用户名: 密码: 验证码:
长余辉发光材料CdSiO_3:Mn~(2+),RE~(3+)(RE=Sm,Dy,Eu,Tb,Nd,Er,Ho)的制备及其发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长余辉发光材料是一类吸收太阳光或人工光源所产生的光而发出可见光,在激发停止后仍可继续发光的物质,是一种节能储能材料。目前,这种材料的应用非常广泛,如交通指示牌,紧急照明设备,汽车仪表显示盘和发光涂料等领域。
     长余辉材料的基质主要有三类:金属硫化物系列、铝酸盐系列和硅酸盐系列。与其它两种长余辉基质相比,硅酸盐系列由于具有发光颜色多样,耐酸,耐碱,抗氧化等特点,近年来逐渐成为研究热点。
     偏硅酸镉具有一维无限长链的晶体结构,每个硅氧四面体共用两个顶点,在高温制备过程中很容易在晶体结构中造成随机分布的缺陷。而这些随机分布的缺陷在低维化合物中更容易成为发光材料进行能量传递的媒介体。因此,CdSiO_3是一种非常不错的长余辉基质材料。
     本文采用高温固相法和溶胶凝胶法制备了一系列以Mn~(2+)和稀土离子RE~(3+)(RE=Sm, Dy, Eu, Tb, Nd, Er, Ho)掺杂的偏硅酸镉长余辉发光材料。论文工作分为以下几部分:
     1.采用传统的高温固相法合成长余辉发光材料CdSiO_3,CdSiO_3:Mn~(2+),CdSiO_3:Mn~(2+), RE~(3+)(RE=Sm, Dy, Eu, Tb, Nd, Er, Ho)。系统考察了不同的Mn~(2+)和RE~(3+)掺杂浓度对样品发光性能的影响,通过荧光光谱,余辉衰减曲线,余辉谱,热释谱等检测手段,确定了样品最佳的Mn~(2+)和RE~(3+)掺杂浓度。不同的稀土离子,具有最佳余辉性能的双掺杂样品的Mn~(2+)和RE~(3+)的配比值不同,主要是因为RE~(3+)半径不同,取代Cd~(2+)后,在基质材料中引入的陷阱能级的密度和深度不同。另外也系统研究了CdSiO_3基质,CdSiO_3:Mn~(2+),CdSiO_3:Mn~(2+), RE~(3+)的发光性质,发现对于Mn~(2+)单掺和稀土离子双掺杂的样品,无论从样品的发射谱还是余辉谱中,位于587nm处的特征峰始终占主导地位,对应于Mn~(2+)的4T1g(G)-6A1g(S)跃迁,因此可以说明Mn~(2+)为发光中心。另外,由于掺入RE~(3+)后,样品的余辉时间大大延长,但是余辉谱中没有或者几乎看不到RE~(3+)特征峰,可以确定稀土离子在制备的长余辉材料中起辅助激活剂的作用。
     2.用溶胶-凝胶方法制备偏硅酸镉基质。通过XRD,SEM等检测手段研究热处理温度和热处理时间对制备样品的结构和形貌影响。随着热处理温度的升高,样品的杂质峰逐渐消失,样品的衍射峰强度呈先增大后减小趋势。样品在热处理过程中出现熔解再结晶现象。当热处理温度升高到1100°C时,样品出现玻璃化现象,很难从容器中取出进行后续测试。1050℃为样品的最高热处理温度。但是在1050℃过度延长保温时间,样品也会出现玻璃化现象。同时也对比了固相法和溶胶凝胶两种方法对制备样品的结构的影响。与固相法的制备条件(1050°C,5h)相比,溶胶凝胶法可以在相对较为温和的条件(900°C,2h)下制得结晶度较好的纯净的CdSiO_3基质,是一种较有发展前途的制备方式。
     3.在固相法获得Mn~(2+)和RE~(3+)最佳配比的基础上,采用溶胶凝胶法通过不同的热处理条件制备了一系列Mn~(2+)和RE~(3+)双掺杂的CdSiO_3:Mn~(2+), RE~(3+)(RE=Sm,Dy,Eu,Tb,Nd,Er,Ho)长余辉材料。研究热处理温度和热处理时间对样品余辉性能的影响。同时也考察了不同制备方法(固相法和溶胶凝胶法)对样品余辉性能的影响。随着热处理温度的升高,Cd~(2+)的挥发变多,造成的缺陷越多,陷阱密度越大,余辉时间越长。另一方面,随着热处理温度的升高,CdSiO_3晶格发育越完善,越有利于Mn~(2+)和RE~(3+)进入晶格形成更多的发光中心和更多的陷阱能级,发光强度变大,余辉强度增强,余辉时间增长。当热处理温度为1050℃时,在一段时间内,随着热处理时间的增长,CdSiO_3晶格发育越完善,越有利于Mn~(2+)和RE~(3+)进入晶格,形成更多的发光中心和更多的陷阱能级,余辉性能提高。但是,随着热处理时间的进一步延长,样品中的玻璃态成分增多,余辉性能变差。
     通过上述大量实验和系统分析,对材料的余辉机理有了更加深入的了解,分析影响余辉性能的因素,优化制备长余辉发光材料的工艺,从而使余辉性能得以提高。
Long-lasting phosphors is a kind of energy-storing materials. The materials canabsorb sunlight or artificial light, store the energy, and then release the energy asvisible light, which lead to a long lasting afterglow in the darkness. They have beenwidely used in many fields, such as safety indicators, lighting in emergency situations,instruments in automobiles and luminous paint, and so on. Most long-lastingphosphors are based on sulfide, aluminates, or silicate hosts. Compared with the otherhosts, silicate phosphors are more attractive because of their multi-colorphosphorescence and resistance to acid, alkali and oxygen.
     Recently, considerable attention has been devoted to CdSiO_3due to its crystalstructure, which is expected to be a one-dimensional chain of edge-sharing SiO4tetrahedrons. As a result of this structure, it is very easy to create traps with someextent density during the high-temperature synthesis process. Furthermore, the trapsdistributed in host lattice randomly can serve as the role of energy carrier moreeffective in this low-dimensional compound, which provide possibility of producinghigh efficient luminescence material. So, CdSiO_3is a promising silicate host.
     In this study, new long-lasting CdSiO_3:Mn~(2+), RE~(3+)(RE=Sm, Dy, Eu, Tb, Nd, Er,Ho) phosphors were synthesized by solid-state reaction method and sol-gel method,respectively. The main results of the research work are as follows:
     1. The long-lasting phosphor CdSiO_3:Mn~(2+), RE~(3+)(RE=Sm, Dy, Eu, Tb, Nd, Er,Ho) was synthesized at1050°C via solid-state reaction method. Effects of the contentof Mn~(2+)and RE~(3+)on the luminescent properties of phosphor CdSiO_3:Mn~(2+), RE~(3+)wereinvestigated by means of photoluminescence (PL) spectra, the afterglow intensitydecay curves, afterglow spectra and the thermoluminescence (TL) spectra. Throughthe mentioned measurements, the optimal ratio of Mn~(2+)/RE~(3+)could be found. To thedifferent rare earth ions RE~(3+), the optimal ratio was different. Due to the difference inco-doped rare earth ionic radii, it could vary greatly in trap density and trap depth which were caused by the different defects deriving from RE~(3+)ions occupying theCd~(2+)sites in the CdSiO_3:Mn~(2+)host. In addition, the luminescence characteristicsabout the host CdSiO_3, Mn~(2+)doped-CdSiO_3:Mn~(2+), Mn~(2+), RE~(3+)codped-CdSiO_3:Mn~(2+),RE~(3+)were also be studied systematically. Although the emission of some rear earthions could be found to some RE~(3+)codoped CdSiO_3:Mn~(2+), RE~(3+)in the emissionspectra, the emission of Mn~(2+)(587nm) was detected mainly in the afterglow spectra,corresponding to the4T1g(G)→6A1g(S) transition of Mn~(2+)ions occupying the Cd~(2+)sites in the lattice, which indicated that the Mn~(2+)ions were the activators.Furthermore, the afterglow intensity of CdSiO_3:Mn~(2+), RE~(3+)(RE=Sm, Dy, Eu, Tb, Nd,Er, Ho) was higher than CdSiO_3:Mn~(2+), indicating that the RE~(3+)ions in the samplesplayed the role of assistant activators.
     2. CdSiO_3host was prepared by sol-gel method. The prepared samples werecharacterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM)respectively. The effects of the reacting temperature and the calcining time on phaseformation and morphologies were investigated. With the temperature increasing, theimpurity peak was lowing, the intensity of the main diffraction peaks showed thetendency of higher first and lower later, which indicated that the crystal degree of thepowder was affected greatly by the calcining temperature. In addition, during theprocess of temperature increasing, the phenomenon of the sample first melted andthen refroze occurred. When the synthesis temperature was up to1100℃, the productturned to glass phase and could not be removed from the wall of ceramic crucible, so1050℃was the highest temperature for the samples to be prepared. If the sampleswere kept for too long time, the glass phase would also be found in the samples. As acomparison, the sample was also prepared by solid-state reaction method and the rawmaterials were fired at1050℃for5h to get the product. While the single phaseCdSiO_3powders with good homogeneity and good crystallization could be obtainedby sol-gel method at900°C for2h, which implied the sol-gel method is a promisingmethod to prepare the samples at relatively lower temperature.
     3. The Mn~(2+)and RE~(3+)(RE=Sm, Dy, Eu, Tb, Nd, Er, Ho) codoped CdSiO_3:Mn~(2+),RE~(3+)phosphors were prepared by sol-gel method. Both Mn~(2+)and RE~(3+)dopant concentrations relative to the host compound were chosen based on the optimal ratioof Mn~(2+)/RE~(3+)derived from solid-state reaction method. The effects of the calciningtemperature and the soaking time on the afterglow properties were studiedsystematically. Furthermore, solid-state reaction method was also be used to make acomparison in the afterglow properties of the prepared phosphors. With thetemperature increasing, the volatilization of Cd~(2+)increased. The defects would bemore and the trap density would be higher. As a result, the afterglow time for thesamples became longer. On the other hand, with the temperature increasing, thecrystal of the CdSiO_3would grow better. It was easier for Mn~(2+)and RE~(3+)to occupythe Cd~(2+)to form more luminescence centers and more traps, which was better toimprove the luminescence properties. And when the samples were prepared at1050°C,within some time, with the time prolongation, the crystal of the CdSiO_3would growbetter. The afterglow performance for the samples would be better. But if the sampleswere kept too long, the glass phase in the sample would be more and the afterglowperformance would be worse.
     Through the experiments and analysis, the purpose of this work was to betterunderstand the afterglow mechanism, optimize the processing technology and finallyimprove the afterglow performance of the samples.
引文
[1] R.Sakai, T.Katsumata, S.Komuro, T.Morikawa. Effect of composition on the phosphorescencefrom BaAl3+2O4:Eu2+,Dycrystals. Journal of Luminescence,1999,85:149~154
    [2] T.Z. Zhang, Q. Su. Rare-earth materials for use in the dark. Journal of the Society forInformation Display,2000,8(1):27~30
    [3] C.E.Tyner, H.G.Drickamer. Studies of luminescence efficiency of Eu2+activated phosphors asa function of temperature and high pressure. J. Chem. Phys.,1977,67(9):4116~4123
    [4]宋春燕,王晓华,刘应亮,石春山,黄浪欢,张静娴,雷炳富.新型橙红色长余辉发光材料Gd2O2S:Sm3+的合成.化学通报,2004,(5):373~376
    [5]宋春燕,刘应亮,张静娴,黄浪欢,袁定胜,容建华,石春山,雷炳富.微波法合成橙红色长余辉磷光粉Gd2O2S: Sm3+.暨南大学学报(自然科学版),2003,24(5):93~96
    [6]刘应亮,宋春燕,张静娴,袁定胜,黄浪欢,容建华,张俊文. Er3+,Ho3+和Tm3+在硫氧化钆中的余辉发光.无机化学学报,2005,21(6):905~909
    [7]艾鹏飞,刘应亮,李毅东,陈小博,谭宁会.纳米晶Y2O2S:Eu3+,Mg2+,Ti4+长余辉发光材料的制备.功能材料,2010,41(6):986~989
    [8] W.Y. Li, Y.L. Liu, P.F. Ai. Synthesis and luminescence properties of red long-lastingphosphor Y3+2O2S:Eu, Mg2+, Ti4+nanoparticles. Materials Chemistry and Physics,2010,119:52~56
    [9]雷炳富,刘应亮,唐功本,叶泽人,石春山.掺铁硫氧化钇的特殊余辉性质.高等学校化学学报,2003,24(5):782~784
    [10]雷炳富,刘应亮,唐功本,叶泽人,石春山.一种新的橙红色长余辉荧光材料Y32O2S:Sm+.高等学校化学学报,2003,24(2):208~210
    [11] Z.P. Yang, X.M. Li, C. Liu, X. Li, Y. Yang, X.L. Xu, P.L. Li. Co-Precipitation Synthesis andSpectral Characteristics of Long Afterglow Phosphor Y2O2S:Sm3+, Mg2+, Ti4+. Journal of RareEarths,2007,25(1):23~26
    [12] P.Y. Zhang,Z.L. Hong,Q.P. Huang. Influence of flux additives on the luminescent Propertiesof Y2O2S:Ti Phosphor. Journal of the Chinese Ceramic Society,2005,33:140~144
    [13]张迈生,王立格,杨燕生.微波快速合成硫化锶铜铋磷光体及Bi3+对Cu+的敏化发光.功能材料与器件学报,2000,6(2):95~100
    [14]郭崇峰,初本莉,徐剑,苏锵.氧化物膜包覆碱土硫化物荧光粉的研究.发光学报,2004,25(4):449~454
    [15] L.P. Lu, X.Y. Zhang, Z.H. Bai, X.Y. Mi. Synthesis and characterization of IR up-conversionmaterial CaS:Eu, Sm by low-temperature combustion synthesis method. Materials ResearchBulletin,2009,44:207~210
    [16]马科友,王红伟,张学英.铝基原料对磷光粉SrAl22O4:Eu+, Dy3+发光性能的影响.材料与冶金学报,2009,8(4):254~257
    [17]马云麒,衣光舜,孙宝全,陈德朴. SrAl2O4:Eu2+, Dy3+的上转换发光特性.光谱学与光谱分析,2003,23(3):435~437
    [18]张希艳,柏朝晖,关欣,王晓春,王伟忠,孙宏志,曹志峰,杜锦秀,郭瑜. SrAl2O2+4:Eu,Dy3+长余辉光致发光材料的固相反应法合成与特性.稀有金属材料与工程,2003,32(5):379~382
    [19]周传仓,卢忠远,戴亚堂,王兵.共沉淀法制备超细长余辉发光材料铝酸锶铕镝的研究.稀有金属,2005,29(1):20~24
    [20] H.J. Song, D.H. Chen, W.J. Tang, Y.H. Peng. Synthesis of SrAl2O4:Eu2+, Dy3+, Gd3+phosphorby combustion method and its phosphorescence properties. Displays,2008,29(1):41~44
    [21] Z.F. Qiu, Y.Y. Zhou, M.K. Lü, A.Y. Zhang, Q. Ma. Combustion synthesis ofthree-dimensional reticular-structured luminescence SrAl2O4:Eu,Dy nanocrystals. Solid StateSciences,2008,10(5):629~633
    [22]王光辉,梁小平,顾玉芬.硼酸掺量对SrAl2O4长余辉发光材料的发光性能影响.光谱学与光谱分析,2008,28(5):1020~1022
    [23]宋会花,刘文芳,高元哲. SrAl2O4: Eu2+, RE3+长余辉发光材料的微波合成及其发光特性.人工晶体学报,2008,27(3):327~331
    [24] H.Y. Du, G.S. Li, J.Y. Sun. Preparation of Non-Grinding Long Afterglow SrAl2O4:Eu2+, Dy3+Material by Microwave Combustion Method. Journal of Rare Earths,2007,25(1):19~22
    [25]侯志青,李志强,刘东州,徐丽云,赵起.长余辉荧光粉SrAl+2O4:Eu2, Dy3+的包膜研究.河北大学学报(自然科学版),2008,28(3):248~251
    [26]朱维波,宁桂玲,林源,袁树来. Sol-Gel纳米包覆技术合成SrAl2O4:Eu2+, Dy3+磷光体研究.大连理工大学学报,2004,44(1):48~50
    [27]树博,谢晓峰,武惠忠,史岩,庄彩虹,陈晓磊.白色长余辉材料Sr2MgSi2O7:Dy3+和MgSiO3:Dy3+的制备.清华大学学报(自然科学版),2010,50(6):896~899
    [28]陈永虎,程学瑞,戚泽明,刘淼,施朝淑.白色长余辉材料CaxMgSi2O5+x:Dy3+系列的发光性能.发光学报,2008,29(1):119~123
    [29]雷炳富,刘应亮,叶泽人,石春山. Zn2SiO4:Mn, Cd磷光体的长余辉特性.发光学报,2005,26(1):67~71
    [30]姜洪义,姬同坤. Ca/Sr对(Sr2-xCax)MgSi2O7: Eu2+, Dy3+发光性能的影响.中国稀土学报,2009,27(3):379~383
    [31]翟永清,焦芳芳,张张,张爽,牛强.新型蓝色长余辉发光材料SrMgSi2O2+6:Eu,Dy3+的制备及性质.硅酸盐学报,2008,36(12):1758~1762
    [32]永强,刘海涛,吴磊,田一光,尹德武,张景峰.溶胶-凝胶法制备Ca2MgSi22O7:Eu+, Dy3+发光粉.稀有金属材料与工程,2008,37(增2):337~339
    [33]孙鹏飞,石连升,刘晓晶.溶胶-凝胶法合成蓝色长余辉材料Sr2MgSi2O7:Eu, Dy及其发光特性.化学工程师,2008,3:06~08
    [34]姜洪义,万红峰,陈伟.溶胶凝胶法合成Sr22MgSi2O7:Eu+,Dy3+长余辉发光材料.武汉理工大学学报,2005,27(7):17~19
    [35]徐咏钗,宋华杰,尹盛玉,赵长亮,陈栋华.燃烧法合成Eu2+、Dy3+、Nd3+共掺杂的硅酸盐长余辉发光材料Sr2MgSi2O7和Sr2ZnSi2O7.中南民族大学学报(自然科学版),2007,26(1):20~22
    [36]梁青,刘文芳,宋会花. Sr2MgSi2O7/Eu2+0.01, RE3+0.02长余辉发光材料的微波合成.河北师范大学学报(自然科学版),2009,33(2):206~209
    [37]李建宇.稀土发光材料及其应用.北京:化学工业出版社,2003:92~151
    [38]刘应亮,丁红.长余辉发光材料研究进展.无机化学学报,2001,17:181~187
    [39] A.A.Sabbagh Alvani, F. Moztarzadeh, A. A. Sarabi. Eeffets of dopant concentrations onPhotorescence properties of Eu/Dy-doped Sr3MgSi2O8. Journal of Luminescence,2005,114:131~136
    [40]罗昔贤,段锦霞,林广旭.新型硅酸盐长余辉发光材料.发光学报,2003,24:165~170
    [41]姜岭,常程康,毛大立.长余辉发光材料的研究进展.无机材料学报,2004,19:268~274
    [42] Y.L. Liu, D.X. Feng, P.H. Yang. Preparation of phosphors MAl2O4:Eu (M=Ca,Sr,Ba) bymicrowave heating technique and their phosphorescence. Rare Metals,2000,19:297~300
    [43]张秀风,涂华民.无机发光材料的微波合成.河南师范人学学报(白然科学版),2002,26(6):609~613
    [44]张俊英,张中太.发光材料的微波合成方法.材料导报,2001,15(5):21~22
    [45]徐文国,田一光,刘森.稀土磷酸盐发光材料的微波合成.高等学校化学学报,1996,17(10):1513~1515
    [46]雷炳富,刘应亮,华瑞年,石春山.偏硅酸镉的自激活发光.分子科学学报,2004,20(1):57~59
    [47] C. A. Barboza, J. M. Henriques, E. L. Albuquerque, V. N. Freire, J. A. P. da Costa, E. W. S.Caetano. Triclinic CdSiO3structural, electronic, and optical properties from first principlescalculations. J. Phys. D: Appl. Phys.,2009,42:155406~155413
    [48] J.F. Shi, J. Yang, G.H. Li, C.Wang, N. Li. Self-Catalytic Synthesis and PhotoluminescenceProperty of Cluster-Like CdSiO3Nanowire Arrays. Journal of Nanoscience and Nanotechnology,2008,8:5825~5830
    [49] L. P. Santana, E.S. de Almeida, J. L. Soares, F. M. Vichi. Low Temperature Synthesis ofCdSiO3Nanostructures. J. Braz. Chem. Soc.,2011,22(10):2013~2017
    [50] N. Maliavski, O. V. Dushkin, G. Scarinci. Low-temperature synthesis of some orthosilicates.Ceramics-Silikáty,2001,45(2):48~54
    [51] L. S. Dext Glasser, F. P. Glasser. The Preparation and Crystal Data of the Cadmium SilicatesCdSiO3, Cd2SiO4, and Cd3SiO5. Inorganic Chemistry,1964,3(9):1228~1230
    [52] B.F. Lei, Y.L. Liu, Z.R. Ye, C.S. Shi. Luminescence properties of CdSiO3:Mn2+phosphor.Journal of Luminescence,2004,109:215~219
    [53]雷炳富,刘应亮,叶泽人,石春山.稀土离子在CdSiO3基质中的多光色长余辉发光.科学通报,2003,48(19):2038~2041
    [54] J.Y. Kuang, Y.L. Liu. Observation of energy transfer from host to rare earth ions inPr3+-doped CdSiO3long-lasting phosphor. Chemical Physics Letters,2006,424:58~62
    [55] B.F. Lei, Y.L. Liu, J. Liu, Z.R. Ye, C.S. Shi. Luminescence Properties of Rare Earth Ions inCadmium Metasilicate. Journal of rare earths,2004,22(4):443~446
    [56] B.F. Lei, Y.L. Liu, Z.R. Ye, C.S. Shi. Multi-color long-lasting phosphorescence of rare earthions in CdSiO3matrix. Chinese Science Bulletin,2003,48(22):2434~2437
    [57] B.F. Lei, Y.L. Liu, J.Liu, Z.R. Ye, C.S. Shi. Pink light emitting long-lasting phosphorescencein Sm3+-doped CdSiO3. Journal of Solid State Chemistry,2004,177:1333~1337
    [58] B.F. Lei, Y. L. LIiu, Z.R. Ye, C. S. Shi. A Novel White Light Emitting Long-lastingPhosphor. Chinese Chemical Letters,2004,15(3):335~338
    [59] Y.L. Liu, B.F. Lei, C.S. Shi. Luminescent Properties of a White Afterglow PhosphorCdSiO33:Dy+. Chem. Mater.,2005,17:2108~2113
    [60]陈海英,王明文,刘世香,陈学娟.基质掺杂对CdSiO3:Sm3+体系红色长余辉发光材料的影响.安徽化工,2008,34(5):19~21
    [61] J.Y. Kuang, Y.L.Liu. Trapping Effects in CdSiO3:In3+Long Afterglow Phosphor.Chin.Phys.Lett.,2006,23(1):204~206
    [62]李承范,阚玉和,姚艳红,常树岚.在CdSiO3中Mn2+、Ce3+的发光.延边大学学报(自然科学版),1999,25(1):20~22
    [63] J.Y. Kuang, Y.L. Liu, B.F.Lei. Effect of RE3+as a co-dopant in long-lasting phosphorescenceCdSiO23:Mn+(RE=Y, La, Gd, Lu). Journal of Luminescence,2006,118:33~38
    [64] J. Garcia-Guinea, V. Correcher, A. Quejido, A. LaIglesia, N. Can. The role of rare earthelements and Mn2+point defects on the luminescence of bavenite. Talanta,2005,65:54~61
    [65] X.M. Liu, J. Lin. Synthesis and luminescent properties of LaInO3:RE3+(RE=Sm, Pr and Tb)nanocrystalline phosphors for field emission displays. Solid State Sciences,2009,11:2030~2036
    [66] Y.C. Li, Y.H. Chang, Y.F. Lin, Y.S. Chang, Y.J. Lin. Synthesis and luminescent properties ofLn3+(Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7phosphors. Journal ofAlloys and Compounds,2007,439:367~375
    [67] Q.H. Zhang, J. Wang, M. Zhang, W.J. Ding, Q. Su. Luminescence Properties of Sm3+dopedBi2ZnB2O7. Journal of rare earths,2006,24:392~395
    [68] F. He, P.P. Yang, N. Niu, W.X. Wang, S.L. Gai, D. Wang, J. Lin. Hydrothermal synthesisand luminescent properties of YVO4:Ln3+(Ln=Eu, Dy, and Sm) microspheres. Journal of Colloidand Interface Science,2010,343:71~78
    [69] H. Wang, M. Yu, C.K. Lin, J. Lin. Core-shell structured SiO2@YVO4:Dy3+/Sm3+phosphorparticles:Sol-gel preparation and characterization. Journal of Colloid and Interface Science,2006,300:176~182
    [70] B. Yan, X.Q. Su. LuVO4:RE3+(RE=Sm, Eu, Dy, Er) phosphors by in-situ chemicalprecipitation construction of hybrid precursors. Optical Materials,2007,29:547~551
    [71] B.F. Lei, Y.L. Liu, G.B. Tang, Z.R. Ye, C.S. Shi. Spectra and long-lasting properties ofSm3+-doped yttrium oxysulfide phosphor. Materials Chemistry and Physics,2004,87:227~232
    [72] H. Yang, Y.S. Kim. Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codopedYAG:Ce nanocrystalline phosphors. Journal of Luminescence,2008,128:1570~1576
    [73] I. Hemmil, V. Laitala. Progress in Lanthanides as Luminescent Probes. Journal ofFluorescence,2005,15(4):529~542
    [74] Y.H. Zhou, J. Lin, M. Yu, S.B. Wang, H.J. Zhang. Synthesis-dependent luminescenceproperties of Y3Al5O12:Re3+(Re=Ce, Sm, Tb) phosphors. Materials Letters,2002,56:628~636
    [75] X.M. Liu, R. Pang, Q. Li, J. Lin. Host-sensitized luminescence of Dy3+,Pr3+,Tb3+inpolycrystalline CaIn2O4for field emission displays. Journal of Solid State Chemistry,2007,180:1421~1430
    [76] Y.H. Chen, X.R. Cheng, M. Liu, Z.M. Qi, C.S. Shi. Comparison study of the luminescentproperties of the white-light long afterglow phosphors: CaxMgSi2O5+x:Dy3+(x=1,2,3). Journal ofLuminescence,2009,129:531~535
    [77] L. Lin, M. Yin, C.S. Shi, W.P. Zhang. Luminescence properties of a new red long-lastingphosphor:Mg2SiO4:Dy3+,Mn2+. Journal of Alloys and Compounds,2008,455:327~330
    [78] L. Zhou, B. Yan. Sol-gel synthesis and photoluminescence of CaSiO3:Eu3+nanophosphorsusing novel silicate sources. J. Phys. Chem. Solids,2008,69:2877~2882
    [79] J.H. Yang, L.L Yang, W.Y. Liu, Y.J. Zhang, H.G. Fan, Y.X. Wang, H.L. Liu, J.H. Lang, D.D.Wang. Luminescence behavior of Eu3+in CaSiO3:Eu3+(Bi3+) and Sr2SiO4:Eu3+(Bi3+). J. AlloysCompd.,2008,454:506~509
    [80] V. Natarajan, K.V.R. Murthy, M.L. Jayanth Kumar. Photoluminescence investigations ofZn2SiO4co-doped with Eu3+and Tb3+ions. Solid State Commun.,2005,134:261~264
    [81] H.X. Zhang, S. Buddhudu, C.H. Kam, Y. Zhou, Y.L. Lam, K.S. Wong, B.S. Ooi, S.L. Ng,W.X. Que. Luminescence of Eu3+and Tb3+doped Zn2SiO4nanometer powder phosphors. Mater.Chem. Phys.,2001,68:31~35
    [82] A.G. Joly, W. Chen, J. Zhang, S.P. Wang. Electronic energy relaxation and luminescencedecay dynamics of Eu3+in Zn2SiO4:Eu3+phosphors. Journal of Luminescence,2007,126:491~496
    [83] L.Z. Yang, M. Fang, L.F. Du, Z.J. Zhang, L.W. Ren, X.B. Yu. Synthesis andphotoluminescence properties of CaSiO3:Eu3+spheres prepared by the reverse micelles softtemplate. Mater. Res. Bull.,2008,43:2538~2543
    [84] H.M. Yang, J.X. Shi, M.L. Gong, KW. Cheah. Synthesis and photoluminescence of Eu3+-orTb3+-doped Mg2SiO4nanoparticles prepared by a combined novel approach. Journal ofLuminescence,2006,118:257~264
    [85] Y. Cong, B. Li, B.F. Lei, X.J. Wang, C.X. Liu, J.Y. Liu, W.L. Li. Enhancement ofluminescence intensity and increase of emission lifetime in Eu3+-doped3CdO-Al2O3-3SiO2amorphous system. Journal of Luminescence,2008,128:105~109
    [86] Z.J. Zhang, J.L. Yuan, S. Chen, H.H. Chen, X.X. Yang, J.T. Zhao, G.B. Zhang, C.S. Shi.Investigation on the luminescence of RE3+(RE=Ce, Tb, Eu and Tm) in KMGd(PO4)2(M=Ca,Sr) phosphates. Optical Materials,2008,30:1848~1853
    [87] L.Y. Zhou, W.C.H. Choy, J.X. Shi, M.L. Gong, H.B. Liang. A novel green emitting phosphorCa1.5Y1.5Al3.5Si1.5O12: Tb3+. Mater. Chem. Phys.,2006,100:372~374
    [88] A. Bao, C.Y. Tao, H. Yang. Luminescent properties of nanoparticles LaSrAl3O3+7: RE(RE=Eu, Tb) via the citrate sol-gel method. J Mater Sci: Mater Electron,2008,19:476~481
    [89] Z.Y. Ren, C.Y. Tao, H. Yang. Synthesis and luminescent characterization ofYAl3(BO3)4:Tb3+phosphors. J Mater Sci: Mater Electron,2008,19:319~321
    [90] T.W. Kuo, T.M. Chen. Synthesis and luminescence properties of Eu3+, Ce3+andTb3+-activated Sr3La2(BO3)4under UV excitation. Journal of Luminescence,2010,130:483~487
    [91] H.J. Meyer, L. Kienle, A.M. K onkowski. Tb3+luminescence enhancement of YAG:Tb3+nanocrystals embedded in silica xerogel. Journal of Non-Crystalline Solids,2009,355:1333~1337
    [92] X.M. Liu, J. Lin. Synthesis and luminescent properties of LaInO3: RE3+(RE=Sm, Pr and Tb)nanocrystalline phosphors for field emission displays. Solid State Sciences,2009,11:2030~2036
    [93] Z.Y. Zhang, Y.H. Zhang, X.L. Li, J.H. Xu, Y. Huang. VUV-UV luminescence ofmagnetoplumbite:(Sr0.96xBa0.04)Al12yMgyO19:Tbx. Journal of Luminescence,2008,128:476~480
    [94] H.C. Yang, C.Y. Li, Y. Tao, J.H. Xu, G.B. Zhang, Q. Su. The luminescence of CaYBO4:RE3+(RE Eu, Gd, Tb, Ce) in VUV-visible region. Journal of Luminescence,2007,126:196~202
    [95] B. Yan, H.H. Huang. Matrix-inducing synthesis and luminescence of Zn2SiO4:xTb3+submicrometer phosphors derived from the sol-gel assembling of different multicomponent hybridprecursors. J. Alloys Compd.,2007,429:338~342
    [96] C.J. Duan, H.H. Chen, X.X. Yang, J.T. Zhao. Luminescence properties of Eu3+, Tb3+or Tm3+activated Ca4GdO(BO3)3under X-ray and UV excitation. Opt. Mater.,2006,28:956~961
    [97] Z.H. Li, J.H. Zeng, G.C. Zhang, Y.D. Li. A new promising phosphor, Na3La2(BO3)3:Ln(Ln=Eu, Tb). J. Solid State Chem.,2005,178:3624~3630
    [98] C.C. Yu, M. Yu, C.X. Li, X.M. Liu, J. Yang, P.P. Yang, J. Lin. Facile sonochemicalsynthesis and photoluminescent properties of lanthanide orthophosphate nanoparticles. J. SolidState Chem.,2009,182:339~347
    [99] Y.P. Naik, M. Mohapatra, N.D. Dahale, T.K. Seshagiri, V. Natarajan, S.V. Godbole.Synthesis and luminescence investigation of RE3+(Eu3+, Tb3+and Ce3+)-doped lithium silicate(Li2SiO3). Journal of Luminescence,2009,129:1225~1229
    [100] S.S. Sanaye, B.S. Dhabekar, R. Kumar, S.N. Menon, S.S. Shinde, T.K. Gundu Rao, B.C.Bhatt. Energy transfer process in CaSO4:Tb, Ce phosphor. Journal of Luminescence,2003,105:1~8
    [101] G.D. Xia, S.M. Zhou, J.J. Zhang, S.M. Wang, J. Xu. Solution combustion synthesis,structure and luminescence of Y3Al5O12: Tb3+phosphors. J. Alloys Compd.,2006,421:294~297
    [102] B.S. Barros, P.S. Melo, R.H.G. A. Kiminami, A.C.F.M. Costa, G.F. de Sa′, S. Alves Jr.Photophysical properties of Eu3+and Tb3+-doped ZnAl2O4phosphors obtained by combustionreaction. J Mater Sci,2006,41:4744~4748
    [103] Z.Y. Hou, L.L. Wang, H.Z. Lian, R.T. Chai, C.M. Zhang, Z.Y. Cheng, J. Lin. Preparationand luminescence properties of Ce3+and/or Tb3+doped LaPO4nanofibers and microbelts byelectrospinning. J. Solid State Chem.,2009,182:698~708
    [104] X.M. Liu, R. Pang, Q. Li, J. Lin. Host-sensitized luminescence of Dy3+, Pr3+, Tb3+inpolycrystalline CaIn2O4for field emission displays. J. Solid State Chem.,2007,180:1421~1430
    [105] N.F. Zhu, Y.X. Li, X.F. Yu. Pechinin synthesis and luminescence properties ofY3Ga5O12(YGG):Tb thin film. Mater. Lett.,2008,62:2355~2358
    [106] S.Z. Lin, Y.L. Yuan, H.T. Wang, R.K. Jia, X.F. Yang, S.J. Liu. Controllable synthesis andluminescence property of CePO4:Tb nanorods. J Mater Sci: Mater Electron,2009,20:899~904
    [107] Y.Y. Zhang, J.L. Liu, Y.X. Zhu, Y. Shang, M. Yu, X. Huang. Hydrothermal synthesis andluminescence properties of core-shell-structured PS@SrCO3:Tb3+spherical particles. J Mater Sci,2009,44:3364~3369
    [108] Z.W. Liu, Y.L. Liu. Synthesis and luminescent properties of a new green afterglowphosphor CaSnO3:Tb. Mater. Chem. Phys.,2005,93:129~132
    [109] Z.H. Xu, Y.X. Li, Z.F. Liu, D. Wang. UV and X-ray excited luminescence of Tb3+-dopedZnGa2O4phosphors. J. Alloys Compd.,2005,391:202~205
    [110] L.H. Huang, X.J. Wang, H. Lin, X.R. Liu. Luminescence properties of Ce3+and Tb3+dopedrare earth borate glasses. J. Alloys Compd.,2001,316:256~259
    [111] D. Wang, Y.H. Wang. Luminescence properties of LaPO4:Tb3+, Me3+(Me=Gd, Bi, Ce)under VUV excitation. Mater. Res. Bull.,2007,42:2163~2169
    [112] X.Y. Bai, G.C. Zhang, P.Z. Fu. Photoluminescence properties of a novel phosphor,Na33La9O3(BO3)8:RE+(RE=Eu,Tb). J. Solid State Chem.,2007,180:1792~1795
    [113] D.L. Wei, Y.L. Hung, L. Shi, X.B. Qiao, H.J. Seo. Up-conversion luminescence from Nd3+ions doped in NaBi(WO4)2single crystal. Journal of Rare Earths,2009,27(6):905~910
    [114] J. Wang, M. Zhang, Q. Zhang, W. Ding, Q. Su. The photoluminescence andthermoluminescence properties of novel green long-lasting phosphorescence materialsCa8Mg(SiO4)4Cl2:Eu2+,Nd3+. Appl Phys B,2007,87:249~254
    [115] K. Annapurna, R.N. Dwivedi, P. Kundu, S. Buddhudu, NIR emission and upconversionluminescence spectra of Nd3+:ZnO-SiO2-B2O3glass. Mater Lett,2003,57:2095~2098
    [116] X. Wang, Y. Bu, S. Xiao, X. Yang, J.W. Ding. Upconversion in Ho3+-doped YbF3particleprepared by coprecipitation method. Appl. Phys. B,2008,93:801~807
    [117] Z.X. Cheng, S.J. Zhang, F. Song, H.C. Guo, J.R. Han, H.C. Chen. Optical spectroscopy ofYb/Er codoped NaY(WO4)2crysta. J Phys Chem Solids,2002,63:2011~2017
    [118] A.H. Li, L. Sun, Z.R. Zheng, W.Z. Wu, W.L. Liu, Y.Q. Yang, T.Q. Lü, W.H. Su.Spectroscopic analysis of Er3+transition in Mg/Er-codoped LiNbO3crystal. Journal ofLuminescence,2008,128:239-~244
    [119] X.T. Zhang, Y.C. Liu, J.G. Ma, Y.M. Lu, D.Z. Shen, W. Xu, G.Z. Zhong, X.W. Fan.Room-temperature blue luminescence from ZnO:Er thin films. Thin Solid Films,2002,413:257~261
    [120] X.J. Zhou, L. Zhao, Q.C. Feng, X.T. Wei, C.K. Duan. Unusual intrinsic luminescence of thehost and energy transfer process in YVO4:Er3+phosphors. Materials Research Bulletin,2009,44:1935~1938
    [121] K. Kumar, S.B. Rai, D.K. Rai, Upconversion studies in Er3+doped TeO2-M2O (M=Li, Naand K) binary glasses. Solid State Communications,2006,139:363~369
    [122] D Jia, W.M Yen, Enhanced V3+Kcenter afterglow in MgAl2O4by doping with Ce3+. Journalof Luminescence,2003,101(1-2):115~121
    [123] T. Matsrzawa, Y. Aoki, N. Takeuchi, etal. A new long phosphorescent phosphor with highbrightness SrAl2O4:Eu,Dy. J.Electrochem. soc.,1996,143(8):2670~2673
    [124]张天之,苏锵,王淑彬. MAl2O4:Eu2+,Dy3+长余辉发光性质的研究.发光学报,1999,20:170~175
    [125]张瑞俭,宁桂玲.发光体MAl2O4:Eu2+,Dy3+的长余辉形成机理.光电子技术,2003,23:30~34
    [126]施朝淑,戚泽明.长余辉(寿命)发光研究的最新进展.无机材料学报,2004,19:961~968
    [127] T. Aitasalo, J. H ls, H. Jungner, M, Lastusaari, J. Niittykoski. Mechanisms of persistentluminescence in Eu2+, RE3+doped alkaline earth aluminates. Journal of Luminescence,2001,94-95:59~63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700