用户名: 密码: 验证码:
金属—石墨烯纳米复合催化剂的制备及在燃料电池中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池是一种把化学能直接转化为电能的能源转化装置,具有无污染、能量转化率高、使用范围广等优点,是未来人类社会重要的能源方式之一。目前,在燃料电池中,常见的阴阳极催化剂大都是Pt催化剂,但传统的Pt催化剂存在很多不足,影响了其商品化进程,因此,选择和制备高性能的电催化剂是燃料电池中重要研究课题。通常会将Pt基催化剂负载到导电的高比表面积的碳载体上,碳载体的种类、表面性质等在很大程度上影响着Pt基催化剂的分散程度、颗粒大小和尺寸等,从而影响催化剂的催化性能。石墨烯(Graphene)是新近发现的一种具有二维平面结构的碳纳米材料,它的特殊单原子层结构使其具有许多独特的物理化学性质,如较大的比表面积和优良的电子传导能力等,因此有望作为金属催化剂载体应用于生物电催化、燃料电池等领域。本文制备了一系列金属-graphene纳米复合催化剂,将其用于有机小分子(葡萄糖、甲醇)的氧化反应和氧气的还原反应,研究了金属-graphene纳米复合催化剂的电催化性能,具体内容如下:
     1.制备了Au-graphene纳米复合催化剂,并将其用于催化氧气的还原反应和葡萄糖的氧化反应。利用电化学沉积法制备了Au-graphene纳米复合催化剂,并利用扫描电子显微镜(SEM),电子能谱(EDS),X-射线粉末衍射(XRD)和电化学方法等对其进行了表征。通过调节电沉积的时间和反应溶液中前驱体AuCl4-的浓度可以得到形貌和尺寸可控的Au纳米粒子。以氧气还原反应和葡萄糖氧化反应为模型,利用循环伏安法对制备的纳米复合催化剂的电催化性能进行了研究,结果表明,与单独的Au纳米粒子和graphene相比,Au-graphene纳米复合催化剂的电催化活性更高,表明在电催化过程中,Au纳米粒子和graphene起到了协同催化作用。该研究为金属-graphene纳米复合催化剂的制备提供了简单易行的方法,且该复合催化剂在燃料电池和生物电催化等相关领域有着广阔的应用前景。
     2.制备了一种新型的双金属-graphene纳米复合催化剂,并研究了其电催化特征。利用电沉积方法把Pt-Au纳米结构沉积到了石墨烯的表面,制备了Pt-Au-graphene纳米催化剂,并利用扫描电子显微镜(SEM)、电子能谱(EDS)、X-射线粉末衍射(XRD)和电化学方法等对其进行了表征。通过调节Pt和Au前驱体的原子比可得到形貌和组分可控的Pt-Au-graphene纳米催化剂。利用循环伏安法和线性扫描伏安法研究了Pt-Au-graphene纳米催化剂对氧气还原反应(ORR)和甲醇氧化反应(MOR)的电催化性能,结果表明,Pt-Au-graphene纳米催化剂对ORR和MOR都显示出比Au-graphene和Pt-graphene催化剂更高的催化性能,且当Pt/Au原子比为2:1时,Pt-Au-graphene纳米催化剂的催化活性最高。同时,在催化MOR过程中,graphene表面的含氧官能团可以有效地移除MOR过程中的副产物(如CO等),有效地提高了Pt-Au-graphene纳米催化剂的稳定性。因此,我们制备的Pt-Au-graphene纳米催化剂对ORR和MOR都显示出很高的电催化活性,且可以大大提高Pt的利用率。本章为制备形貌和组分可控的双金属Pt-M催化剂提供了一个简便易行的方法,有望应用于燃料电池领域。
     3.研究了Pt-Ni催化剂的结构、组分以及催化剂载体对其催化性能的影响,特别研究了催化剂中Ni的协同催化作用。Pt基催化剂的结构、组分以及催化剂载体的性质对催化剂的催化性能有很大影响,因此通过控制催化剂的结构和组分特征,从而制备新型高效的催化剂,为降低Pt的用量和提高催化剂的催化性能提供了可能性。通过同时还原Ni2+、PtCl62-和氧化石墨烯(GO),利用一步化学还原法制备了Pt-Ni-graphene纳米催化剂,并利用透射电子显微镜(TEM)、紫外光谱(UV-vis).X-射线光电子能谱(XPS)、电子能谱(EDS)、X-射线粉末衍射(XRD)对其进行了表征。以甲醇氧化反应(MOR)为模型,对该催化剂的催化性能进行了研究,系统研究了催化剂的结构、组分以及催化剂载体对催化剂催化性能的影响,实验结果表明,当催化剂中Pt/Ni原子比为1:1时,Pt-Ni-graphene纳米催化剂显示出最高的电催化活性;XPS能谱表明,由于Ni的参与会改变Pt原子的电子结构,同时催化剂中存在的Ni的氧化物会和Pt催化剂起到协同的催化作用,因此Pt-Ni催化剂比纯Pt催化剂显示出更高的催化活性;同时,不同的催化剂载体对其催化活性也有很大影响,利用拉曼光谱和XPS能谱对不同的催化剂载体(graphene、SWNTs、Vulcan XC-72)进行了表征,并比较了这三种物质作为催化剂载体时,Pt/Ni原子比为1:1时Pt-Ni催化剂的催化性能,结果表明,Pt-Ni-graphene催化剂与其他两种催化剂相比表现出更高的电催化活性,这是由于graphene表面丰富的含氧官能团会移除催化过程中产生的一些副产物,从而有效地提高了Pt-Ni催化剂的催化性能。
     4.制备了具有独特空心结构的Pt-Ni合金催化剂,并将其负载到graphene表面研究了该催化剂的催化性能。不同形貌的Pt基催化剂会影响其比表面积、表面原子结构,从而会影响催化剂的催化性能。利用连续还原法制备了空心结构的Pt-Ni-graphene复合催化剂,并利用透射电子显微镜(TEM)、电子能谱(EDS)、X-射线粉末衍射(XRD)等表征手段对其进行了表征。为了研究该空心结构Pt-Ni合金的形成机理,同时利用TEM观察了Pt-Ni合金的形成过程,并研究了不同Pt/Ni原子比及不同的表面活性剂对Pt-Ni合金形貌的影响。最后以甲醇氧化反应(MOR)为模型,研究了该Pt-Ni-graphene催化剂的催化性能,并将其与实心Pt-Ni-graphene以及商业化的Pt/C催化剂进行比较,结果表明,空心结构的Pt-Ni-graphene表现出最高的电催化活性,这可能是由于Pt-Ni合金独特的空心结构以及graphene高的电导率和大的比表面积引起的。
Future energy concerns demand a transition from fossil fuels to new energy sources that are more environmentally benign and renewable. A promising route for accomplishing this goal is to use fuel cells to convert the chemical energy of fuel directly into electricity. In this sense, fue cells have received much attention because of several advantages, including high conversion efficiency, low pollution, and high power density, for a wide range of applications. The Pt catalysts are the most popular and effective electrocatalysts for both the anode and the cathode of fuel cell, however, Pt catalysts usually suffer from several disadvantages blocking the commercialization of fuel cells. To enhance the activity of catalysts and lower the use of noble metals, it is highly desirable to load catalysts on the surface of suitable supporting materials. Graphene, a recently discovered carbon nanomaterial with carbon atoms tightly packed into a two dimensional honeycomb lattice, possesses many novel and unique physical and chemical properties because of its unusual monolayer atomic structure. Because of its novel properties such as large specific surface area, high electrical conductivities, graphene has found potential applications in the field of fuel cells. In this paper, we synthesized a series of metal-graphene nanocatalysts, the electrocatalytic characteristics of the nanocatalysts were studied by voltammetry with organic molecular (glucose, methanol) oxidation reaction and the oxygen reduction reaction as model reactions. The main results are as follows:
     1. A gold nanoparticles (Au NPs)-graphene nanocomposite (Au-graphene nanocomposite) was prepared by electrochemically depositing Au NPs on the surface of graphene sheets, and characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray powder diffraction (XRD), and electrochemical methods. The morphology and size of the Au NPs could be easily controlled by adjusting the electrodeposition time and the concentration of precursor (AuCl4-). The electrocatalytic activities of the nanocomposites toward oxygen reduction and glucose oxidation were investigated by cyclic voltammetry. The results indicated that the nanocomposites had a higher catalytic activity than the Au NPs or graphene alone, indicative the synergistic effect of graphene and Au NPs. Therefore, this study has provided a general route for fabrication of graphene-based noble metal nanomaterials composite, which could be potential utility to fuel cells and bioelectroanalytical chemistry.
     2. Bimetallic catalysts have proven superior to single metal catalysts in this respect. This chapter reports the preparation, characterization, and electrocatalytic characteristics of a new bimetallic nanocatalyst. The catalyst, Pt-Au-graphene, was synthesized by electrodeposition of Pt-Au nano structures on the surface of graphene sheets, and characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray powder diffraction (XRD), and voltammetry. The morphology and composition of the nanocatalyst can be easily controlled by adjusting the molar ratio between Pt and Au precursors. The electrocatalytic characteristics of the nanocatalysts for oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) were systematically investigated by cyclic voltammetry. The Pt-Au-graphene catalysts exhibits higher catalytic activity than Au-graphene and Pt-graphene catalysts for both the ORR and MOR, and the highest activity is obtained at a Pt/Au molar ratio of2:1. Moreover, graphene can significantly enhance the long-term stability of the nanocatalyst toward MOR by effectively removing the accumulated carbonaceous species formed in the oxidation of methanol from the surface of the catalyst. Therefore, this chapter has demonstrated that a higher performance of ORR and MOR could be realized at the Pt-Au-graphene electrocatalyst while Pt utilization also could be greatly diminished. This method may open a general approach for the morphology-controlled synthesis of bimetallic Pt-M nanocatalysts, which can be expected to have promising applications in fuel cells.
     3. The structure, composition, and support material significantly affect the catalytic characteristics of Pt-based nanocatalysts. Fine control of the structural and compositional features is highly favorable for the creation of new Pt-based nanocatalysts with enhanced catalytic performance and improved Pt utilization. This chapter reports on a systematic and comparative study of the effects of structure, composition, and carbon support properties on the electrocatalytic activity and stability of Pt-Ni bimetallic catalysts for methanol oxidation, particularly the promoting effect of Ni on Pt. Graphene-supported Pt-Ni alloy nanocatalysts were prepared by a facile, one-step chemical reduction of graphene oxide and the precursors of Ni2+and PtCl62-. The nanocatalysts were characterized by transmission electron microscopy (TEM), ultraviolet-visible spectrophotometry (UV-vis), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The electrocatalytic characteristics of the nanocatalysts
     were studied by voltammetry with methanol oxidation as a model reaction to evaluate
     the effects of the structure, surface composition, and electronic characteristics of the
     catalyst on the electrochemical activity. The catalyst with a Pt/Ni molar ratio of1:1
     exhibited the highest electrocatalytic activity for the methanol oxidation reaction with
     greatly lowered Pt utilization. The mechanism of the promoting effect of Ni on Pt is
     explained based on the modification of the electronic characteristics of the surface Pt
     atoms (Pt4f) by Ni atoms due to the shift in the electron transfer from Ni to Pt and the
     synergistic roles of Pt and nickel hydroxides on the surfaces of the catalysts. The
     effects of the different carbon supports (i.e., graphene, single-walled carbon
     nanotubes, and Vulcan XC-72carbon) on the electrocatalytic characteristics of the
     nanocatalysts are investigated by Raman and XPS experiments. The results
     demonstrate that the graphene-supported Pt-Ni catalyst has the highest
     electrocatalytic activity of the three carbon materials due to abundant
     oxygen-containing groups on the graphene surface, which can remove the poisoned
     intermediates and improve the electrocatalytic activity of the catalysts.4. Size and shaped-controlled synthesis of nanocatalysts has attracted much
     attention because their catalytic performance is highly dependent on the surface areas,
     surface atomic structures, and shapes. A novel graphene-supported hollow Pt-Ni
     alloy nanostructure was first fabricated by galvanic displacement. The resulted hollow
     Pt-Ni-graphene nanostructures were characterized by transmission electron
     microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray
     diffraction (XRD). In order to investigate the growth mechanism, the formation
     process of the Pt-Ni nanostructures were monitored by TEM, and the effects of the
     molar ratio of the precursors (the ratio of the K2PtCl6to NiCl2·6H2O) and capping
     agent were also investigated by TEM. The electrocatalytic characteristics of the
     hollow Pt-Ni-graphene nanocatalysts were studied with methanol oxidation as a
     model reaction, and the results indicating that the resulted hollow Pt-Ni-graphene
     nanocatalysts exhibit more excellent electrocatalytic performance for methanol than
     the solid Pt-Ni-graphene, and commercial Pt/C catalysts, which might be due to the
     hollow structures of the nanocatalysts and the high electrical conductivity and large
     specific area of the graphene sheets
引文
[1]H. W. Kroto, J. R. Heath, S. C. O'Brien, et al. C60:Buckminsterfullerene. Nature,1985, 318(6042):162-163.
    [2]S. Iijima. Helical microtubules of graphitic carbon. Nature,1991,354(6348):56-58.
    [3]K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. Electric field effect in atomically thin carbon films. Science,2004,306(5696):666-669.
    [4]H. Shioyama, T. Akita. A new route to carbon nanotubes. Carbon,2003,41(1): 179-181.
    [5]L. M. Viculis, J. J. Mack, R. B. Kaner. A chemical route to carbon nanoscrolls. Science, 2003,299(5611):1361-1361.
    [6]C. G. Lee, X. D. Wei, J. W. Kysar, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science,2008,321(5887):385-388.
    [7]J. H. Chen, C. Jang, S. D. Xiao, et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotech.,2008,3(4):206-209.
    [8]A. A. Balandin, S. Ghosh, W. Z. Bao, et al. Superior thermal conductivity of single-layer graphene. Nano Lett.,2008,8(3):902-907.
    [9]褚颖,刘娟,方庆,等.碳材料石墨烯及在电化学电容器中的应用.电池,2009,39(4):220-221.
    [10]K. S. Novoselov, Z. Jiang, Y. Zhang, et al. Room-temperature quantum hall effect in graphene. Science,2007,315(5817):1379-1379.
    [11]Y. Wang, Y. Huang, Y. Song, et al. Room temperature ferromagnetism of graphene. Nano Lett.,2009,9(1):220-224.
    [12]K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. Electric field effect in atomically thin carbon films. Science,2004,306(5696):666-669.
    [13]K. S. Novoselov, D. Jiang, F. Schedin, et al. Two dimensional atomic crystals. Proc. Natl.Acad. Sci.,2005,102(30):10451-10453.
    [14]I. Forbeaux, J. M. Themlin, A. Charrier, et al. Solid-state graphitization mechanisms of silicon carbide 6H-SiC polar faces. Appl. Surf. Sci.,2000,162-163(1):406-412.
    [15]V. Borovikov, A. Zangwill. Step-edge instability during epitaxial growth of graphene from SiC (0001). Phys. Rev. B,2009,80(12):121406-(1-4).
    [16]A. Charrier, A. Coati, T. Argunova, et al. Solid-state decompostition of silicon carbide for growing ultrathin heteroepitaxial graphite films. J. Appl. Phys.,2002,92(5): 2479-2484.
    [17]W. A. de Heer, C. Berger, X. Wu, et al. Magnetospectroscopy of epitaxial few layer graphene. Solid State Commun.,2007,143(1-2):92-100.
    [18]M. Sprinkle, P. Soukiassian, W. A. de Heer, et al. Epitaxial graphene:the material for graphene electronics. Phys. Status Solidi RRL,2009,3(6):A91-A94.
    [19]A. Reina, X. T. Jia, J. Ho, et al. Large area, few layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett.,2009,9(1):30-35.
    [20]K. S. Kim, Y. Zhao, H. Jang, et al. Large scale pattern growth of graphene films for stretchable transparent electrodes. Nature,2009,457(7230):706-710.
    [21]X. S. Li, W. W. Cai, J. H. An, et al. Large area synthesis of high quality and uniform graphene films on copper foils. Science,2009,324(5932):1312-1314.
    [22]W. S. Hummers, R. E. Offeman. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958,80(6):1339-1339.
    [23]B. C. Brodie. On the atomic weight of graphite. Phil. Trans. R. Soc. Lond.,1859,149: 249-259.
    [24]L. Staudenmaier. Verfahren zur darstellung der graphitsaure. Ber. Dtsch. Chem. Ges., 1898,31(2):1481-1487.
    [25]H. L. Qian, F. Negri, C. R. Wang, et al. Fully conjugate tri(perylene bisimides):An approach to the construction of n-type graphene nanoribbons. J. Am. Chem. Soc., 2008,130(52):17970-17976.
    [26]N. Liu, F. Luo, H. X. Wu, et al. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater.,2008,18(10):1518-1525.
    [27]K. S. Subrahmanyam, L. S. Panchakarla, A. Govindaraj, et al. Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C,2009, 113(11):4257-4259.
    [28]S. Stankovich, D. A. Dikin, R. D. Piner, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon,2007,45(7):1558-1565.
    [29]J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, et al. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc.,2008, 130(48):16201-16206.
    [30]V. C. Tung, M. J. Allen, Y. Yang, et al. High throughput solution processing of large scale graphene. Nat. Nanotech.,2009,4(1):25-29.
    [31]S. Stankovich, R. D. Piner, X. Chen, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J. Mater. Chem.,2006,16(2):155-158.
    [32]S. Stankovich, D. A. Dikin, G. H. B. Dommett, et al. Graphene-based composite materials. Nature,2006,442(7100):282-286.
    [33]Y. Si, E. T. Samulski. Synthesis of water soluble graphene. Nano Lett.,2008,8(6): 1679-1682.
    [34]J. Zhang, H. Yang, G. Shen, et al. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun.,2010,46(7):1112-1114.
    [35]G. Wang, J. Yang, J. Park, et al. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C,2008,112(22):8192-8195.
    [36]W. Chen, L. Yan, P. R. Bangal. Chemical reduction of graphene oxide to graphene by sulfur-containing compouds. J. Phys. Chem. C,2010,114(47):19885-19890.
    [37]S. Pei, J. Zhao, J. Du, et al. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon,2010,48(15): 4466-4474.
    [38]X. Zhou, J. Zhang, H. Wu, et al. Reducing graphene oxide via hydroxylamine:a simple and efficient route to graphene. J. Phys. Chem. C,2011,115(24): 11957-11961.
    [39]M. Zhou, Y. L. Wang, Y. M. Zhai, et al. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J.,2009, 15(25):6116-6120.
    [40]H. L. Guo, X. F. Wang, Q. Y. Qian, et al. A green approach to the synthesis of graphene nanosheets. ACS Nano,2009,3(9):2653-2659.
    [41]P. Steurer, R. Wissert, R. Thomann, et al. Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol. Rapid Commun., 2009,30(4-5):316-327.
    [42]C. S. Hannes, J. L. Li, J. M. Michael, et al. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B,2006,110(17):8535-8539.
    [43]J. M. Michael, J. L. Li, D. H. Adamson, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater.,2007,19(18): 4396-4404.
    [44]W. Graeme, S. Brian, V. K. Prashant. TiO2-graphene nanocomposites:UV-assisted photocatalytic reduction of graphene oxide. ACS Nano,2008,2(7):1487-1491.
    [45]L. J. Cote, R. Cruz-Silva, J. X. Huang. Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc.,2009,131(31):11027-11032.
    [46]D. Luo, G. Zhang, J. Liu, et al. Evaluation criteria for reduced graphene oxide. J. Phys. Chem. C,2011,115(23):11327-11335.
    [47]H. He, T. Riedl, A. Lerf, et al. Solid-state NMR studies of the structure of graphite oxide. J. Phys. Chem.,1996,100(51):19954-19958.
    [48]H. He, J. Klinowski, M. Forster, et al. A new structural model for graphite oxide. Chem. Phys. Lett.,1998,287(1-2):53-56.
    [49]A. Lerf, H. He, M. Forster, et al. Structure of graphite oxide revisited. J. Phys. Chem. B,1998,102(23):4477-4482.
    [50]W. W. Cai, R. D. Piner, F. J. Stadermann, et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science,2008,321(5897): 1815-1817.
    [51]L. M. Veca, F. Lu, M. J. Meziani, et al. Polymer functionalization and solubilization of carbon nanosheets. Chem. Commun.,2009:2565-2567.
    [52]H. Yang, C. Shan, F. Li, et al. Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem. Commun.,2009:3880-3882.
    [53]H. Yang, F. Li, C. Shan, et al. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J. Mater. Chem.,2009,19(26): 4632-4638.
    [54]J. Shen, Y. Hu, C. Li, et al. Synthesis of amphiphilic graphene nanoplatelets. Small, 2009,5(1):82-85.
    [55]E. Bekyarova, M. E. Itkis, P. Ramesh, et al. Chemical modification of epitaxial graphene:Spontaneous grafting of aryl groups. J. Am. Chem. Soc.,2009,131(4): 1336-1337.
    [56]R. Salvio, S. Krabbenborg, W. J. M. Naber, et al. The formation of large-area conducting graphene-like platelets. Chem. Eur. J.,2009,15(33):8235-8240.
    [57]Y. Xu, Z. Liu, X. Zhang, et al. A graphene hybrid material covalently functionalized with porphyrin:Synthesis and optical limiting property. Adv. Mater.,2009,21(12): 1275-1279.
    [58]Q. Su, S. Pang, V. Alijani, et al. Composites of graphene with large aromatic molecules. Adv. Mater.,2009,21(31):3191-3195.
    [59]X. Dong, D. Fu, W. Fang, et al. Doping single-layer graphene with aromatic molecules. Small,2009,5(12):1422-1426.
    [60]A. J. Patil, J. L. Vichery, T. B. Scott, et al. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Adv. Mater.,2009, 21(31):3159-3164.
    [61]Q. Yang, X. Pan, F. Huang, et al. Fabrication of high-concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives. J. Phys. Chem. C,2010,114(9):3811-3816.
    [62]Y. Xu, H. Bai, G. Lu, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc.,2008,130(18): 5856-5857.
    [63]A. Ghosh, K. V. Rao, S. J. George, et al. Noncovalent functionalization, exfoliation, and solubilization of graphene in water by employing a fluorescent coronene carboxylate. Chem. Eur. J.,2010,16(9):2700-2704.
    [64]Y. Chen, J. Wang, H. Liu, et al. Nitrogen doping effects on carbon nanotubes and the origin of the enhanced electrocatalytic activity of supported Pt for proton-exchange membrane fuel cells. J. Phys. Chem. C,2011,115(9):3769-3776.
    [65]K. K. R. Datta, V. V. Balasubramanian, K. Ariga, et al. Highly crystalline and conductive nitrogen-doped mesoporous carbon with graphitic walls and its electrochemical performance. Chem. Eur. J.,2011,17(12):3390-3397.
    [66]J. Y. Choi, R. S. Hsu, Z. Chen. Highly active porous carbon-supported nonprecious metal-N electrocatalyst for oxygen reduction reaction in PEM fuel cells. J. Phys. Chem. C,2010,114(17):8048-8053.
    [67]D. C. Higgins, D. Mera, Z. Chen. Nitrogen-doped carbon nanotubes as platinum catalyst support for oxygen reduction reaction in proton exchange membrane fuel cells. J. Phys. Chem. C,2010,114(50):21982-21988.
    [68]W. Yang, T. P. Fellinger, M. Antonietti. Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. J. Am. Chem. Soc.,2011,133(2):206-209.
    [69]L. S. Panchakarla, A. Govindaraj, C. N. R. Rao. Boron-and nitrogen-doped carbon nanotubes and graphene. Inorganica Chimica Acta,2010,363(15):4163-4174.
    [70]B. Guo, Q. Liu, E. Chen, et al. Controllable N-doping of graphene. Nano Lett.,2010, 10(12):4975-4980.
    [71]W. Chen, S. Chen, D. C. Qi, et al. Surface transfer p-Type doping of epitaxial graphene. J. Am. Chem. Soc.,2007,129 (34):10418-10422.
    [72]D. C. Wei, Y Q. Liu, Y Wang, et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett.,2009,9 (5):1752-1758.
    [73]X. L. Li, H. L. Wang, T. J. Robinson, et al. Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc.,2009,131(43):15939-15944.
    [74]A. L. M. Reddy, A. Srivastava, S. R. Gowda, et al. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano,2010,4(11):6337-6342.
    [75]J. Choi, K. Kim, B. Kim, et al. Covalent functionalization of epitaxial graphene by azidotrimethylsilane. J. Phys. Chem. C,2009,113(22):9433-9435.
    [76]D. Long, W. Li, L. Ling, et al. Preparation of Nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir,2010, 26(20):16096-16102.
    [77]L. Qu, Y. Liu, J. B. Baek, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano,2010,4(3):1321-1326.
    [78]Y. Shao, S. Zhang, M. H. Engelhard, et al. Nitrogen-doped graphene and its-; electrochemical applications. J. Mater. Chem.,2010,20(35):7491-7496.
    [79]Y. Wang, Y. Shao, D. W. Matson, et al. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano,2010,4(4):1790-1798.
    [80]L. S. Zhang, X. Q. Liang, W. G. Song, et al. Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell. Phys. Chem. Chem. Phys.,2010,12(38):12055-12059.
    [81]D. W. Wang, I. R. Gentle, G. Q. Lu. Enhanced electrochemical sensitivity of PtRh electrodes coated with nitrogen-doped graphene. Electrochem. Commun.,2010, 12(10):1423-1427.
    [82]R. L. McCreery. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev.,2008,108(7):2646-2687.
    [83]R. L. McCreery, K. K. Cline. Laboratory techniques in electroanalytical chemistry. 2nd ed. New York:Marcel Dekker,1996. pp.293-332.
    [84]C. E. Banks, T. J. Davies, G. G. Wildgoose, et al. Electrocatalysis at graphite and carbon modified electrodes:edge-plane sites and tube ends are the reactive sites. Chem. Commun.,2005:829-841.
    [85]M. Musameh, J. Wang, A. Merkoci, et al. Low-potential stable NADH detection at carbon nanotube modified glassy carbon electrodes. Electrochem. Commun.,2002, 4(10):743-746.
    [86]吕亚芬,印亚静,吴萍,等.肌红蛋白在碳纳米管修饰电极上的直接电化学和电催化性能.物理化学学报,2007,23(1):5-11.
    [87]L. N. Wu, X. J. Zhang, H. X. Ju. Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential. Anal. Chem.,2007,79(2): 453-458.
    [88]M. Zhou, J. Ding, L. P. Guo, et al. Electrochemical behavior of L-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode. Anal. Chem.,2007,79(14):5328-5335.
    [89]M. Zhou, J. D. Guo, L. P. Guo, et al. Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system. Anal. Chem.,2008,80(12): 4642-4650.
    [90]J. Zhang, F. Zhang, H. Yang, et al. Graphene oxide as a matrix for enzyme immobilization. Langmuir,2010,26(9):6083-6085.
    [91]X. Zou, S. He, D. Li, et al. Graphene oxide-facilitated electron transfer of metalloproteins at electrode surfaces. Langmuir,2010,26(3):1936-1939.
    [92]H. Wu, J. Wang, X. Kang, et al. Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta,2009,80(1):403-406.
    [93]C. Shan, H. Yang, D. Han, et al. Graphene/Au NPs/chitosan nanocomposites film for glucose biosensing. Biosen. Bioelectron.,2010,25(5):1070-1074.
    [94]C. Shan, H. Yang, J. Song, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem.2009,81(6):2378-2382.
    [95]P. Du, S. Liu, C. X. Cai. Single-walled carbon nanotubes functionalized with poly (nile blue A) and their application to dehydrogenase-based biosensors. Electrochim. Acta,2007,53(4):1811-1823.
    [96]L. Meng, P. Wu, G. X. Chen, et al. Low overpotential detection of NADH and ethanol based on thionine single-walled carbon nanotube composite. J. Electrochem. Soc, 2008,155(11):F231-F236.
    [97]C. Shan, H. Yang, D. Han, et al. Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene. Biosen. Bioelectron.,2010,25(6): 1504-1508.
    [98]W. J. Lin, C. S. Liao, J. H. Jhang, et al. Graphene modified basal and edge plane pyrolytic graphite electrodes for electrocatalytic oxidation of hydrogen peroxide and β-nicotinamide adenine dinucleotide. Electrochem. Commun.,2009,11(11): 2153-2156.
    [99]S. Alwarappan, A. Erdem, C. Liu, et al. Probing the electrochemical properties of graphene nanosheets for biosensing applications. J. Phys. Chem. C,2009,113(20): 8853-8857.
    [100]Y. Wang, Y. Li, L. Tang, et al. Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun.,2009,11(4):889-892.
    [101]D. Han, T. Han, C. Shan, et al. Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan-graphene modified electrode. Electroanalysis, 2010,22(17-18):2001-2008.
    [102]F. Li, J. Chai, H. Yang, et al. Synthesis of Pt/ionic liquid/graphene nanocomposite and its simultaneous determination of ascorbic acid and dopamine. Talanta,2010, 81(3):1063-1068.
    [103]M. Zhou, Y. Zhai, S. Dong. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem.,2009,81(14):5603-5613.
    [104]C. X. Lim, H. Y. Hoh, P. K. Ang, et al. Direct voltammetric detection of DNA and pH sensing on epitaxial graphene:An insight into the role of oxygenated defects. Anal. Chem.,2010,82(17):7387-7393.
    [105]S. Bong, Y. R. Kim, I. Kim, et al. Graphene supported electrocatalysts for methanol oxidation. Electrochem. Commun.,2010,12(1):129-131.
    [106]S. Liu, J. Wang, J. Zeng, et al. Green electrochemical synthesis of Pt/graphene sheet nanocomposite film and its electrocatalytic property. J. Power Sources,2010,195(15): 4628-4633.
    [107]N. Shang, P. Papakonstantinou, P. Wang, et al. Platinum integrated graphene for methanol fuel cells. J. Phys. Chem. C,2010,114(37):15837-15841.
    [108]C. Xu, X. Wang, J. W. Zhu. Graphene-metal particle nanocomposites. J. Phys. Chem. C,2008,112(50):19841-19845.
    [109]B. Seger, P. V. Kamat. Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J. Phys. Chem. C,2009,113(19): 7990-7995.
    [110]E. Yoo, T. Okata, T. Akita, et al. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett.,2009,9(6):2255-2259.
    [111]Y. Li, L. Tang, J. Li. Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites. Electrochem. Commun.,2009,11(4): 846-849.
    [112]Y. Li, W. Gao, L. Ci, et al. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electrooxidation. Carbon,2010,48(4):1124-1130.
    [113]L. Dong, R. R. S. Gari, Z. Li, et al. Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon,2010,48(3):781-787.
    [114]S. Guo, S. Dong, E. Wang. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet:facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano,2010,4(1):547-555.
    [115]X. Chen, G. Wu, J. Chen, et al. Synthesis of "clean" and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc.,2011,133(11):3693-3695.
    [116]Y. G. Zhou, J. J. Chen, F. Wang, et al. A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells. Chem. Commun.,2010,46:5951-5953.
    [117]R. Kou, Y. Shao, D. Wang, et al. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem. Commun.,2009,11(5):954-957.
    [118]Y. Shao, S. Zhang, C. Wang, et al. Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction. J. Power Sources,2010,195(15):4600-4605.
    [119]F. Li, H. Yang, C. Shan, et al. The synthesis of perylene-coated graphene sheets decorated with Au nanoparticles and its electrocatalysis toward oxygen reduction. J. Mater. Chem.,2009,19(23):4022-4025.
    [120]C. Zhu, S. Guo, Y. Zhai, et al. Layer-by-layer self-assembly for constructing a graphene/platinum nanoparticle three-dimensional hybrid nanostructure using ionic liquid as a linker. Langmuir,2010,26(10):7614-7618.
    [121]E. Yoo, J. Kim, E. Hosono, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett.,2008,8(8): 2277-2282.
    [122]P. Guo, H. Song, X. Chen. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem. Commun.,2009,11(6): 1320-1324.
    [123]G. Wang, X. Shen, J. Yao, et al. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon,2009,47(8):2049-2053.
    [124]Y. Ding, Y. Jiang, F. Xu, et al. Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Electrochem. Commun.,2010,12(1):10-13.
    [125]D. Wang, D. Choi, J. Li, et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano,2009,3(4):907-914.
    [126]N. Li, G. Liu, C. Zhen, et al. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly. Adv. Funct. Mater.,2011,21(9):1717-1722.
    [127]S.-M. Paek, E. Yoo, I. Honma. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett.,2009,9(1):72-75.
    [128]X. Zhu, Y. Zhu, S. Murali, et al. Nano structured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano, 2011,5(4):3333-3338.
    [129]邹琼,宰建陶,刘萍,等.中空Fe203/GNS纳米复合材料的制备和储锂性能.高等学校化学学报,2011,32(3):630-634.
    [130]B. Li, H. Cao, J. Shao, et al. Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices. J. Mater. Chem.,2011,21(13):5069-5075.
    [131]X. Zhou, F. Wang, Y. Zhu, et al. Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J. Mater. Chem.,2011,21(10):3353-3358.
    [132]M. D. Stoller, S. Park, Y. Zhu, et al. Graphene-based ultracapacitors. Nano Lett., 2008,8(10):3498-3502.
    [133]S. R. C. Vivekchand, C. S. Rout, K. S. Subrahmanyam, et al. Graphene-based electrochemical supercapacitors. J. Chem. Sci.,2008,120(1):9-13.
    [134]W. Lv, D. M. Tang, Y. B. He, et al. Low-temperature exfoliated graphenes: Vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano,2009, 3(11):3730-3736.
    [135]H. Wang, Q. Hao, X. Yang, et al. Graphene oxide doped polyaniline for supercapacitors. Electrochem. Commun.,2009,11(6):1158-1161.
    [136]F. Li, J. Song, H. Yang, et al. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology,2009,20(45): 455602(6pp).
    [137]W. Lv, F. Sun, D. M. Tang, et al. A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance. J. Mater. Chem.,2011,21(25): 9014-9019.
    [138]S. Chen, J. Zhu, X. Wu, et al. Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano,2010,4(5):2822-2830.
    [139]Q. Liu, Z. Liu, X. Zhang, et al. Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv. Funct. Mater.,2009,19(6):894-904.
    [140]G. Eda, G. Fanchini, M. Chhowalla. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotech.,2008,3(5): 270-274.
    [141]S. Watcharotone, D. A. Dikin, S. Stankovich, et al. Graphene-silica composite thin films as transparent conductors. Nano Lett.,2007,7(7):1888-1892.
    [142]X. Li, G Zhang, X. Bai, et al. Highly conducting graphene sheets and Langmuir-Blodgett films. Nature Nanotech.,2008,3:538-542.
    [143]W. Hong, Y. Xu, G Lu, et al. Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem. Commun.,2008,10(10): 1555-1558.
    [144]Z. Liu, Q. Liu, Y. Huang, et al. Organic photovoltaic devices based on a novel acceptor material:graphene. Adv. Mater.,2008,20(20):3924-3930.
    [145]J. Wu, H. A. Becerril, Z. Bao, et al. Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett.,2008,92(26):263302 (3pp).
    [146]Q. Liu, Z. Liu, X. Zhang, et al. Organic photovoltaic cells based on an acceptor of soluble graphene. Appl. Phys. Lett.,2008,92(22):223303 (3pp).
    [147]X. Wang, L. Zhi, K. Mullen. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett.,2008,8(1):323-327.
    [148]H. A. Becerril, J. Mao, Z. Liu, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano,2008,2(3):463-470.
    [149]Z. Liu, J. T. Robinson, X. Sun, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc.,2008,130(33):10876-10877.
    [150]X. Sun, Z. Liu, K. Welsher, et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res.,2008,1(3):203-212.
    [151]X. Yang, X. Zhang, Z. Liu, et al. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem. C,2008,112(45): 17554-17558.
    [152]X. Yang, X. Zhang, Y. Ma, et al. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem.,2009, 19(18):2710-2714.
    [153]L. Zhang, J. Xia, Q. Zhao, et al. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small,2010,6(4): 537-544.
    [154]L. Zhang, Z. Lu, Q. Zhao, et al. Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small, 2011,7(4):460-464.
    [155]R. L. McCreery. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev.,2008,108(7):2646-2687.
    [156]C. E. Banks, T. J. Davies, G. G. Wildgoose, et al. Electrocatalysis at graphite and carbon nanotube modified electrodes:edge-plane sites and tube ends are there active sites. Chem. Commun.,2005:829-841.
    [157]L. Meng, P. Wu, G. X. Chen, et al. Low potential detection of glutamate based on the electrocatalytic oxidation of NADH at thionine/single walled carbon nanotubes composite modified electrode. Biosens. Bioelectron.,2009,24(6):1751-1756.
    [158]L. Meng, J. Jin, G. X. Yang, et al. Nnonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid. Anal. Chem., 2009,81(17):7271-7280.
    [159]X. M. Wu, B. Zhao, P. Wu, et al. Effects of ionic liquid on enzymatic catalysis of the glucose oxidase toward the oxidation of glucose. J. Phys. Chem. B,2009,113(40): 13365-13373.
    [160]D. Chen, Q. Wang, J. Jin, et al. Low-potential detection of endogenous and physiological uric acid at uricase-thionine-single-walled carbon nanotube modified electrodes. Anal. Chem.,2010,82(6):2448-2455.
    [161]L. N. Wu, X. J. Zhang, H. X. Ju. Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential. Anal. Chem.,2007,79(2): 453-458.
    [162]M. Zhou, J. D. Guo, L. P. Guo, et al. Electrochemical sensing platform based on the highly ordered mesoporous carbon fullerene system. Anal. Chem.,2008,80(12): 4642-4650.
    [163]K. Kim, H. J. Park, B. C. Woo, et al. Electric property evolution of structurally defected multilayer graphene. Nano Lett.,2008,8(10):3092-3096.
    [164]Y. Sui, J. Appenzeller. Screening and interlayer coupling in multilayer graphene field-effect transistors. Nano Lett.,2009,9(8):2973-2977.
    [165]P. Wu, Q. Shao, Y. J. Hu, et al. Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection. Electrochim. Acta,2010,55(28): 8606-8614.
    [166]X. Wu, Y. Hu, J. Jin, et al. Electrochemical approach for detection of extracellular oxygen released from erythrocytes based on graphene film integrated with laccase and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid). Anal. Chem.,2010,82(9): 3588-3596.
    [167]Y. J. Hu, J. Jin, H. Zhang, et al. Graphene:synthesis, functionalization and applications in chemistry. Acta Phys.-Chim. Sin.,2010,26(8):2073-2086.
    [168]Y. E. Seidel, A. Schneider, Z. Jusys, et al. Transport effects in the electrooxidation of methanol studied on nanostructured Pt/glassy carbon electrodes. Langmuir,2010, 26(5):3569-3578.
    [169]L. Wang, C. Tian, H. Wang, et al. Mass production of graphene via an in situ self-generating template route and its promoted activity as electrocatalytic support for methanol electroxidization. J. Phys. Chem. C,2010,114(19):8727-8733.
    [170]P. Yu, Q. Qian, Y. Lin, et al. In situ formation of three dimensional and uniform Pt/carbon nanotube nanocomposites form ionic liquid/carbon nanotube. J. Phys. Chem. C,2010,114(8):3575-3579.
    [171]Q. Shen, L. Jiang, H. Zhang, et al. Three-dimensional dendritic Pt nanostructures: sonoelectrochemical synthesis and electrochemical applications. J. Phys. Chem. C, 2008,112(42):16385-16392.
    [172]H. Zhang, Y. Yin, Y. Hu, et al. Pd@Pt core-shell nanostructures with controllable composition synthesized by a microwave method and their enhanced electrocatalytic activity toward oxygen reduction and methanol oxidation. J. Phys. Chem. C,2010, 114(27):11861-11867.
    [173]W. Hong, H. Bai, Y. Xu, et al. Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors. J. Phys. Chem. C, 2010,114(4):1822-1826.
    [174]Y. Fang, S. Guo, C. Zhu, et al. Self-assembly of cationic polyelectrolyte functionalized graphene nano sheets and gold nanoparicles:a two-dimensional heterostructure for hydrogen peroxide sensing. Langmuir,2010,26(13): 11277-11282.
    [175]G. Goncalves, P. A. A. P. Marques, C. M. Granadeiro, et al. Surface modification of graphene nanosheets with gold nanoparticles:the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem. Mater.,2009,21(20):4796-4802.
    [176]F. Li, H. Yang, C. Shan, et al. The synthesis of perylene-coated graphene sheets decorated with Au nanoparticles and its electrocatalysis toward oxygen reduction. J. Mater. Chem.,2009,19(23):4022-4025.
    [177]H. Zhang, J. J. Xu, H. Y. Chen. Shaped-controlled gold nanoarchitectures:Synthesis, superhydrophobicity, and electrocatalytic properties. J. Phys. Chem. C,2008,112(36): 13886-13892.
    [178]M. Zhou, Y. Wang, Y. Zhai, et al. Controlled synthesis of large-area and patterned electrochemically. Chem. Eur. J.,2009,15(25):6116-6120.
    [179]S. Stankovich, D. A. Dikin, R. D. Piner, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon,2007,45(7): 1558-1565.
    [180]B. Scharifker, G. Hills. Theoretical and experimental studies of multiple nucleation. Electrochim. Acta,1983,28(7):879-889.
    [181]B. Scharifker, J. Mostany. Three dimensional nucleation with diffusion controlled growth. J. Electroanal. Chem.,1984,177:13-23.
    [182]S. Floate, M. E. Hyde, R. G Compton. Electrochemical and AFM studies of the electrodeposition of cobalt on glassy carbon:an analysis of the effect of ultrasound. J. Electroanal. Chem.,2002,523:49-63.
    [183]A. Hamelin. Cyclic voltrammetry at gold single-crystal surfaces. J. Electroanal. Chem.,1996,407:1-11.
    [184]L. Tang, Y. Wang, Y. Li, et al. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater.,2009,19(17):2782-2789.
    [185]C. M. Sanchez-Sanchez, J. Solla-Gullon, F. J. Vidal-Iglesias, et al. Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles. J. Am. Chem. Soc,2010,132(16):5622-5624.
    [186]H. Eriksona, G. Jiirmanna, A. Sarapuua, et al. Electroreduction of oxygen on carbon-supported gold catalysts. Electrochim. Acta,2009,54(28):7483-7489.
    [187]T. Inasaki, S. Kobayashi. Particle size effects of gold on the kinetics of the oxygen reduction at chemically prepared Au/C catalysts. Electrochim. Acta,2009,54(21): 4893-4897.
    [188]M. Bron. Carbon black supported gold nanoparticles for oxygen electroreduction in acidic electrolyte solution. J. Electroanal. Chem.,2008,624(1-2):64-68.
    [189]M. S. El-Deab, T. Sotomura, T. Ohsaka. Oxygen reduction at Au nanoparticles electrodeposited on different carbon substrates. Electrochim. Acta,2006,52(4): 1792-1798.
    [190]N. Alexeyeva, T. Laaksonen, K. Kontturi, et al. Oxygen reduction on gold nanoparticle/multi-walled carbon nanotubes modified glassy carbon electrodes in acid solution. Electrochem. Commun.,2006,8(9):1475-1480.
    [191]S. R. Lee, Y. T. Lee, K. Sawada, et al. Development of a disposable glucose biosensor using electroless-plated Au/Ni/copper low electrical resistance electrodes. Biosens. Bioelectron.,2008,24(3):410-414.
    [192]W. Zhao, J. J. Xu, C. G. Shi, et al. Fabrication, characterized and application of gold nano-structured film. Electrochem. Commun.,2006,8(5):773-778.
    [193]A. Halder, S. Sharma, M. S. Hegde, et al. Cnotrolled attachment of ultrafine platinum nanoparticles on functionalized carbon nanotubes with high electrocatalytic activity for methanol oxidation. J. Phys. Chem. C,2009,113(4):1466-1473.
    [194]M. S. El-Deab. On the preferential crystallographic orientation of Au nanoparticles: Effect of electrodeposition time. Electrochim. Acta,2009,54(14):3720-3725.
    [195]Y. Zhou, L. Z. Fan, H. Z. Zhong, et al. Platinum nanoparticle clusters immobilized on multiwalled carbon nanotubes:Electrodeposition and enhanced electrocatalytic activity for methanol oxidation. Adv. Funct. Mater.,2007,17 (9):1537-1541.
    [196]S. F. Zheng, J. S. Hu, L. S. Zhong, et al. In situ one-step method for preparing carbon nanotubes and Pt composite catalysts and their performance for methanol oxidation. J. Phys. Chem. C,2007,111 (30):11174-11179.
    [197]J. Yuan, Z. Wang, Y. Zhang, et al. Electrostatic layer-by-layer a of platinum loaded multiwall carbon nanotube multilayer:A tunable catalyst film for anodic methanol oxidation. Thin Solid Films,2008,516(18):6531-6535.
    [198]L. Ren, Y. Xing. Effect of pH on PtRu electrocatalysts prepared via a polyol process on carbon nanotubes. Electrochim. Acta,2008,53(17):5563-5568.
    [199]M. C. Gutierrez, M. J. Hortiguela, J. M. Amarilla, et al. Macroporous 3D architectures of self-assembled MWCNTs surface decorated with Pt nanoparticles as anodes for a direct methanol fuel cell. J. Phys. Chem. C,2007,111(15):5557-5560.
    [200]B. C. H. Steele, A. Heinzel. Materials for fuel cell technologies. Nature,2001, 414(6861):345-352.
    [201]H. A. Gasteiger, S. S. Kocha, B. Sompalli, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B:Environmental,2005,56(1):9-35.
    [202]E. Antolini. Formation of carbon supported PtM alloys for low temperature fuel cells: a review. Mater. Chem. Phys.,2003,78(3):563-573.
    [203]G. Q. Lu, A. Wieckowski. Heterogeneous electrocatalysis:a core field of interfacial science. Curr. Opin. Coll. Interf. Sci.,2000,5(1-2):95-100.
    [204]S. Park, T. D. Chung, H. C. Kim. Nonenzymatic glucose detection using mesoporous platinum. Anal. Chem.,2003,75(13):3046-3049.
    [205]J. Xu, T. White, P. Li, et al. Biphasic Pd-Au alloy catalyst for low-temperature CO oxidation. J. Am. Chem. Soc.,2010,132(30):10398-10406.
    [206]C.-W. Yi, K. Luo, T. Wei, et al.The composition and structure of Pd-Au surfaces. J. Phys. Chem. B,2005,109(39):18535-18540.
    [207]T. Wei, J. Wang, D. W. Goodman. Characterization and chemical properties of Pd-Au alloy surfaces. J. Phys. Chem. C,2007,111(25):8781-8788.
    [208]C. V. Rao, B. Viswanathan. ORR activity and direct ethanol fuel cell performance of carbon supported Pt-M (M=Fe, Co, and Cr) alloys prepared by polyol reduction method. J. Phys. Chem. C,2009,113(43):18907-18913.
    [209]Y. Kang, C. B. Murray. Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes). J. Am. Chem. Soc.,2010,132(22):7568-7569.
    [210]J. Kim, Y. Lee, S. Sun. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J. Am. Chem. Soc.,2010,132(14): 4996-4997.
    [211]V. Mazumder, M. Chi, K. L. More, et al. Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction. J. Am. Chem. Soc., 2010,132(23):7848-7849.
    [212]C. Wang, D. Vliet, K. C. Chang, et al. Monodisperse Pt3Co nanoparticles as a catalyst for the oxygen reduction reaction:size-dependent activity. J. Phys. Chem. C, 2009,113(45):19365-19368.
    [213]K. Jayasayee, V. A. T. Dam, T. Verhoeven, et al. Heat-treated PtCo3 nanoparticles as oxygen reduction catalysts. J. Phys. Chem. C,2009,113(47):20371-20380.
    [214]T. Y. Jeno, S. J. Yoo, Y. H. Cho, et al. Influence of oxide on the oxygen reduction reaction of carbon-supported Pt-Ni nanoparticles. J. Phys. Chem. C,2009,113(45): 19732-19739.
    [215]J. Wu, J. Zhang, Z. Peng, et al. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc.,2010,132 (14):4984-4985.
    [216]A. Sarkar, A. Manthiram. Synthesis of Pt@Cu core-shell nanoparticles by galvanic displacement of Cu by Pt4+ ions and their application as electrocatalysts for oxygen reduction reaction in fuel cells. J. Phys. Chem. C,2010,114(10):4725-4732.
    [217]A. Miura, H. Wang, B. M. Leonard, et al. Synthesis of intermetallic PtZn nanoparticles by reaction of Pt nanoparticles with Zn vapor and their application as fuel cell catalysts. Chem. Mater.,2009,21(13):2661-2667.
    [218]K. K. Tintula, S. Pitchumani, P. Sridhar, et al. A solid-polymer-electrolyte direct methanol fuel cell (DMFC) with Pt-Ru nanoparticles supported onto poly(3,4-ethylenedioxythiophene) and polysttyrene sulphonic acid polymer compostie as anode. J. Chem. Sci.,2010,122(3):381-389.
    [219]Q. Yuan, Z. Y. Zhou, J. Zhuang, et al. Pd-Pt random alloy nanocubes with tunable compositions and their enhanced electrocatalytic activities. Chem. Commun.,2010, 46(9):1491-1493.
    [220]W. W. He, X. C. Wu, J. B. Liu, et al. Pt-guided formation of Pt-Ag alloy nanoislands on Au nanorods and improved methanol electro-oxidation. J. Phys. Chem. C,2009,113(24):10505-10510.
    [221]N. Kristian, X. Wang. Ptshell-Aucore/C electrocatalyst with a controlled shell thickness and improved Pt utilization for fuel cell reaction. Electrochem. Commun.,2008,10(1): 12-15.
    [222]S. Guo, Y. Fang, S. Dong, et al. High-efficiency and low-cost hybrid nanomaterial as enhancing electrocatalysts:spongelike Au/Pt core/shell nanomaterial with hollow cavity. J. Phy. Chem. C,2007,111(45):17104-17109.
    [223]Y. Jin, Y. Shen, S. Dong. Electrochemical design of ultrathin platinum-coated gold nanoparticle monolayer films as a novel nanostructured electrocatalyst for oxygen reduction. J. Phys. Chem. B,2004,108(24):8142-8147.
    [224]Y. Zhang, Q. Huang, Z. Zou, et al. Enhanced durability of Au cluster decorated Pt nanoparticles for the oxygen reduction reaction. J. Phys. Chem. C,2010,114(14): 6860-6868.
    [225]J. Jia, L. Cao, Z. Wang. Platinum-coated gold nanoporous film surface: electrodeposition and enhanced electrocatalytic activity for methanol oxidation. Langmuir,2008,24(11):5932-5936.
    [226]J. Anderson, A. Karakoti, D. J. Diaz, et al. Nanoceria-modified platinum-gold compostie electrodes for the electrochemical oxidation of methanol and ethanol in acidic media. J. Phys. Chem. C,2010,114(10):4595-4602.
    [227]J. Luo, P. N. Njoki, Y. Lin, et al. Activity-composition correlation of AuPt alloy nanoparticle catalysts in electrocatalytic reduction of oxygen. Electrochem. Commun., 2006,8(4):581-587.
    [228]H. Lang, S. Maldonado, K. J. Stevenson, et al. Synthesis and characterization of dendrimer templated supported bimetallic Pt-Au nanoparticles. J. Am. Chem. Soc., 2004,126(40):12949-12956.
    [229]S. Zhou, K. Mcllwrath, G. Jackson, et al. Enhanced CO tolerance for hydrogen activation in Au-Pt dendritic heteroaggregate nanostructures. J. Am. Chem. Soc., 2006,128(6):1780-1781.
    [230]J. Zeng, J. Yang, J. Y. Lee, et al. Preparation of carbon-supported core-shell Au-Pt nanoparticles for methanol oxidation reaction:the promotional effect of the Au core. J. Phys. Chem. B,2006,110(48):24606-24611.
    [231]W. Tang, S. Jayaraman, T. F. Jaramillo, et al. Electrocatalytic activity of gold-platinum clusters for low temperature fuel cell applications. J. Phys. Chem. C, 2009,113(12):5014-5024.
    [232]X. Ge, R. Wang, P. Liu, et al. Platinum-decorated nanoporous gold leaf for methanol electrooxidation. Chem. Mater.,2007,19(24):5827-5829.
    [233]D. Cameron, R. Holliday, D. Thompson. Gold's future role in fuel cell systems. J. Power Sources,2003,118(1-2):298-303.
    [234]D. R. Rolison. Catalytic nanoarchitectures-the importance of nothing and the unimportance of periodicity. Science,2003,299(5613):1698-1701.
    [235]T. F. Jaramillo, S. H. Baeck, B. R. Cuenya, et al. Catalytic activity of supported Au nanoparticles deposited from block copolymer micelles. J. Am. Chem. Soc.,2003, 125(24):7148-7149.
    [236]H. Gharibi, K. Kakaei, M. Zhiani. Platinum nanoparticles supported by a Vulcan XC-72 and PANI doped with trifluoromethane sulfonic acid substrate as a new electrocatalyst for direct methanol fuel cells. J. Phys. Chem. C,2010,114(11): 5233-5240.
    [237]H. Tang, J. H. Chen, L. H. Nie, et al. High dispersion and electrocatalytic properties of platinum nanoparticles on graphitic carbon nanofibers (GCNFs). J. Colloid Interf. Sci.,2004,269(1):26-31.
    [238]J. Chen, M. Wang, B. Liu, et al. Platinum catalysts prepared with functional carbon nanotube defects and its improved catalytic performance for methanol oxidation. J. Phys. Chem. B,2006,110(24):11775-11779.
    [239]Y. C. Xing, L. Li, C. C. Chusuei, et al. Sonochemical oxidation of multiwalled carbon nanotubes. Langmuir,2005,21(9):4185-4190.
    [240]J. J. Wang, G. P. Yin, Y. Y. Shao, et al. Investigation of further improvement of platinum catalyst durability with highly graphitized carbon nanotubes support. J. Phys. Chem. C,2008,112(15):5784-5789.
    [241]D. A. Stevens, M. T. Hicks, G. M. Haugen, et al. Ex-situ and in-situ stability studies of PEM fuel cell catalysts:the effect of carbon type and humidification on the thermal degradation of carbon supported catalysts. J. Electrochem. Soc.,2005,152(12): A2309-A2315.
    [242]R. Muszynski, B. Seger, P. V. Kamat. Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C,2008,112(14):5263-5266.
    [243]S. S. Kumar, K. L. N. Phani. Exploration of unalloyed bimetallic Au-Pt/C nanoparticles for oxygen reduction reaction. J. Power Sources,2009,187(1):19-24.
    [244]G. C. Bond. The electronic structure of platinum-gold alloy particles. Platinum Metals Rev.,2007,51(2):63-68.
    [245]M. Teliska, V. S. Murthi, S. Mukerjee, et al. Correlation of water activation, surface properties, and oxygen reduction reactivity of supported Pt-M/C bimetallic electrocatalysts using XAS. J. Electrochem. Soc.,2005,152, A2159-A2169.
    [246]J. L. Zhang, M. B. Vukmirovic, Y. Xu, et al. Controlling the catalytic of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem., Int. Ed.,2005,44(14):2132-2135.
    [247]J. L. Fernandez, D. A. Walsh, A. J. Bard. Thermodynamic guidilines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M-Co (M:Pd, Ag, Au). J. Am. Chem. Soc.,2005, 127(1):357-365.
    [248]W. He, J. Y. Liu, Y. J. Qiao, et al. Simple preparation of Pd-Pt nanoalloy catalysts for methanol-tolerant oxygen reduction. J. Power Sources,2010,195(4):1046-1050.
    [249]Y. Mu, H. Liang, J. Hu, et al. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. J. Phys. Chem. B,2005, 109(47):22212-22216.
    [250]Y. H. Xu, X. Q. Lin. Facile fabrication and electrocatalytic activity of Pto.9Pd0.1 alloy film catalysts. J. Power Sources,2007,170(1):13-19.
    [251]A. F. Shao, Z. B. Wang, Y. Y. Chu, et al. Evaluation of the performance of carbon supported Pt-Ru-Ni-P as anode catalyst for methanol electrooxidation. Fuel Cells, 2010,10(3):472-477.
    [252]X. Z. Fu, Y. Liang, S. P. Chen, et al. Pt rich shell coated Ni nanoparticles as catalysts for methanol electrooxidation in alkaline media. Catal. Commun.,2009,10: 1893-1897.
    [253]K. L. Nagashree, N. H. Raviraj, M. F. Ahmed. Carbon paste electrodes modified by Pt and Pt-Ni microparticles dispersed in polyindole film for electrocatalytic oxidation of methanol. Electrochim. Acta,2010,55(8):2629-2635.
    [254]L. Wang, Y. Nemoto, Y. Yamauchi. Direct synthesis of spatially controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. J. Am. Chem. Soc., 2011,133(25):9674-9677.
    [255]Z. F. Liu, G. S. Jackson, B. W. Eichhorn. PtSn intermetallic, core-shell and alloy nanoparticles as CO-tolerant electrocatalysts for H2 oxidation. Angew. Chem. Int. Ed., 2010,49(18):3173-3176.
    [256]D. Xu, S. Bliznakov, Z. P. Liu, et al. Composition-dependent electrocatalytic activity of Pt-Cu nanocube catalysts towards formic acid oxidation. Angew. Chem. Int. Ed., 2010,49(7):1282-1285.
    [257]J. Zhang, H. Z. Yang, J. Y. Fang, et al. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett.,2010,10(2):638-644.
    [258]J. H. Yuan, K. Wang, X. H. Xia. Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Adv. Funct. Mater.,2005,15(7):803-809.
    [259]J. S. Spendelow, J. D. Goodpaster, P. J. A. Kenis, et al. Methanol dehydrogenation and oxidation on Pt(111) in alkaline solutions. Langmuir,2006,22(25):10457-10464.
    [260]J. S. Spendelow, G Q. Lu, P. J. A. Kenis, et al. Electrooxiation of adsorbed CO on Pt(111) and Pt(111)/Ru in alkaline media and comparison with results from acidic media. J. Electroanal. Chem.,2004,568:215-224.
    [261]Q. Jiang, L. Jiang, H. Hou, et al. Promoting effect of Ni in PtNi bimetallic electrocatalysts for the methanol oxidation reaction in alkaline media:experimental and density functional theory studies. J. Phys. Chem. C,2010,114(46):19714-19722.
    [262]B. N. Wanjala, J. Luo, R. Loukrakpam, et al. Nanoscale alloying, phase-segregation, and core-shell evolution of gold-platinum nanoparticles and their electrocatalytic effect on oxygen reduction reaction. Chem. Mater.,2010,22(14):4282-4294.
    [263]F. H. B. Lima, E. A. Ticianelli. Oxygen electrocatalysis on ultra-thin porous coating rotating ring/disk platinum and platinum-cobalt electrodes in alkaline media. Electrochim. Acta,2004,49(24):4091-4099.
    [264]T. He, E. Kreidler, L. F. Xiong. Combinatorial screening and nano-synthesis of platinum binary alloys for oxygen electroreduction. J. Power Sources,2007,165(1): 87-91.
    [265]T. He, E. Kreidler, L. F. Xiong, et al. Alloy electrocatalysts:combinatorial discovery and nanosynthesis. J. Electrochem. Soc.,2006,153(9):A1637-A1643.
    [266]S. Chen, W. C. Sheng, N. Yabuuchi, et al. The origin of oxygen reduction reaction activity on "Pt3Co" nanoparticles:atomically resolved chemical compositions and structures. J. Phys. Chem. C,2009,113(3):1109-1125.
    [267]S. Koh, M. F. Toney, P. Strasser. Activity-stability relationships of ordered and disordered alloy phases of Pt3Co electrocatalysts for the oxygen reduction reaction (ORR). Electrochim. Acta,2007,52(8):2765-277'4.
    [268]Z. F. Liu, J. E. Hu, Q. Wang, et al. PtMo alloy and MoOx@Pt core-shell nanoparticles as highly CO-tolerant electrocatalysts. J. Am. Chem. Soc.,2009, 131(20):6924-6925.
    [269]K. W. Park, J. H. Choi, B. K. Kwon, et al. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J. Phys. Chem. B, 2002,106(8):1869-1877.
    [270]M. V. Martinez-Huerta, S. Rojas, J. L. Gomez de-la-Fuente, et al. Effect of Ni addition over PtRu/C based electrocatalysts for fuel cell applications. Appl. Catal. B: Environmental,2006,69(1-2):75-84.
    [271]Z. Q. Tian, S. P. Jiang, Y. M. Liang, et al. Synthesis and characterization of Pt catalysts on multi-walled carbon nanutubes by intermittent microwave irradiation for fuel cell applications. J. Phys. Chem. B,2006,110(11):5343-5350.
    [272]H. D. Du, B. H. Li, F. Y. Kang, et al. Carbon aerogel supported Pt-Ru catalysts for using as the anode of direct methanol fuel cells. Carbon,2007,45(2):429-435.
    [273]S. Kim, M. H. Cho, J. R. Lee, et al. Influence of plasma treatment of carbon blacks on electrochemical activity of Pt/carbon black catalysts for DMFCs. J. Power Sources, 2006,159(1):46-48.
    [274]D. A. Konopka, M. Li, K. Artyushkova, et al. Platinum supported on NbRuyOz as electrocatalysts for ethanol oxidation in acid and alkaline fuel cells. J. Phys. Chem. C, 2011,115(7):3043-3056.
    [275]B. Z. Fang, M. Kim, J. S. Yu. Hollow core/mesoporous shell carbon as a highly efficient catalyst support in direct formic acid fuel cell. Appl. Catal. B:Environmental, 2008,84(1-2):100-105.
    [276]Y. Y. Shao, G. P. Yin, Y. Z. Gao, et al. Durability study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions. J. Electrochem. Soc.,2006,153(6): A1093-A1097.
    [277]I. S. Park, K. W. Park, J. H. Choi, et al. Electrocatalytic enhancement of methanol oxidation by graphite nanofibers with a high loading of PtRu alloy nanoparticles. Carbon,2007,45(1):28-33.
    [278]H. Yang, C. Coutanceau, J. M. Leger, et al. Methanol tolerant oxygen reduction on carbon-supported Pt-Ni alloy nanoparticles. J. Electroanal. Chem.,2005,576(2): 305-313.
    [279]J. Lobato, P. Canizares, M. A. Rodrigo, et al. Performance of a Vapor-Fed polybenzimidazole (PBI)-based direct methanol fuel cell. Energy Fuels,2008,22(5): 3335-3345.
    [280]C. T. Hsieh, J. Y. Lin. Fabrication of bimetallic Pt-M (M=Fe, Co, and Ni) nanoparticle/carbon nanotube electrocatalysts for direct methanol fuel cells. J. Power Sources,2009,188(2):347-352.
    [281]J. Lobato, P. Canizares, D. Ubeda, et al. Testing PtRu/CNF catalysts for a high temperature polybenzimidazole-based direct ethanol fuel cell. Effect of metal content. Appl. Catal. B:Environmental,2011,106(1-2):174-180.
    [282]S. St. John, I. Dutta, A. P. Angelopoulos. Enhanced electrocatalytic oxygen reduction through electrostatic-assembly of Pt nanoparticles onto porous carbon supports from SnCl2-stabilized suspensions. Langmuir,2011,27(10):5781-5791.
    [283]J. Qi, L. Jiang, S. Wang, et al. Synthesis of graphitic mesoporous carbons with high surface areas and their applications in direct methanol fuel cells. Appl. Catal. B: Environmental,2011,107(1-2):95-103.
    [284]K. Y. Chan, J. Ding, J. W. Ren, et al. Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells. J. Mater. Chem.,2004,14(4):505-516.
    [285]R. Kou, Y. Shao, D. Mei, et al. Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points. J. Am. Chem. Soc.,2011,133(8): 2541-2547.
    [286]F. Yang, Y. Liu, L. Gao, et al. pH-sensitive highly dispersed reduced graphene oxide solution using lysozyme via an in situ reduction method. J. Phys. Chem. C,2010, 114(50):22085-22091.
    [287]A. Guha, W. Lu, T. A. Jr. Zawodzinski, et al. Surface-modified carbons as platinum catalyst support for PEM fuel cells. Carbon,2007,45(7):1506-1517.
    [288]C. C. Chen, C. F. Chen, C. M. Chen, et al. Modification of multi-walled carbon nanotubes by microwave digestion method as electrocatalyst supports for direct methanol fuel cell applications. Electrochem. Commun.,2007,9(1):159-163.
    [289]A. Halder, S. Sharma, M. S. Hegde, et al. Controlled attachment of ultrafine platinum nanoparticles on functionalized carbon nanotubes with high electrocatalytic activity for methanol oxidation. J. Phys. Chem. C,2009,113(4):1466-1473.
    [290]Y. J. Hu, H. Zhang, P. Wu, et al. Bimetallic Pt-Au nanocatalysts electrochemically depodited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Phys. Chem. Chem. Phys.,2011,13(9): 4083-4094.
    [291]Y. J. Hu, J. Jin, P. Wu, et al. Graphene-gold nanostructure composites fabricated by electrodeposition and their electrocatalytic activity toward the oxygen reduction and glucose oxidation. Electrochim. Acta,2010,56(1):491-500.
    [292]H. Zhang, X. Q. Xu, P. Gu, et al. Microwave-assisted synthesis of graphene-supported Pd1Pt3 nanostructures and their electrocatalytic activity for methanol oxidation. Electrochim. Acta,2011,56(20):7064-7070.
    [293]Q. Yue, K. Zhang, X. Chen, et al. Generation of OH radicals in oxygen reduction reaction at Pt-Co nanoparticles supported on graphene in alkaline solutions. Chem. Commun.,2010,46:3369-3371.
    [294]T. C. Deivaraj, W. Chen, J. Y. Lee. Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol. J. Mater. Chem.,2003,13(10):2555-2560.
    [295]H. Liu, J. Gao, M. Xue, et al. Processing of graphene for electrochemical application: noncovalently functionalize graphene sheets with water-soluble electroactive methylene green. Langmuir,2009,25(20):12006-12010.
    [296]N. G. Shang, P. Papakonstantinou, M. Mcmullan, et al. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater.,2008,18(21):3506-3514.
    [297]H. Yang, W. Vogel, C. Lamy, et al. Structure and electrocatalytic activity of carbon-supported Pt-Ni alloy nanoparticles toward the oxygen reduction reaction. J. Phys. Chem. B,2004,108(30):11024-11034.
    [298]J. R. Kitchin, J. K. Norskov, M. A. Barteau, et al. Modification of the surface electronic and chemical properties of Pt (111) by subsurface 3d transition metals. J. Chem. Phys.,2004,120(21):10240-10246.
    [299]V. R. Stamenkovic, B. Fowler, B. S. Mun, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science,2007,315(5811): 493-497.
    [300]F. Liu, J. Y. Lee, W. J. Zhou. Segmented Pt/Ru, Pt/Ni, and Pt/RuNi nanorods as model bifunctional catalysts for methanol oxidation. Small,2006,2(1):121-128.
    [301]Y. Ishikawa, M. S. Liao, C. R. Cabrera. Oxidation of methanol on platinum, ruthenium and mixed Pt-M metals (M=Ru, Sn):a theoretical study. Surf. Sci.,2000, 463(1):66-80.
    [302]P. K. Shen, C. W. Xu, R. Zeng, et al. Electrooxidation of methanol on NiO-promoted Pt/C and Pd/C catalysts. Electrochem. Solid-State Lett.2006,9(2):A39-A42.
    [303]S. Papadimitriou, S. Armyanov, E. Valova, et al. Methanol oxidation at Pt-Cu, Pt-Ni, and Pt-Co electrode coatings prepared by a galvanic replacement process. J. Phys. Chem. C,2010,114(11):5217-5223.
    [304]R. V. Hull, L. Li, Y. Xing, et al. Pt nanoparticle binding on functionalized multiwalled carbon nanotubes. Chem. Mater.,2006,18(7):1780-1788.
    [305]C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, et al. Graphene:the new. two-dimensional nanomaterial. Angew. Chem. Int. Ed.,2009,48(42):7752-7777.
    [306]P. Hernandez-Fernandez, S. Baranton, S. Rojas, et al. Insights into the effects of functional groups on carbon nanotubes for the electrooxidation of methanol. Langmuir,2011,27(15):9621-9629.
    [307]D. Friebel, D. J. Miller, D. Nordlund, et al. Degradation of bimetallic model electrocatalysts:an in situ X-ray absorption spectroscopy study. Angew. Chem. Int.. Ed.,2011,50(43):10190-10192.
    [308]H. Huang, D. Sun, X. Wang. Low-defect MWNT-Pt nanocomposite as a high performance electrocatalyst for direct methanol fuel cells. J. Phys. Chem. C,2011, 115(39):19405-19412.
    [309]C. Wang, M. Chi, D. Li, et al. Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. J. Am. Chem. Soc.,2011,133(36):14396-14403.
    [310]W. Xiong, F. Du, Y. Liu, et al.3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc.,2010, 132(45):15839-15841.
    [311]S. J. Hwang, S. J. Yoo, S. Jang, et al. Ternary Pt-Fe-Co alloy electrocatalysts prepared by electrodeposition:elucidating the roles of Fe and Co in the oxygen reduction reaction. J. Phys. Chem. C,2011,115(5):2483-2488.
    [312]D. Wang, H. Xin, Y. Yu, et al. Pt-decorated PdCo@Pd/C core-shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction. J. Am. Chem. Soc.,2010,132(50):17664-17666.
    [313]R. Mu, Q. Fu, H. Xu, et al. Synergetic effect of surface and subsurface Ni species at Pt-Ni bimetallic catalysts for CO oxidation. J. Am. Chem. Soc.,2011,133(6): 1978-1986.
    [314]R. Loukrakpam, J. Luo, T. He, et al. Nanoengineered PtCo and PtNi catalysts for oxygen reduction reaction:an assessment of the structural and electrocatalytic properties. J. Phys. Chem. C,2011,115(5):1682-1694.
    [315]S. Choi, R. Choi, S. W. Han, et al. Shape-controlled synthesis of Pt3Co nanocrystals with high electrocatalytic activity toward oxygen reduction. Chem. Eur. J.,2011, 17(44):12280-12284.
    [316]Z. Y. Zhou, Z. Z. Huang, D. J. Chen, et al. High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew. Chem. Int. Ed.,2010,49(2):411-414.
    [317]L. Wang, Y. Yamauchi. Synthesis of mesoporous Pt nanoparticles with uniform particle size from aqueous surfactant solutions toward highly active electrocatalysts. Chem. Eur. J.,2011,17(32):8810-8815.
    [318]M. Mohl, D. Dobo, A. Kukovecz, et al. Formation of CuPd and CuPt bimetallic nanotubes by galvanic replacement reaction. J. Phys. Chem. C,2011,115(19): 9403-9409.
    [319]Y. Sun, B. Mayers, Y. Xia. Metal nanostructures with hollow interiors. Adv. Mater., 2003,15(7-8):641-646.
    [320]S. E. Skrabalak, J. Chen, L. Au, et al. Gold nanocages for biomedical applications. Adv. Mater.,2007,19(20):3177-3184.
    [321]D. Seo, H. Song. Asymmetric hollow nanorod formation through a partial galvanic replacement reaction. J. Am. Chem. Soc.,2009,131(51):18210-18211.
    [322]D. Aherne, M. Gara, J. M. Kelly, et al. From Ag nanoprisms to triangular AuAg nanoboxes. Adv. Funct. Mater.,2010,20(6):1329-1338.
    [323]Y. Zhang, F. Xu, Y. Sun, et al. Seed-mediated synthesis of Au nanocages and their electrocatalytic activity towards glucose oxidation. Chem. Eur. J.,2010,16(30): 9248-9256.
    [324]Y. Ma, W. Li, E. C. Cho, et al. Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. ACS Nano,2010, 4(11):6725-6734.
    [325]X. Gong, Y. Yang, S. Huang. A novel side-selective galvanic reaction and synthesis of hollow nanoparticles with an alloy core. J. Phys. Chem. C,2010,114(42): 18073-18080.
    [326]Y. Sun, Y. Xia. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc.,2004, 126(12):3892-3901.
    [327]X. Lu, H.-Y. Tuan, J. Chen, et al. Mechanistic studies on the galvanic replacement reaction between multiply twinned particles of Ag and HAuCl4 in an organic medium. J. Am. Chem. Soc.,2007,129(6):1733-1742.
    [328]Q. Zhang, J. Xie, J. Y. Lee, et al. Synthesis of Ag@AgAu metal core/alloy shell bimetallic nanoparticles with tunable shell. Small,2008,4(8):1067-1071.
    [329]Z. Peng, J. Wu, H. Yang. Synthesis and oxygen reduction electrocatalytic property of platinum hollow and platinum-on-silver nanoparticles. Chem. Mater.,2010,22(3): 1098-1106.
    [330]J. Chen, B. Wiley, J. McLellan, et al. Optical properties of Pd-Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett.,2005,5(10):2058-2062.
    [331]Y.-Y. Feng, G.-R. Zhang, J.-H. Ma, et al. Carbon-supported PtAg nanostructures as cathode catalysts for oxygen reduction reaction. Phys. Chem. Chem. Phys.,2011, 13(9):3863-3872.
    [332]C.-L. Lee, C.-M. Tseng, R.-B. Wu, et al. Catalytic characterization of hollow silver/palladium nanoparticles synthesized by a displacement reaction. Electrochim. Acta,2009,54(23):5544-5547.
    [333]H.-P. Liang, H.-M. Zhang, J.-S. Hu, et al. Pt hollow nanospheres:facile synthesis and enhanced electrocatalysts. Angew. Chem. Int. Ed.,2004,43(12):1540-1543.
    [334]H.-P. Liang, L.-J. Wan, C.-L. Bai, et al. Gold hollow nanospheres:tunable surface plasmon resonance controlled by interior-cavity sizes. J. Phys. Chem. B,2005, 109(16):7795-7800.
    [335]H.-P. Liang, Y.-G. Guo, H.-M. Zhang, et al. Controllable AuPt bimetallic hollow nanostructures. Chem. Commun.,2004:1496-1497.
    [336]Y Lu, Y Zhao, L. Yu, et al. Hydrophilic Co@Au yolk/shell nanospheres:synthesis, assembly, and application to gene delivery. Adv. Mater.,2010,22(12):1407-1411.
    [337]J. Chai, F. Li, Y. Hu, et al. Hollow flower-like AuPd alloy nanoparticles:one step synthesis, self-assembly on ionic liquid-functionalized graphene and electrooixation of formic acid. J. Mater. Chem.,2011,21(44):17922-17929.
    [338]W. Qin, C. Yang, X. Ma, et al. Selective synthesis and characterization of metallic cobalt, cobalt/platinum, and platinum microspheres, Journal of Alloys and Compounds,2011,509(2):338-342.
    [339]D.-J. Guo, S.-K. Cui. Hollow PtCo nanospheres supported on multi-walled carbon nanotubes for methanol electrooxidation. J. Colloid Interface Sci.,2009,340(1): 53-57.
    [340]D.-H. Chen, C.-H. Hsieh. Synthesis of nickel nanoparticles in aqueous cationic surfactant solutions. J. Mater. Chem.,2002,12(8):2412-2415.
    [341]D.-H. Chen, S.-H. Wu. Synthesis of nickel nanopartilces in water-in-oil microemulsions. Chem. Mater.,2000,12(5):1354-1360.
    [342]L. Kvitek, A. Panacek, J. Soukupova, et al. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles. J. Phys. Chem. C,2008, 112(15):5825-5834.
    [343]L. Wang, Y. Yamauchi. Strategic synthesis of trimetallic Au@Pd@Pt core-shell nanoparticles from poly (cinylpyrrolidone)-based aqueous solution toward highly active electrocatalysts. Chem. Mater.,2011,23(9):2457-2465.
    [344]Y. Gao, P. Jiang, D. F. Liu, et al. Evidence for the monolayer assembly of poly (vinylpyrrolidone) on the surfaces of silver nanowires. J. Phys. Chem. B,2004, 108(34):12877-12881.
    [345]Y. Xiong, I. Washio, J. Chen, et al. Poly (vinyl pyrrolidone):a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir,2006,22(20):8563-8570.
    [346]S. J. Hoseini, M. Rashidi, M. Bahrami. Platinum nanosturcures at the liquid-liquid interface:catalytic reduction of p-nitrophenol to p-aminophenol. J. Mater. Chem., 2011,21(40):16170-16176.
    [347]N. V. Long, M. Ohtaki, M. Nogami, et al. Effects of heat treatment and poly(vinylpyrrolidone) (PVP) polymer on electrocatalytic activity of polyhedral Pt nanoparticles toward their methanol oxidation. Colloid Polym. Sci.,2011,289(12): 1373-1386.
    [348]S. Ghosh, C. R. Raj. Facile in situ synthesis of multiwall carbon nanotube supported flowerlike Pt nanostructures:an efficient electrocatalyst for fuel cell application. J. Phys. Chem. C,2010,114(24):10843-10849.
    [349]Y. Hu, P. Wu, Y. Yin, et al. Effects of structure, composition, and carbon support properties on the electrocatalytic activity of Pt-Ni-graphene nanocatalysts for the methanol oxidation. Appl. Catal. B:Environmental,2012,111-112:208-217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700