用户名: 密码: 验证码:
氧化铝连续碳酸化分解过程多重大时滞系统控制若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化铝连续碳酸化分解过程(简称碳分过程)由六个分解槽串联组成,通过控制各槽的二氧化碳气体通入量,实现末槽的分解率要求,以生产出满足一定质量指标的氢氧化铝。由于六个分解槽地域跨度大,每个槽控制点到末槽的距离不同,物料传质所需的时间不同,导致每个槽控制量输出到末槽分解率改变需要几十分钟甚至数个小时,时间长且各不相同,呈现出多重大时滞特性。多重大时滞的存在,造成末槽分解率信息无法实时准确的反馈给控制器,难以实现生产指标的闭环控制。并且多个控制点的设置形成多个回路,不同控制回路间存在关联耦合。当矿源改变或外界干扰引起生产过程稳态工作点改变时,由工人调节到新的稳态工作点需较长时间。长时间的工矿不稳造成生产指标波动大,产品质量不合格。因此,研究碳分过程的解耦控制、时滞参数辨识、时间对应参数自调整控制方法等问题,对企业增产增效,提高企业经济效益具有重要意义。
     论文在深入分析碳分过程工艺和反应机理的基础上,建立了碳分过程多重时滞动态模型,提出了一种多变量时滞过程的解耦Smith控制方法,基于改进互相关函数和基于时效关联分析矩阵的多重时滞参数辨识方法。在此基础上,针对多重大时滞系统难以闭环稳定控制的问题,提出了时间对应参数自调整控制方法和基于工艺指标分解的分散控制策略,并将其应用到碳分过程实际生产中,取得了较好的效果。论文主要研究工作及创新性成果如下:
     (1)建立了碳分过程的多重时滞动态反应模型。在分析碳分过程运行机理和生产工艺的基础上,根据工业过程中连续搅拌反应釜的建模方法,基于物料平衡原理建立碳分过程的动态模型,该模型体现了碳分过程关联、多重时滞、非线性的特点。
     (2)针对实际工业生产中常见的多输入多输出时滞系统,用传递函数矩阵表示输入、输出之间的耦合关系,提出一种基于伴随矩阵的解耦器设计方法。通过对解耦后对象的幅频和相频特性分析,获得对象的简化一阶数学模型。在此基础上,结合Smith预估控制结构闭环特征方程的特点,提出基于Butterworth滤波器极点配置原理的PI控制器设计方法。考虑被控过程参数和执行机构等不确定性,分析了系统保证鲁棒稳定性的充要条件。最后通过仿真验证了所提方法的有效性并分析了该方法应用于碳分过程的可行性。
     (3)为了解决碳分过程的多重时滞辨识难题,分别提出了基于改进互相关函数和基于时效关联分析矩阵的多重时滞参数辨识方法。对于工业过程中受控制信号影响的多个变量,选择一个参考变量,考虑其它各变量和参考变量之间的相关性,基于有固定采样周期的工业现场数据,通过计算两个变量的数据组在不同相对时延对应的互相关矩阵的奇异值,其最大奇异值对应的相对时延即为所求时滞。另一方面,从多重时滞序列的角度出发,考虑由多个变量之间的不同时滞组成的时滞序列对应的数据矩阵,定义时效关联分析矩阵,并用其H。范数定量地描述数据矩阵内部的关联关系,其最大H∞范数对应的时滞序列即为所求多重时滞。比较分析两种多重时滞辨识方法,将其分别应用于碳分过程多重时滞辨识,在此基础上计算了碳分过程模型参数并校验了时滞辨识结果。
     (4)针对大时滞系统闭环稳定控制困难的问题,提出了一种时间对应参数自调整控制策略。首先讨论了几类传统方法对滞后时间长达几十分钟系统的控制效果,分析其难以闭环稳定控制的根本原因是时滞很大导致控制量和输出反馈量在时间上严重不对应。通过引入大时滞系统的脉冲响应等效系统,协调控制量和反馈量间正确的时间对应关系,再用脉冲响应等效系统的输出反馈量和设定值之间的偏差修正脉冲响应系数和PID控制器参数以实现在线调整。最后分析了该控制方法的稳定性并仿真对比证明了所提方法的优越性。
     (5)针对碳分过程多重大时滞系统的控制问题,提出了基于工艺指标分解的分散控制策略。将末槽分解率工艺指标分解为各槽的分解率梯度,以二氧化碳气体通入量为优化目标,采用遗传算法求解动态约束优化问题以获得分解率梯度优化设定值,从而将碳分过程多重大时滞系统控制分解为每个槽的大时滞对象控制。运用时间对应参数自调整控制方法对碳分过程各槽大时滞系统进行分散控制,仿真和工业应用结果表明所提方法能较好地解决碳分过程的控制问题。
Alumina continuous carbonation decomposition process (ACCDP) is composed of six series decomposers, in which the aeration amount of the dioxide carbon is controlled to ensure the process index of last resolution ratio and the quality of aluminum hydroxide. Because of large geographical span of the six decomposers, the distances between each decomposer control point and last resolution ratio check point are different, which causes the time between control signale output and last resolution ratio change reach from tens of minutes to several hours. So the delay times are long and multiple, it is difficult to realize production targets closed-loop control because the feedback information of last resolution ratio is not real-time. Multiple control points form muti-loops, in which correlative coupling is existed. When the steady state operating point is changed causing by ore source change or external interference, a long time is needed to adjust the process to a new state operating point. The production index fluctuation caused by unstable condition leads to poor product quality. Therefore, some researches on ACCDP decoupling control, delay time identification, closed-loop stable control strategy have an important and practical significance for improving product quality and industrial economic profits.
     On the basis of our research findings into the carbonation decomposition process and reaction mechanism, the multiple time-delays dynamic reaction model is established. The decoupling Smith control method is presented for multi-input-multi-output system with time delays. Multiple time-delays identification methods based on improved cross-correlation function and time-correlation analysis matrix are proposed. Time correspondence and parameters self-adjustment (TCPSA) control strategy for multiple long time-delay system is derived. ACCDP decentralized control strategy based on process index decomposition is researched. All these methods are applied to the ACCDP, and some good performances are achieved, the main content and some innovative achievements are depicted as follows:
     (1) The multiple time-delays dynamic reaction model of ACCDP is established. Based on the analysis for operational mechanism and production technology of ACCDP, dynamic differential equations derived from material balance principle are constructed according to the modeling method of continuous stirred-tank reactor. The model reflects ACCDP characteristics of association, multiple time-delays, and nonlinear.
     (2) The decoupling Smith control method is presented for multi-input-multi-output system with time delays often encountered in practical engineering. A new design method of decoupler based on the adjoint matrix of the multivariable system model with time delays is proposed. By analyzing the amplitude-frequency and phase-frequency characteristics, the models decoupled are reduced to first-order plus time delay models. According to the closed-loop characteristic equation of Smith predictor structure, PI controllers are obtained using the principle of pole assignment for Butterworth filter. At the same time, sufficient and necessary conditions for robust stability are analyzed with adaptive and multiplicative uncertainties which encountered frequently in practice. Simulation example results show the superiority of the proposed method. At last, the feasibility of applying the proposed method to ACCDP is analyzed by simulation in the condition of model mismatch.
     (3) The improved cross-correlation function method and time-correlation analysis matrix method are proposed for the problem of multiple time-delay parameters identification of ACCDP. For all the process variables effected by control signals, the reference variable is selected to be considered the correlation with the other variables respectively. For the considered variable, a set of data in a continuous time segment is selected as identification object, and the cross-correlation matrix of the data sets are calculated. By comparing the singular values of cross-correlation matrix, the delay corresponding to the maximun singular value is the required delay. On the other hand, from the perspective of multiple time-delay sequence, time-correlation analysis matrix of the data matrix related to different time-delay sequence is defined. The delay sequence corresponding to the maximun H infinity norm of time-correlation analysis matrix is the required value. The proposed methods are applied to identify the multiple time-delays of ACCDP using the field data. And the comparative analysis of the two methods is given to show the superiority of time-correlation analysis matrix method. At last, the ACCDP model parameters are calculated, and the accuracy of identified time-delays is verified.
     (4) Aiming at the problem of the stable closed-loop control for long time-delay system, TCPSA control strategy is proposed. The control effect of traditional time delay control methods for the system which delay time up to tens of minutes is discussed. The basic reason for control difficulties result from long time-delay is analyzed. On this basis, the pulse response equivalent system is introduced to coordinate the time corresponding relationship of control variable and output feedback variable. The parameters of pulse response equivalent system and PID controller are adjusted based on the deviation of pulse response equivalent system output and set value. Simulation results comparing the control effect of proposed method and other time delay methods show the superiority of TCPSA control strategy.
     (5) In view of the control problem of ACCDP multiple long time-delay system, decentralized control strategy based on process index decomposition is proposed. Decompose the last resolution ratio to optimal resolution ratio gradient of front five decomposers by using genetic algorithm to solve dynamic constrain optimization of aeration amount of the dioxide carbon. So the multiple long time-delay system control problem of ACCDP is decomposed to decentralized control problem of each decomposer. Using the TCPSA method for long time-delay system of each decomposer, simulation and applictioan results show the effectiveness of TCPSA method for ACCDP.
引文
[1]汤世泰.高浓度一段分解生产砂状氧化铝研究与应用[J].铝镁通讯,1999,17(2):1-10.
    [2]张之信.高浓度铝酸钠溶液两段连续种分制取砂状氧化铝的研究[J].轻金属,1988,25(10):10-13.
    [3]李永芳,刘祥民,刘桂华等.氧化铝生产中的计算机仿真与自动控制[J].轻金属,2002,39(1):14-16.
    [4]Nbpx B.氧化铝生产自控系统的发展远景[J].国外轻金属,1982(3):10-12.
    [5]文华里.我国周边国家铝工业现状[J].轻金属,1997,34(12):3-6.
    [6]杨重愚.氧化铝生产工艺学[M].北京:冶金工业出版社,1982.
    [7]张樵青.生产砂状氧化铝时加晶种碳分的机理[J].轻金属,1984,21(4):9-13.
    [8]Davidov I V, Liapunov A N, Shmorgunenko N S, et al. Optimization of temperature condition of the aluminate liquor decomposition process. Light Metals [J],1976(1):173-178.
    [9]White E T, Steemson M, Milne D. A graphical construction for predicting the yield from continuous precipitator trains. Light Metals [J],1984(8):223-225.
    [10]Chaubal M V. Physical chemistry considerations aluminum hydroxide precipitation. Light Metal [J],1990(14):85-89.
    [11]Veesler S, Boistelle R. About supersation and growth rates of hydrargillite Al(OH)3 in alumina caustic solutions [J]. Crystal Growth,1993(30):411-415.
    [12]Zivan Zivkovic, Ivan Mihajlovic, Isidora Djuric, et al. Statistical Modeling of the Industrial Sodium Aluminate Solutions Decomposition Process [J]. Metallurgical and Materials Transactions B,2010,41(5):1116-1122.
    [13]吴玉胜,于海燕,杨毅宏,等.添加剂对铝酸钠溶液晶种分解过程附聚及二次成核的影响[J].化工学报,2005,56(12):2434-2439.
    [15]仇振琢.SiO2在铝酸钠溶液分解过程中的行为[J].轻金属,1987,24(4):14-18.
    [16]李训浩.铝酸钠溶液碳酸化分解过程初探[J].轻金属,1987,24(6):13-16.
    [17]Vivtor R. More complete desilication of aluminate solution is the key-factor to radical improvement of alumina redining [C]. Wayne H. Light Metals,1996, 109-114.
    [18]Feng Q, Chen Y, Shao Y, et al. New technique of comprehensive utilization of spent A12O3-based catalyst [J]. J. CENT. SOUTH UNIV. TECHNOL,2006,25 (2):151-155.
    [19]戚立宽.烧结法生产一级品A12O3[J].轻金属,1997,34(3):18-21.
    [20]CMHPHOB M H,程鹏远.论铝酸钠溶液碳酸化分解时氢氧化铝的析出机理[J].轻金属,1987,(12):13-14,31.
    [21]平文正.改善烧结法生产氧化铝的物理化学性质的重要性[J].铝镁通讯,1986,4(2):4-7.
    [22]王志,扬毅宏,毕诗文,等.铝酸钠溶液碳酸化分解过程的影响因素[J],有色金属,2002,54(2):43-45.
    [23]王志,毕诗文,扬毅宏,等.铝酸钠溶液碳酸化分解过程中氢氧化铝粒度和强度的变化[J].现代化工,2004,24(3):28-31.
    [24]彭志宏,李小斌,苟中入,等.铝酸钠溶液碳酸化分解产品中的Na2C03[J].中国有色金属学报,2002,12(6):1285-1289.
    [25]李洁,陈启元,尹周澜.过饱和铝酸钠溶液中氢氧化铝自发成核动力学规律的研究[J].高等学校化工学报,2003(9):1652-1656.
    [26]王新武.连续碳分CO2吸收率分析及探讨[J].轻金属,2004,14(8):17-19.
    [27]李小斌,刘祥民,苟中入,等.铝酸钠溶液碳酸化分解的热力学[J].中国有色金属学报,2003,13(4):1005-1010.
    [28]李小斌,陈滨,周秋生,等.铝酸钠溶液碳酸化分解过程动力学[J].中国有色金属学报,2004,14(5):848-853.
    [29]方敬东,吴素芳,王樟茂.铝酸钠溶液分解反应研究[J].高校化学工程学报,2002,16(2):33-36.
    [30]陈肖虎,赵丽,徐磊,等.铝酸钠溶液分解数学模型[J].贵州工业大学学报(自然科学版),2002,31(5):22-24.
    [31]邓燕妮.氧化铝碳分过程多重时滞非线性分散鲁棒控制方法与应用研究[D],长沙:中南大学,2009.
    [32]阳春华,甘旭,桂卫华.连续碳酸化分解过程分解梯度控制策略研究[J].控制工程,2010,17(1):1-4,109.
    [33]袁湘环,谢永芳.连续碳酸化分解过程分解率的预测模型[J].计算机测量与控制,2009,17(4):695-696,672.
    [34]J.E.Normey-Rico, E.F.Camacho. Control of Dead-time Process[M]. London: Springer - Verlag,2007.
    [35]Zhou Q G, Cluett W R. Recursive identification of time-varying systems via incremental estimation [J]. Automatica,1994,11:122-126.
    [36]俞星星,张大力,阎平凡.时滞和滤波联合辨识的递推最小二乘算法[J].信号处理,1997,13(4):349-356.
    [37]Gawthrop P J, Nihtila M T. Identification of time delays using a polynomial identification method [J]. Systems & Control Letters,1985,5(4):267-271.
    [38]RAD A B, LO WL, TSANG KM. Simultaneous online identification of rational dynamics and time delay:A correlation-rased approach [J]. Transactions On Control Systems Technology,2003,11:957-959.
    [39]李鑫,党选举,薛万伟.一种新的时变大纯滞后对象在线辨识方法[J].计算机仿真,2005,22(5):95-97.
    [40]孙建平,闫永跃,于树新.时滞时变对象参数辨识方法[J].电光与控制,2008,15(1):94-96.
    [41]宋云霞,朱雪峰.大时滞过程控制方法及应用[J].化工自动化及仪表,2001,28(4):9-15.
    [42]雷建和,孟祥霓.神经网络在系统辨识于控制中的应用[J].青岛建筑工程学院学报,1998,19(4):91-94.
    [43]陆燕,杜继宏,李春文.延迟时间未知的时延系统神经网络补偿控制[J].清华大学学报,1998,38(9):67-69.
    [44]王军平,王安,樊文侠.延迟时间未知的时延系统灰色预测控制[J].测控技术,2002,21(3):39-41.
    [45]王冬青.时滞系统的辨识及NARMA模型的修正[J].中国工程科学,2006,8(2):39-43.
    [46]赵仕俊,李逊,左光远.灰色预估神经网络在时滞系统控制中的应用[J].微电子学与计算机,2008,25(2):25-27.
    [47]YahuiWang,Yadan Zhao,Xuejun Hao, et al. Time delay identification for linear Multi-input Multi-output system [C].7th World Congress on Intelligent Control and Automation,2008,4762-4766.
    [48]T.Tabaru, S.Shin. Dead Time Detection Based on Wavelet Analysis of Cross Correlation Data [J]. Transactions of the Society of Instrument and Control Engineers,1999,35(3):33-38.
    [49]Kazushi Nakano, Tetsuya Tabaru, Seiichi Shin, et al. Wavelet Analysis Approach to Idlentificationof Systems with Dead Time-Application to Boiler Proces [C]. Proceedings of the 36th Conference on Decision & Control an Diego, Califomia USA, December 1997:3375-3380.
    [50]Robert J. Barsanti, Murali Tummala. Wavelet-Based Time Delay Estimates for Transient Signals [J]. Fuel and Energy Abstracts,2007,48(2):74-136.
    [51]Ni B Y, Xiao D Y, Shah S L. Time delay estimation for MIMO dynamical systems with time-frequency domain analysis [J]. Journal of Process Control,2010,20(1): 83-94.
    [52]C.Guetbi, D.Kouame, A.Ouahabi, et al. Methods based on wavelets for time delay estimation of ultrasound signals [C]. IEEE International Conference on Electronics. Circuits and Systems, Lisboa, Portugal,1998,3:113-116.
    [53]Kennedy J, Eberhart R. Particle Swarm Optimization [C]. IEEE International Conference on Neural Networks, Perth, Australia,1995:1942-1948.
    [54]陈龙祥,蔡国平.基于粒子群算法的时滞动力学系统时滞辨识[J].应用力学学报,2010,27(3):433-436.
    [55]Kazemi BAL, Mohan CK. Multi-phase generalization of the particle swarm optimization algorithm [C]. Proc of the IEEE Int'l Conf on Evolutionary Computation, Honolulu,2002,1666-1670.
    [56]张文峰,胡海岩.含反馈时滞的非线性动力系统参数辨识[J].振动工程学报,2001,14(3):314-318.
    [57]潘峰,冯冬梅,韩如成.基于遗传算法的时变时滞参数辨识[J].仪器仪表学报,2004,25(4增刊):910-912.
    [58]Doung.V, Stubberud. System Identification by Genetic Algorithm [C]. IEEE Aerospace conference proceedings, California, USA.2002,5:2331-2337.
    [59]Ghaffari A., Mehrabiyan. A. R, Mohammad-Zaheri. Identification and control of power plant de-superheater using soft computing techniques [J]. Journal of Engineering Applications of Artificial Intelligence,2007,20:273-287.
    [60]Wei-Der Chang. Nonlinear system identification and control using a real-coded genetic algorithm [J]. Applied Mathematical Modelling,2007,31(3):541-550.
    [61]Zijiang Yang, Hachino T, Tsuji T. On-line identification of continuous time-delay systems combining least-squares techniques with a genetic algorithm [C]. International Journal of Control,1997,66(1):23-42.
    [62]Salkanovic.N, Lacevic.B, Perunicic.B, et al. Parametric Identification of Plants with Multiple Delays and Internal Feedbacks using Genetic Algorithm [C].3rd International Symposium on Communications, Control, and Signal Processing, Julians, Malta,2008,425-429.
    [63]Gopinath. On the Identification of Linear Time-invariant Systems from Input-Output Data [J]. Bell Dydtem Techn,1969,48:1101-1113.
    [64]邓自立,郭一新.多变量CARMA模型的结构辨识[J].自动化学报,1986,12(1):18-24.
    [65]Y.Sawaguchi, E.Furutani, M.Araki. Stability analysis of state predictive control systems for multivariable systems including multiple output delays [C].48th Japan Joint Automatic Control Conference, Japan,2005,103-106.
    [66]Y.Orlov, L.Belkoura, J.P.Richard, et al. Adaptive identification of linear time-delay systems [J]. International Journal of Robust and Nonlinear Control,2003, 13(9):857-872.
    [67]Drakunov S V, Perruquetti W, Richard J P, et al. Delay identification in time-delay systems using variable structure observers [J]. Annual Reviews in Control, 2006,30:143-158.
    [68]王学雷,邵惠鹤.一种基于Pade近似的频域辨识与频域模型降阶新方法[J].控制理论与应用,2003,20(1):54-58.
    [69]王伟,张晶涛,柴天佑.PID参数先进整定方法综述.自动化学报[J].2000,26(3):347-355.
    [70]Astrom K J, Hagglund T. PID Controllers:Theory, Design and Tuning [J]. Instrument Society of America,1995.
    [71]Rivera D E, Morari M, Skogestad S. Internal model control 4. PID controller design [M]. Ind. Eng. Chem. Process Des. Dev.1986,25:1667-1694.
    [72]Skogestad S. Simple analytic rules for model reduction and PID controller tuning [J]. Journal of Process Control,2003,13:291-309.
    [73]王建国,顾廷权,曹广益.时滞系统的最优PID控制与仿真[J].系统仿真学报,2007,19(3):2995-2998.
    [74]欧林林,顾诞英,张卫东.基于幅值裕度和相位裕度的PID参数最优整定方法[J].控制理论与应用,2007,24(5):837-840.
    [75]Chanchal Dey, Rajani K, Mudi. An improved auto-tuning scheme for PID controllers [J]. IS A Transactions,2009,48(4):396-409.
    [76]Wei-Der Chang, Rey-Chue Hwang, Jer-Guang Hsieh. A multivariable on-line adaptive PID controller using auto-tuning neurons [J]. Engineering Application of Artificial Intelligence,2003,16(1):57-63.
    [77]Iwai Z, Mizumoto I, Liu L, et al. Adaptive stable PID controller with parallel feedforward compensator [C]. In Proceedings of 9th international conference on control, automation, robotics and vision,2006,1253-1258.
    [78]Yamamoto T, Shah S L. Design and experimental evaluation of multivariable self-tuning PID controller [C]. IEEE Proceedings of Control Theory and Applications,2004,151(5):645-652.
    [79]Yu D, Chang T. A stable self-learning PID control for multivariable time varying systems [J]. Control Engineering Practice,2007,15(12):1577-1587.
    [80]Ikuro Mizumoto, Daisuke Ikeda, Tadashi Hirahata et al. Design of discrete time adaptive PID control systems with parallel feedforward compensator [J]. Control Engineering Practice,2010,18(2):168-176.
    [81]Palmor Z J. Stability properties of Smith dead-time compensator controllers [J]. International Journal of Control,1980,32(6):937-949.
    [82]Palmor Z J, Halevi Y. On the design and properties of multivariable dead time compensators [J]. Automatica,1983,19(3):255-264.
    [83]Palmor Z J. Time Delay Compensation:Smith Predictor and its Modifications [M]. CRC Press and IEEE Press,1996.
    [84]Normey-Rico J E, Camacho E F. Smith predictor and modifications:A comparative study [C]. In Proceeding of ECC99, Germany,1999.
    [85]谭文.时滞过程改进型Smith预估器的整定[J].控制理论与应用,2003,20(2):297-301.
    [86]张卫东,何星.自衡和非自衡时滞对象Smith预估器解析设计[J].自动化学报,2000,26(4):485-491.
    [87]Santacesaria C, Scattolini R. Easy tuning of smith predictor in presence of delay uncertainty [J]. Automatica,1993,29(6):1595-1597.
    [88]Garcia-Sanz M, Guillen J C, Ibarrola J J. Robust controller design for uncertain systems with variable time delay [J]. Control Engineering Practice,2001,9(9): 961-972.
    [89]李迅,宋东球,喻寿益.基于模型参考自适应Smith预估器的反馈式AGC厚度控制系统[J].控制理论与应用,2009,26(9):999-1003.
    [90]Dahlin E.B. Designing and tuning digital controllers. Instruments and Control systems [J],1968,41(6):77-79.
    [91]朱学峰.大林算法研究[J].化工自动化仪表,1989,14(5):23-27.
    [92]Zafiriou E, Morari M. Digital controllers for SISO systems:a review and a new algorithm [J]. International Journal of Control,1985,42(4):855-876.
    [93]张汉祥.消除振铃现象的一种改进方法[J].自动化学报,1992,18(4):508-512.
    [94]张卫东,许晓鸣,孙优贤.单变量Dahlin控制器设计的新方法[J].自动化学报,1999,25(3):380-364.
    [95]董宇.Dahlin控制系统的鲁棒稳定性分析[J].计算技术与自动化,2010,29(1):35-37.
    [96]张卫东,孙优贤,许晓鸣.多变量时滞系统Dahlin控制器的设计[J].自动化学报,1998,24(1):64-72.
    [97]董宇.基于Dahlin控制器的积分时滞过程控制[J].工业仪表与自动化装置,2005,2:29-30.
    [98]曲永印,邵世煌,段慧达等.基于神经网络的自适应Dahlin数字控制器[J].控制与决策,2006,21(3):327-330.
    [99]Carlos E. De Souza, Graham C. Goodwin, David Q. Mayne, et al. An adaptive control algorithm for linear systems having unknown time delay [J]. Automatica, 1988,24(3):327-341.
    [100]廖俊,林建亚.基于神经网络的自适应模糊控制器[J].信息与控制,1995,24(5):312-315.
    [101]S. S. Ge, F. Hong, T. H. Lee. Robust adaptive control of nonlinear systems with unknown time delays [J]. Automatica,2005,41(7):1181-1190.
    [102]Changchun Hua, Fenglei Li, Xinping Guan. Observer-based adaptive control for uncertain time-delay systems [J]. Information Sciences,2006,176(2):201-214.
    [103]Bing Chen, Xiaoping Liu, Kefu Liu, et al. Direct adaptive fuzzy control for nonlinear systems with time-varying delays [J]. Information Sciences,2010, 180(5):776-792.
    [104]王芹,张天平.一类MIMO非线性时滞系统的鲁棒自适应控制[J].控制理论与应用,2009,26(10):1167-1171.
    [105]李圣涛,刘晓华.奇异时滞系统对时滞参数的自适应控制[J].计算技术与自动化,2009,28(3):1-4.
    [106]钱厚斌,张天平.控制增益符号未知的MIMO时滞系统自适应控制[J].控制与决策,2008,23(10):1153-1158.
    [107]何率天,达飞鹏.一类带调节因子的状态反馈控制设计[J].自动化学报,2008,34(5):613-616.
    [108]Maciejowski J M. Predictive Control with Constraints [M]. Prentice Hall,2002.
    [109]Norman F, Jerome W, H. Ray. Model predictive control of linear multivariable systems having time delays and right-half-plane zeros [J]. Chemical Engineering Science,1992,47(4):763-785.
    [110]Lu Mei, Shao Huihe. Robust predictive control of polytopic uncertain systems with both state and input delays [J]. Journal of Systems Engineering and Electronics,2007,18(3):616-621.
    [111]FeiPeng Da. Sliding mode predictive control for long delay time systems [J]. Physics Letters A,2006,348(3-6):228-232.
    [112]罗晓鸣,孙优贤,周春晖.利用时滞补偿器降低广义预测控制动态关联作用[J].控制理论与应用,1992,9(6):578-584.
    [113]徐湘元,毛宗源.时滞系统的神经网络预测控制[J].控制理论与应用,2001,18(6):932-934.
    [114]王轶,席裕庚.具有串联的结构系统的预测控制及并行设计[J].控制与决策,1995,10(1):65-69.
    [115]唐功友.时滞系统的降维状态预测观测器及预测控制器设计[J].控制理论与应用,2004,21(2):295-298.
    [116]史旭华.时滞系统智能补偿预测控制方案的实现[J].系统仿真学报,2003,15(11):1642-1645.
    [117]陈秋霞,俞立.不确定离散时滞系统的输出反馈鲁棒预测控制[J].控制理论与应用,2007,24(3):401-406.
    [118]杨园华,刘晓华.基于LMI的关联时滞系统的分散预测控制[J].鲁东大学学报(自然科学版),2007,23(2):111-113.
    [119]YU Wen-shyong. Model reference fuzzy adaptive control for uncertain dynamical systems with time delays [J]. IEEE International Conference on systems, Man and Cybernetics,2004,6(10):5246-5251.
    [120]褚丽丽,李春茂,郭汉桥,等.时滞系统的模糊自适应PID控制研究[J].自动化技术与应用,2008,27(1):34-36.
    [121]Huailin Shu, Youguo Pi. PID neural networks for time-delay systems [J]. Computers & Chemical Engineering,2000,24(2-7):859-862.
    [122]黄越洋,石元博,张茜.基于神经网络Smith预估器的预测控制[J].计算机仿真,2009,26(2):187-189.
    [123]闭治跃,王庆丰,唐建中.挖泥船泥浆管道输送流速的自适应预估控制[J].控制理论与应用,2009,26(3):309-312.
    [124]张敏,胡寿松.基于动态结构自适应神经网络的不确定时滞系统跟踪控制[J].控制理论与应用,2008,25(5):970-972.
    [125]周建新,杨卫东,李擎.改进蚁群神经网络及其在滞后系统中的应用[J].控制工程,2010,17(1):59-63.
    [126]逢海萍,刘成菊,刘爱忠.不确定时滞系统的滑模控制及其应用研究[J].系统仿真学报,2006,18(z2):876-879.
    [127]李文林.多输入离散时滞系统的保性能变结构控制[J].系统仿真学报,2008,20(18):4932-4936.
    [128]桂卫华,谢永芳,吴敏等.基于LMI的不确定性关联时滞大系统的分散鲁棒控制[J].自动化学报,2002,28(1):155-159.
    [129]吴敏,张先明,余锦华.线性时滞系统的时滞相关鲁棒控制[J].控制理论与应用,2005,22(4):619-622.
    [130]刘碧玉,桂卫华,陈宁.离散关联系统的时滞相关输出反馈分散鲁棒控制[J].自动化学报,2007,33(6):660-663.
    [131]吴裕高,朱学峰,史步海.基于灰色预测的大时滞过程的控制研究[J].控制工程,2007,14(3):278-280.
    [132]吴晓威,张井岗.基于灰色预测的多变量自适应PID控制器[J].工业仪表与自动化装置,2008,2:10-13.
    [133]霍浩,毕效辉,江绍明.基于BP网络的智能灰色预测在时滞系统中的应用[J].自动化博览,2008,3:76-79.
    [134]Alevisalis G, Swborg D E. An extension of the Smith predictor of multivariable linear systems containing time delays [J]. Int J Control,1973,3(17):514-520.
    [135]Ogunnaike B A, Ray W H. Multivariable controller design for linear systems having multiple time delays [J]. AIChE J,1983,25:1043-1057.
    [136]Qing-Guo Wang, Biao Zou, Yu Zhang. Decoupling Smith predictive design for multivariable systems with multiple time delays [J]. Trans IChemE,2000,78(4): 565-572.
    [137]Qing-Guo Wang, Yu Zhang, Min-Sen Chiu. Decoupling internal model control of multivariable systems with multiple time delays [J]. Chemical Engineering Science,2002,57(1):115-124.
    [138]Luyben W L. Simple method for tuning SISO controllers in multivariable systems [J], Ind. Eng. Chem. Proc. Des. Dev.1986,25(3):654-660.
    [139]Huang H P, Jeng J C, Chiang C H, et al. A direct method for multi-loop PI/PID controller design [J]. J Process Control,2003,13(8):769-786.
    [140]Hovd M, Skogestad S Sequential design of decentralized controllers [J]. Automatica,1994,30(10):1601-1607.
    [141]Shiu S J, Hwang S H. Sequential design method for multivariable decoupling and multiloop PID controllers [J]. Ind. Eng. Chem. Res.1998,37(1):107-119.
    [142]Bao J, Forbes J F, McLellan P J. Robust multiloop PID controller design:a successive semidefinite programming approach [J]. Ind. Eng. Chem. Res.1999, 38(9):3407-3419.
    [143]Hovd M, Skogestad S. Improved independent design of robust decentralized controllers [J]. J Process Control,1993,3(1):43-51.
    [144]张军,计秉玉,谢荣华,等.一类非线性时滞系统的模糊预测控制[J].系统仿真学报,2004,16(9):2083-2085.
    [145]J Richalet, A Rault, J L Testud, et al. Model predictive heuristic control: Application to industrial processes [J]. Automatica,2003,39:1667-1694.
    [146]Wang Zenghui, Chen Zengqiang, Sun Qinglin, et al. Multivariable decoupling predictive control based on QFT theory and application in CSTR Chemical Process [J]. Chinese J Chem Eng,2006,14(6):765-769.
    [147]胡品慧,阎峰.多重滞后系统的预测控制[J].控制与决策,2004,19(11):1294-1297.
    [148]夏伯锴,许锋,杜殿林.状态多重时滞系统的预测控制算法研究[J].控制与决策,2003,18(6):761-763.
    [149]JIETAE L, THOMAS F E. Multiloop PI/PID control system improvement via adjusting the dominant pole or the peal amplitude ratio [J]. Chemical Engineering Science,2006,61(5):1658-1666.
    [150]ASTROM K J, JOHANSSON K H, WANG Q G. Design of decoupled PI controllers for two-by-two systems [J]. IEE Proceeding Control Theory & Applications,2002,149(1):74-81.
    [151]SAEED T, IAN G, PETER J F. Tuning of decentralized PI (PID) controllers for TITO processes [J]. Control Engineering Practice.2006,14(9):1069-1080.
    [152]WANG Q G, ZHANG Y, Chiu M S. Decoupling internal model control for multivariable systems with multiple time delays [J]. Chemical Engineering Science.2002,57(1):115-124.
    [153]刘涛,张卫东,顾诞英.多变量时滞过程的解耦控制设计[J].自动化学报,2005,31(6):881-889.
    [154]LIU T, ZHANG W D, GU D Y. Analytical multiloop PI/PID controller design for two-by-two process with time delays [J]. Industrial and Engineering Chemistry Research.2005,44(6):1832-1841.
    [155]WANG Q G, ZOU B, ZHANG Y. Decoupling smith predictor design for multivariable systems with multiple time delays [J]. Chemical Engineering Research and Design Transactions of the Institute of Chemical Engineers, Part A, 2000,78(4):565-572.
    [156]李钟慎,王永初.Butterworth最优控制的逆问题[J].控制理论与应用,2006,23(3):455-457.
    [157]MORARI M, ZAFIRIOU E. Roubust Process Control [M]. Englewood Cliffs. New York:Prentice Hall,1989.
    [158]Ricardo S, Sanchez P, Yolanda B, et al. MIMO Smith predictor:Global and structured robust performance analysis [J]. Journal of Process Control,2009, 19(1):163-177.
    [159]杨益群,项国波.单变量时滞系统优化控制[J].武汉理工大学学报,2007,29(5):125-129.
    [160]陈宇杰.时滞系统的Smith预估控制研究[D],杭州:浙江大学,2006.
    [161]Rames C Panda, Cheng-Ching Yu, Hsiao-Ping Huang. PID tuning rules for SOPDT systems:Review and some new results [J]. ISA Transactions on The Instrumentation, Systems, and Automation Society,2004,43:283-295.
    [162]汤伟,施颂椒,王猛效.大时滞过程自整定PID及其在定量控制中的应用[J].上海交通大学学报,2002,36(4):59-562.
    [163]潘海鹏,吕勇松.时滞系统的模糊神经网络补偿控制[J].浙江大学学报(工学版),2010,44(7):1343-1347.
    [164]钟袆勃,李克鹏.基于MATLAB的内模控制器的简单设计实现[J].可编程控制器与工厂自动化,2004,8:109-112.
    [165]A.R. Neshasteriz, A. Khaki Sedigh, H. Sadjadian. Generalized predictive control and tuning of industrial process with second order plus dead time models [J]. Journal of Process Control,2010,20(1):63-72.
    [166]Min Han, Bing Han, Jianhui Xi, et al. Universal learning network and its application for nonlinear system with long time delay [J]. Computers & Chemical Engineering,2006,31(1):13-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700