学通报.2004,31(3):30-35.
    [64]刘志国.生物化学实验[M].武汉:华中科技大学出版社,2007.
    [65]林颖,吴毓敏,吴雯,田庚元.天然产物中的糖含量测定方法正确性的研究[J].天然产物研究与开发.1996,3:5-9.
    [66]常青等.絮凝原理[M].兰州大学出版社,1993:116-267.
    [67]Jian Hao, Feng Xu, Hongjuan Liu, Dehua Liu. Downstream processing of 1,3-propanediol fermentation broth[J]. J. Chem. Technol. & Biotechnol.2006, 81:102-108.
    [68]Zhi-Long Xiu, An-Ping Zeng. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol[J]. Applied Microbiol. & Biotechnol.2008,78(6):917-926.
    [69]徐丰,郝建,刘德华.正丁醛反应萃取发酵液中1,3-丙二醇[J].中国生物质能科学 技术论坛论文集.2006,405-409.
    [70]张慧敏,李彦,钱倩,关怡新,姚善泾.反应萃取耦合法分离1,3-丙二醇中缩醛反应的研究[J].化学反应工程与工艺.2005,21(6):551-555.
    [71]王刚,刘树臣,金平,反应萃取法分离1,3-丙二醇中缩醛反应的研究[J].化学与黏合.2011,33(3):9-14。
    [72]周鹏,方云进.发酵液中低浓度1,3-丙二醇浓缩提纯工艺研究进展[J].化学与生物工程.2005,22(2):4-6.
    [73]向波涛,陈书锋,刘德华.发酵液中1,3-丙二醇的萃取分离[J].清华大学学报(自然科学版).2001,41(12):53-55.
    [74]张慧敏,李彦,钱倩,关怡新,姚善泾.反应萃取耦合法分离1,3-丙二醇中缩醛反应的研究[J].化学反应工程与工艺.2005,6:551-555.
    [75]陈英,赵新强,王延吉.反应-萃取技术合成碳酸二甲酯反应研究Ⅰ萃取剂的筛选[J].化学反应工程与工艺.2005,21(1):17-21.
    [76]桂建舟,刘丹,张晓彤,宋丽娟.质子酸离子液体催化合成乙酸乙酯的研究[J].工业催化.2006,14:36-38.
    [77]胡邵京.高分子固载化Lewis酸催化缩合环化合成[J].湘潭大学自然科学学报.1992,4:47-51.
    [78]牛梅菊.合成缩醛(酮)的催化剂研究进展[J].化学世界.2006,47:626-628.
    [79]肖伟,李艳霞,吴苏琴,陈金珠.缩醛(酮)类香料合成中催化剂的研究进展[J].江西化工.2008,1:14-17.
    [80]杨水金,张志刚.三氯化铁催化合成苯甲醛1,3-丙二醇缩醛[J].精细石油化工进展.2006,7:28-34.
    [81]毛东森,卢冠忠,陈庆龄.固体酸代替液体酸催化剂的环境友好新工艺[J].石油化工.2001,30(2):152-156.
    [82]毛萱,殷元骐,钟邦克.杂多酸催化研究新进展[J].分子催化.2000,14(6):483-487.
    [83]王敏,杨水金.MCM-48分子筛负载磷钨杂多酸催化合成缩醛(酮)[J].石油化工.2006,12:1160-1165.
    [84]王树清,高崇.强酸性阳离子交换树脂催化合成对甲氧基苯乙酮环乙二缩酮[J].日用化学工业.2011,41(3):208-211.
    [85]罗士平,周国平,陈勇,裘兆蓉,杨绪杰,陆路德.Si02负载全氟磺酸树脂催化合成苯甲醛缩1,2-丙二醇[J].精细石油化工.2006,23(4):29-32.
    [86]文瑞明,游沛清,俞善信.合成环己酮乙二醇缩酮的催化剂研究进展[J].化工进展.2007,26(11):1587-1595.
    [87]袁向前等.化学反应工程原理[M].上海:华东理工大学出版社,2000.
    [88]孙俊全.催化剂工程导论[M].化学工业出版社,2007.
    [89]慕慧.基础化学[M].北京:科学出版社.2009.
    [90]周晓颖,汤志刚,丁立,周荣琪.阳离子交换树脂作催化剂合成乙酸乙酯的反应动力学[J].清华大学学报(自然科学版).2002,42(5):629-632.
    [91]王海霞,汪必耀,张俊玲,李泽荣,李象远.反应类等键反应方法及类反应热动力学参数计算[J].高等学校化学学报.2011,32(5):1123-1128.
    [92]王贵昌,潘荫明,李勇军,汪惟为,赵学庄.分子力学方法和基团加和方法估算有机分子标准生成焓[J].科学通报.1996(41):1095-1099.
    [93]彭少君.离子交换树脂催化合成乳酸异丁酯和乳酸正丁酯的动力学研究[D].北京化工大学,2009.
    [94]李高阳,丁霄霖.亚麻籽双液相多级逆流萃取工艺模拟试验[J].农业工程学报.2010,3:380-384.
    [95]http://www.ts007.com/newsdetail.asp?id=16392.
    [96]顾正桂,毛梅芳,林军,司玲.糠醛水溶液错流和逆流萃取分离的模拟计算[J].南京师范大学学报(工程技术版).2003,3:15-18.
    [97]王启为.菊芋生产菊糖关键技术研究[J].安徽农业科学.2011,39(32):20031-20032.
    [98]袁诗璞.氯化物镀锌液中的阴离子杂质与有机杂质[J]. 电镀与涂饰.2010,29(8):12-17.
    [99]杨帆,何克江,刘珂.丹参酚酸B生产中去除胶体类杂质的工艺方法[J].色谱.2009,27(3):379-381.
    [100]王振玉,刘家弟,李宗站,朱仁峰.离子交换树脂去除金矿选矿循环用水中金属杂质离子的研究[J].黄金.2010,31(2):48-51.
    [101]郭大龙,吴正景.一种简单有效的去除植物DNA中多糖等杂质的方法[J].生物技术.2008,18(5):31-33.
    [102]高鑫,李鑫钢,张锐,李洪.醋酸甲酯催化精馏水解过程模拟[J].化工学报.2010,61(9):2442-2446.
    [103]李秀华,范欣.戊二酸二甲酯水解工艺的研究[J].中北大学学报(自然科学版)2011,32(5):600-605.
    [104]倪克钒,单国荣,翁志学.甲基丙烯酸-3-三甲氧基硅丙酯的水解-缩合反应速率常数[J].化工学报.2006,57(12):2987-2990.
    [105]寇兴明,胡艳,田玉华,孟祥光,胡常伟,曾宪诚.双环八氮杂大环双核铜配合物催化羧酸酯水解研究[J].无机化学学报.2005,21(1):51-58.
    [106]应安国,许松林,徐世民.间歇真空精馏提纯桉叶油的研究[J].林产工业.2005,32(2):29-31.
    [107]许松林,应安国,王淑华.真空精馏提纯桃醛的研究[J].化工进展.2004,23(8):861-863.
    [108]唐善宏,伍昭化,刘乃鸿,周建耀.精细化工高真空连续精馏技术[J].现代化工2008,28(z1):71-74.
    [109]白鹏,易秉智,赵冠鹏,谭克清.真空精馏精制2-氯-5-氯甲基吡啶[J].化工中间体.2006,(9):15-17.
    [110]唐恒丹,贾鹏飞,王吉红,付增妙.真空精馏提纯对氨基三氟甲氧基苯的研究[J].广州化工.2010,38(12):171-173.
    [111]徐鹏坤,钱梁华.羟基乙酸的萃取分离研究[J].石油化工技术与经济.2010,26(4):29-31.
    [112]刘光虎,任钟旗,张卫东,陈星群。反应萃取耦合技术合成硫酸羟胺的研究[J].北京化工大学学报(自然科学版).2006,33(4):5-8.
    [113]谷玉杰,刘波,吕剑.3-甲基-喹噁啉-2-羧酸的合成[J].应用化工.2010,39(1):93-95.
    [114]周卫斌,周祥山,张元兴.毕赤酵母发酵液的脱色和重组水蛭素的分离[J].生物工程学报.2001,7(6):683-687.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700