用户名: 密码: 验证码:
黄土地区框架预应力锚杆支护边坡地震动反应及稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上黄土分布最广、厚度最大的国家,而这些黄土主要分布于广大西北地区的黄土高原,黄土高原纵横沟壑,存在着大量的边坡,自西部大开发以来,有大量的公路、铁路和城市基础设施要在黄土地区建设,自然而然会遇到大量的边坡工程。历史记载西北黄土地区每次的强震,都会引起严重的地震滑坡。因此,适时地开展地震作用下框架预应力锚杆支护边坡的动力反应和稳定性分析是十分必要的。本文依托国家自然科学基金项目:《永久性柔性边坡支挡结构的地震作用和动力稳定性分析》(50978129),并结合工程实例,对黄土地区框架预应力锚杆支护边坡的地震动反应和稳定性分析进行了研究,主要针对这一问题进行了理论分析和数值模拟,完成的工作和取得的成果如下:
     (1)建立了框架-预应力锚杆-土体系统在地震作用下的动力计算模型,这种模型中将预应力锚杆自由段看成一线性弹簧,框架(横梁、立柱和挡土板)和锚杆锚固段通过自由段弹簧连接起来,而锚杆锚固段与土体之间的相互作用处理成一个线性弹簧和一个与速度有关的阻尼器。模型中还同时考虑了框架结构(横梁、立柱和挡土板)对体系响应的影响,即将框架(横梁、立柱和挡土板)亦处理成一个线性弹簧和一个与速度有关的阻尼器。在地震作用下,框架-预应力锚杆自由段-锚杆锚固段-土体之间相互作用,相互协调,在地震过程中,锚杆预应力随着时间发生变化,而预应力的变化通过自由段弹簧传递至锚杆锚固段,锚杆锚固段继而传递至土层。模型中框架结构(横梁、立柱和挡土板)质量和主动区土体质量以集中质量的形式连接在锚杆自由段,并通过自由段弹簧与锚固段阻尼器进行连接。由此分别建立了框架-锚杆系统和锚杆-土体系统地震作用下的阻尼微分方程,并分别求解了在简谐地震作用下锚杆预应力的地震响应和锚杆锚固段轴力的动力响应。最后,结合一工程实例进行了分析,并用ADINA对此计算模型进行了验证。
     (2)基于土动力学和结构动力学的原理,建立了框架预应力锚杆支护边坡的地震动分析模型,并得到了支护边坡在水平地震作用下的动力响应。依据水平条分法,将边坡高度影响因素考虑进去,建立了地震作用下边坡土压力的动力分析模型。建立支护结构的地震动分析模型时,将锚杆预应力考虑在内,基于集中质量法,以框架柱为计算单元,形成集中质量串,锚杆以弹簧支座形式与土体连接,预应力通过给定的初始设计值施加于锚杆上,据此,建立结构动力控制平衡方程。最后,通过把动土压力、预应力及地震作用施加于框架结构之上,求解出预应力锚杆的轴力响应值,这一模型能够将地震作用中支护边坡体系的土压力分布特性、支护结构的位移反应和预应力锚杆的轴力反应特性近似的表达出来,因而可以为框架预应力锚杆支护边坡的抗震设计提供一定的依据。最后结合一工程实例验证了本文方法的适用性。
     (3)在考虑锚杆预应力对黄土边坡稳定性影响的情况下,根据土体边坡滑移面的破坏模式,建立了框架预应力锚杆支护边坡的地震稳定性数值分析模型。利用集中质量显式有限元法,将土体离散为土体静动力微元和土体预应力微元,并建立了相应的动力平衡方程,分析了支护边坡在地震作用下的位移反应和滑移面上的应力场。并基于位移反应和土体应力场,提出了框架预应力锚杆支护边坡在地震作用下的稳定性安系数计算方法。
     (4)以西北黄土地区实际工程为背景,采用有限元软件ADINA对框架预应力锚杆支护边坡在地震作用下的位移、锚杆轴力响应进行了计算和参数分析。考虑框架-锚杆-土体之间的相互作用及协同工作,建立了框架预应力锚杆支护边坡体系在地震作用下的三维有限元模型。模型中以弹塑性模型模拟土体;以双线性弹性模型模拟锚杆;土体与框架(横梁、立柱和挡土板)之间采用接触单元模拟;框架采用双线性弹性模型模拟。通过输入双向地震波,计算了锚杆的轴力响应,并对地震前后锚杆的轴力进行了对比;对比分析了不同烈度、不同工况及不同土体参数条件下支护体系的动力响应,得到了不同因素对边坡地震响应的影响规律。
     (5)根据相似理论,通过对国内振动台试验方案的分析与研究,以实际工程为原型,将原型和缩尺模型进行相似关系转化,设计了振动台的室内缩尺模型。主要内容包括模型的相似设计、模型箱设计、模型箱的边界处理、试验材料的选取及性能指标的测试、坡体的设计、测点布置、地震动的输入,方案中还对试验加载方法和试验步骤进行了阐述。
China is the country with the world’s most wide and most thickdistribution of loess. These loess is mostly found in the northwestern regionof loess plateau. There are lots of ravines and slopes in the loess plateau.Since the great development of the west, a lot of highways, railways andurban infrastructure constructions need to be built in the loess area, thus alot of natural slope engineerings will be met. In history, every strongearthquake would cause serious seismic landslides in northwestern loessareas. Therefore, it is very necessary to study the dynamic response andstability analysis of the slope supported by frame with pre-stressed anchorsunder earthquake at the right moment. This paper is based on the NaturalScience Foundation of China: The Seismic Action and Dynamic StabilityAnalysis of Permanent Flexible Slope Supporting Structure. According acertain engineering example, the dynamic response and stability analysis ofthe slope supported by frame with pre-stressed anchors under earthquakehave been studied. The theoretical analysis and the numerical simulationhave been carried out, and the main work and conclusion gained are listedas follows:
     (1) The calculation model of the frame-pre-stressed anchor-soilsystem under seismic action is established. In this model, the free section ofpre-stressed anchor is regarded as a linear spring, the frame (beams,columns and retaining plates) and the anchorage section of pre-stressedanchor is connected through the spring of the free section, and theinteraction between the anchorage section and the soil is treated as linearspring and damped system related with velocity. In the model, the influenceabout the response of the system with the frame (beams, columns andretaining plates) is also considered, namely, the frame (beams, columns andretaining plates) is also treated as linear spring and damped system relatedwith velocity. Under the seismic action, the frame, the free section, theanchorage section and the soil system are interacting and coordinating. Inthe process of earthquake, the anchor pre-stressing force is changing withthe time. And the change of the pre-stressing force is communicated to the anchorage section through the spring, and then it is transferred to the soilthrough the anchorage section. In the model, the qualities of the frame(beams, columns and retaining plates) and the active area soil were regardedas lumped mass, then connected with the free section end, and thenconnected with the damper through the spring of the free section. Under thecondition of seismic action, the damping differential equation is establishedaccording to this theory. The seismic response of the pre-stressing force andthe anchorage section axial force is solved under harmonic seismic. Finally,through an engineering example, with the previous results of FEA softwareADINA, this calculation model was verified.
     (2) Based on soil dynamics and structural dynamics theory, a dynamicmodel of slope supported by frame with pre-stressed anchors is proposed.The seismic response of the supporting slope is obtained under thecondition of horizontal earthquake excitation. According to horizontal slicemethod, and the influence of slope height on seismic soil pressuredistribution is considered, the soil pressure dynamic analysis model isestablished. The influence of anchor prestress is considered, a set of lumpedmasses is formed by taking the frame columns as calculating unit based onthe concentrated mass method. Frame structure and soil is connected byanchors with spring supports, pre-stressing force is applied to anchorsthrough the given initial design value, then the corresponding controlequation of motion is established. The axial force response of pre-stressedanchors can be obtained based on dynamic soil pressure, pre-stressing forceand seismic excitation. The soil pressure distribution characteristics, thedisplacement response of the supporting structures and the axial forceresponse characteristics of pre-stressed anchors can be approximatelyreacted by this model. The results of dynamic soil pressure and modelresponse can provide reference for the seismic design of slope supported byframe with pre-stressed anchor. Finally, the applicability of this method isverified by an engineering example.
     (3) Under the situation of considering the anchor prestress effects onstability of loess slope, according to the failure mode of the soil slidingsurface, stability model of slope supported by frame with pre-stressedanchors under earthquake is established. By the method of lumped-massexplicit finite element, the soil is separated into soil-static-dynamic micro-unit and soil-prestressed micro-unit discretely, and the correspondingdiscrete element dynamic equilibrium equation is established. Thedisplacement response and the stress field in sliding surface of thesupporting slope are analysed. Based on the displacement response and thesoil stress field, a calculation method of stability safety factor for slopesupported by frame with pre-stressed anchors under earthquake is proposed.
     (4) Based on the practical engineering in the northwest loess area,nonlinear FEM (ADINA) is used to parameter analysis and calculate thedisplacement and anchor axial force response of slope supported by framewith pre-stressed anchors under seismic action. Considering the interactionand collaborative work of frame-anchor-soil,3D nonlinear FEM model ofsystem about slope supported by frame with pre-stressed anchors isestablished. In the model, the soil is simulated by elastic-plastic model, anda bilinear elastic model is used to simulate the anchor, friction-element isused to describe the interaction between soil and frame (beams, columnsand retaining plate), the frame is simulated by a bilinear elastic-plasticmodel. By inputting bidirectional seismic waves, the axial force before andafter the earthquake is compared, and the axial force response is calculated.The dynamic response of the supporting system is compared and analysedunder the different intensity, different conditions and different soilparameters. The influence law of slope seismic response is obtained underdifferent factors.
     (5) According to the similarity theory, the domestic shaking table testscheme is analysed and researched, Based on an practical engineering, andtake it as the prototype, the prototype is turned into scale model bysimilarity relation, and then the shaking table laboratory scale model wasdesigned. The main contents include similar design of the model, design ofthe model box, boundary treatment of the model box, selection andperformance index test of the material, design of the slope mass,arrangement of the measuring-point, input of the earthquake excitation, andthe load method and the steps of the test are elaborated in the scheme.
引文
[1]王兰民.黄土动力学[M].北京:地震出版社,2003.
    [2]段汝文,王峻,李兰.黄土的物理力学指标与黄土易损性分析研究[J].西北地震学报,1997,19(3):81-85.
    [3]王峻.黄土易损性与地震黄土滑坡关系探讨[J].甘肃科学学报,2008,20(2):36-40
    [4]关文章.湿陷性黄土工程性能新篇[M].西安:西安交通大学出版社,1992.
    [5]段汝文,李兰,王峻.不同性状黄土的震陷特性及震害评估[J].西北地震学报,1997,19(增刊):88-93.
    [6]王峻.黄土震陷试验与评价[J].甘肃科学学报,1999,11(1):6-9.
    [7]白铭学,张苏民.高烈度地震及黄土地层的液化移动[J].工程勘察,1990,107(6):1-5.
    [8]王家鼎,张悼元.地震诱发高速黄土滑坡的机理研究[J].岩土工程学报,1999,21(6):670-674.
    [9]陈永明,石玉成.中国西北黄土地区地震滑坡基本特征[J].地震研究,2006,29(3):276-280.
    [10]郎煜华,中村浩之,曾思伟,等.兰州市永登5.8级地震滑坡及其特征[J].甘肃科学学报,1996,8(增刊):67-72.
    [11]国家地震局兰州地震研究所,宁夏地震局.1920年海原大地震.北京:地震出版社,1980.
    [12]刘百篪,等.1718年通渭地震和1654年天水地震区航空照片判读.地震科学研究,1984(1):1-7.
    [13]郭增建,马宗晋.中国特大地震研究[M].北京:地震出版社,1988.
    [14]黄润秋,许强,等.中国典型灾难性滑坡[M].北京:科学出版社,2008.
    [15]张振中.黄土地震灾害预测[M].北京:地震出版社,1999.
    [16]张永双,雷伟志,石菊松.四川“5.12”地震次生地质灾害的基本特征初析[J].地质力学学报,2008,14(2):109-114.
    [17]张立海,张业成,刘向东.中国地震次生地质灾害分布及地市级危险性区划研究[J].防灾减灾工程学报,2009,29(3):356-360.
    [18]中华人民共和国行业标准.《建筑边坡工程技术规范》(GB50330—2002).北京:中国建筑工业出版社,2002.
    [19]中华人民共和国行业标准《.建筑基坑支护技术规程》(JGJ120—99).北京:中国建筑工业出版社,1999.
    [20] Mononobe N, Takata A and Matumura M.1936. Seismic effects onearth fill dams. In: Van Roekel J. H. eds. Proc.3rdworld Conf. Earthq.Engrg., R. E. Owen government printer, Wellington, New Zealand,Paper Ⅲ,373-390.
    [21] Hatanaka M.1952.3-Dimensional consideration on the vibration ofearth dams. J Jap Soc Civ Engrs,37:10.
    [22] Hatanaka M.1955. Fundamental consideration on the earthquakeresistant properties of the earth dams, Bull. Disaster PreventionResearch Inst, No.11.
    [23] Ambraseys N N.1960a. On the shear response of a two-dimensionaltruncated wedge subjected to an arbitary disturbance. Bull Seism SocAm,50(1):45-56.
    [24] Ambraseys N N.1960b. The seismic stability of earth dams, In: Proc.2ndWorld Conf. on Earthq. Engrg., Tokyo, Gakujutsu BunkenFukya-kai, Ⅱ,1345-1363.
    [25] Gazetas G.1987. Seismic response of earth dams some recentdevelopment. Soil Dyn Earthq Engrg,6(1):3-47.
    [26] Gazetas G, Dakoulas P.1992. Seismic analysis and design of fockfilldams-State of the art. Soil Dyn Earthq Engrg,11:27-61.
    [27] Newmak N M.1965. Effects of earthquakes on dams and embankments.Geotechnique,15(2):139-160.
    [28] Franklin A G, Chang F K.1977. Earthquake resistance of earth androck-filled dams, rep.5: permanent displacements of earthembankments by Newmark sliding block analysis. WaterwaysExperimental Station, Vicksburg, Misc. Pap: S-71-17.
    [29] Makdisi F I, Seed H B.1979. Simplified procedure for evaluatingembankment response. J Geotech Engrg ASCE,105, GT12:1427-1434.
    [30] Sarma S K.1975. Seismic stability of earth dams and embankments.Geotechnique,25(4):743-761.
    [31] Seed H B.1979. Consideration in the earthquake design of earth androckfill dams. Geotechnique,29(3):215-263.
    [32] Constantinous M C, Gazetas G A, Tadjbakhsh I.1985. Stochasticseismic sliding of rigid mass supported through non-symmetricfriction. Earthq Engrg and Struct Dyn,12:777-793.
    [33] Kramer S L, Smith M W.1997. Modified Newmark model for seismicdisplacements of compliant slopes. J Geotech Engrg ASCE,123(7):635-644.
    [34] Seed H B.1973. Stability of earth and rockfill dams during earthquake.in Embankment-Dam Engrg. Casagrande, Vol.(Eds Hirschfeld andPoulos), John Wiley.
    [35] Castro G.1975. Liquefaction and cyclic mobility of saturated sands. JGeotech Engrg ASCE, New York,2:1188-1215.
    [36] Castro G, Poulos S J.1977. Factors affecting liquefaction and cyclicmobility. J Geotech Engrg ASCE,103, GT6:501-516.
    [37] Dobry R et al.1984. Liquefaction evaluation of earth dams-a newapproach. Proc8thWorld Conf Earthq Engrg San Francisco, Ⅲ:33-40.
    [38] Poulos S J, Castro G, France J W.1985. Procedure for liquefactionevaluation. J Geotech Engrg ASCE,111(6):772-792.
    [39] Yegin M K, Marciano E A, Ghahraman V G.1991. Earthquake inducespermanent deformations. Probabilistic approach. J Geotech EngrgASCE,117(1):35-50.
    [40] Yegin M K and Harb J N.1995. Slip displacements of geosyntheticsystems under dynamic excitation. In: Yegin M K and Finn W D L eds.Earthq. Design and performance of solid waste landfills, San Diego,California, ASCE Geotechnical Special Publication, No.54,212-236.
    [41] Yegin M K, Harb J N, Kadakal U.1998. Dynamic response analysisprocedure for landfills with geosynthetic linears. J Geotech Engrg,124(10):1027-1033.
    [42] Halatchev R V.1992. Probabilistic stability analysis of embankmentand slopes. Proceeding of the11thinternational conf on groundcontrol in mining.432-437.
    [43] Al-homoud A S, Tahtamoni W W.2000. Reliability analysis of threedimensional dynamic slope stability and earthq induced permanentdisplacement. Soil Dyn and Earthq Engrg,19(2):91-114.
    [44]孙宪京,韩国城.土石坝与地基地震反应分析的波动-剪切梁法[J].大连理工大学学报,1994,34(2):173-179.
    [45]徐志英,周建.奥罗维尔土坝三维排水有效应力分析[J].地震工程与工程振动,1991,22(6):19-27.
    [46]徐志英,周建.奥罗维尔土坝三维简化动力分析[J].岩土工程学报,1996,18(7):82-87.
    [47]黄文熙.土的工程性质[M].北京:水利电力出版社,1983.
    [48]沈珠江.理论土力学[M].北京:中国水利电力出版社,2000.
    [49]顾淦臣.土石坝地震工程[M].南京:河海大学出版社,1989.
    [50]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利出版社,第二版.
    [51]徐志英,沈珠江.地震液化有效应力二维动力分析方法[J].华东水利学院学报,1981a,9(3):1-14.
    [52]徐志英,沈珠江.土坝地震孔隙水压力产生、扩散和消散的有限单元法动力分析[J].华东水利学院学报,1981b,9(3):1-16.
    [53]徐志英,沈珠江.尾矿高堆坝地震反应的综合分析与液化计算[J].水利学报,1983(5):30-39.
    [54]徐志英,周建.土坝地震孔隙水压力产生、扩散和消散的三维动力分析[J].地震工程与工程振动,1985,5(4):57-72.
    [55]周建,吴世明,曾国熙.土石坝三维两向动力分析[J].岩土工程学报,1991,13(5):64-69.
    [56]周建,董鹏,戚佩江.灰渣坝抗震稳定性的三维有效应力动力分析[J].水力学报,2000,31(7):44-48.
    [57]周建,徐志英.土坝尾矿的三维有效应力的动力反应分析[J].地震工程与工程振动,1984,4(3):60-70.
    [58]龚晓南.土工计算机分析[M].北京:中国建筑工业出版社,2000.
    [59]吴世明,徐攸在.土动力学现状与发展[J].岩土工程学报,1998,20(3):125-131.
    [60]吴世明等.土动力学[M].北京:中国建筑工业出版社,2001.
    [61]黄茂松,钱建固,吴世明.土坝动力应变局部化与渐进破坏的自适应有限元分析[J].岩土工程学报,2001,23(3):306-310.
    [62]黄建梁,王威中,薛宏交.坡体地震稳定性的动态分析[J].地震工程与工程振动,1997,17(4):113-122.
    [63]王家鼎,张倬元.地震诱发高速黄土滑坡的机理研究[J].岩土工程学报,1999,21(6):670-674.
    [64]薄景山,徐国栋,景立平.土边坡地震反应及其动力稳定性分析[J].地震工程与工程振动,2001,21(2):116-120.
    [65]王家鼎,白铭学,肖树芳.强震作用下低角度黄土斜坡滑移的复合机理研究[J].岩土工程学报,2001,23(4):445-449.
    [66] Singh S, Murphy B.1990. Evaluation of the stability of sanitarylandfills. Geotechnics of waste fills-theory and practice. ASTM STP1070, ASTM, West Conshohochen,240-258.
    [67] Kavazanjian E et al.1995. Hazard analysis of a large regional landfill.Earthq. design and performance of solid waste landfills. GeotechnicalSpecial Publication No.54, ASCE, New York, N. Y.119-141.
    [68] Bove J A.1990. Direct shear friction testing for geosynthetics inwaste containment. In: Koerner, R. M. eds Geosynthetic testing forwaste containment applications, STP1081. Philadelphia, PA, ASTM,241-256.
    [69] O,Rourke T D, Druschel S J, Netravali A N.1990. Shear strengthcharacteristics of sand polymer interfaces. J Geotech Engrg ASCE,116(3):451-469.
    [70] Byrne R J, Kendall J, Brown S.1992. Cause and mechanism of failure,Kettleman Hills Landfill B-19, Unit1A. Proc. ASCE Spec. Conf. onPerf. and Stability of Stability of Slope and Embankments-Ⅱ, ASCE,New York,2:1188-1255.
    [71] Yegian M K, Lahlaf A M.1992. Dynamic interface shear strengthproperties of geomembrabes and geotexiles. J Geotech Engrg ASCE,118(5):760-779.
    [72] Orman M E.1994. Interface shear strength properties of roughenedHDPE. J Geotech Engrg ASCE,120(4):758-761.
    [73] Negussey D, Wijewickreme W K D, Vaid Y P.1989. Geomembraneinterface friction. Can Geotech J,26(1):165-169.
    [74] Stark T D, Poeppel A R.1994. Landfill linear interface strengths fromtorsional-ring-shear test. J Geotech Engrg ASCE,120(3):597-615.
    [75] Sharma H D, Dukes M T, Olsen D M.1990. Field measurements ofdynamic moduli and Poisson,s ratios of refuse and underlying soils ata landfill site. Geotechnics of waste fills-theory and practice, ASTMSTP1070, ASTM, West Conshohocken,259-284.
    [76] Kavazanjian E.1993. SASW testing at solid waste landfill facilities.In: Proc NSF Workshop on seismic Des of Solid Waste Landfills, Univof Southern Calif, Los Angeles, Calif.
    [77] Bray J, Repetto P C.1994. Seismic design considerations for linedsolid waste landfills. Geotextiles and geomembranes,13:497-518.
    [78] Bray J D et al.1995. Seismic stability procedures for solid wastelandfills. J of Geotech Engrg,121(2):139-151.
    [79] Bray J D et al.1996. Closure to seismic stability procedures for SolidWaste Landfills. J Geotech and Geoenvirn Engrg ASCE,122(11):952-953.
    [80] Bray J D, Rathje E M.1998. Earthquake induced displacements ofsolid waste landfills. J Geotech and Geoenvirn Engrg ASCE,124(3):242-253.
    [81] Anderson D G, Hushmand B, Martin G R.1992. Seismic response oflandfill slopes, In: Seed, R. B. and Boulanger, R. W. eds. Proceedingsof a speciality conference of ASCE, Stability and Perf. of Slopes andEmbankments Ⅱ: Berkeley, California, ASCE,973-989.
    [82] Repetto P C, Bray R J and Augello A J.1993. Applicability of WavePropagation Methods to the Seismic Analysis of Landfills. In:Proceedings Waste Tech93, National Solid Wastes ManagementAssociation, Marina Del Rey, California.
    [83] Del Nero D E, Corcorn B W, Bhatia S K.1995. Seismic analysis ofsolid waste landfills. Earthq. resistant design and performance ofsolid waste landfills, Geoteech Spec Publ: No.54, ASCE, New York,N. Y.
    [84] Idriss I M, Fiegel G, Hudson M B, Mundy P K and Herzig R.1995.Seismic response of the operating Industres Landfill. In: Yegian M. K.and Finn W D L eds. Earthq resistant design and performance of solidwaste landfills, San Diego, California, ASCE Geotechnical SpecialPublication, No.54, ASCE, New York, N. Y.83-118.
    [85] Ling H I, Leshchinsky D.1997. Seismic stability and permanentdisplacement of landfill cover system. J Geotech Engrg,123(2):113-122.
    [86]王思敬.岩石边坡动态稳定性的初步探讨[J].地质科学,1977(4):372-376.
    [87]王思敬,张菊明.边坡岩体滑动稳定性的动力学分析[J].地质科学,1982(2):162-170.
    [88]王思敬,薛守义.岩体边坡楔形体动力学分析[J].地质科学,1992(2):177-182.
    [89]张菊明,王思敬.层状边坡岩体滑动稳定的三维动力学分析[J].工程地质学报,1994,2(3):1-12.
    [90] Wang S J, Xue S Y, Maugeri M, Motta E.1993. Dynamic stability ofthe left abutment in the Xiaolangdi Project On the Yellow River. In:Pasamehmetogcu A G, Kawamoto T, Whittaker B N and Aydan. o eds.Proc Int Symp on Asessment and Prevention of Failure Phenomena inRock Engrg, Istanbul (Turkey), A. A. Balkema, Rotterdam,619-625.
    [91]王存玉,王思敬.1987.边坡模型振动试验研究.见:岩土工程地质学问题(七).北京:科学出版社.65-74.
    [92]王存玉.1987.地震条件下二滩水库岸坡稳定性研究.见:岩土工程地质学问题(八).北京:科学出版社.127-142.
    [93] Crawford A W, Curran J H.1981. The influence of Shear velocity onthe Frictional Resistance of Rock Discontinuities. Int J Rock MechMin Sci&Geomech Abstr,(18):505-515.
    [94]何蕴龙,陆述远.岩石边坡地震作用近似计算方法[J].岩土工程学报,1998,20(2):66-68.
    [95]钱胜国,陆秋蓉.三峡溢流坝段动力特性及动力反应分析[J].长江科学院,1991,8(2):22-28.
    [96]祈生文,伍法权,孙进忠.边坡动力响应规律研究[J].中国科学(E),2003,33(增刊):28-40.
    [97]祈生文.单面边坡的两种动力反应形式及临界高度[J].地球物理学报,2006,49(2):518-523.
    [98] Clough R W, Chopra A K.1966. Earthquake stress analysis in earthdams. J Engrg Mech, ASCE92, EM2:197-211.
    [99] Chopra A K.1967. Earthquake response of earth dams. J Soil Mechand Found Div ASCE,93: SM2,66-82.
    [100] Ishizaki and Hatekeyama.1963. Consideration on the dynamicalbehavior of earth dams, Bull Disaster Prevention Research Institute,No.52.
    [101] Medvedev S and Sinitsym A.1965. Seismic effects on earth fill dams.In: Van Roekel J. H. eds. Proc.3rdworld Conf. Earthq. Engrg., R. E.Owen government printer, Wellington, New Zealand, Paper Ⅲ,373-390.
    [102] Zienkiewicz O C et al.1981. Earth dam analysis earthquakes:Numerical solution and constitutive relations for non-linear(damageanalysis). In: Proc. Int. Conf. On Dams and Earthquake, London,179-194.
    [103] Zienkiewicz O C et al.1982. Liquefaction and permanent deformationunder dynamic conditions-numerical solution and constitutiverelations. In: Pande G N, Zienkiewicz O C,eds. SoilMechanics-Transient and Cyclic Loading. UK: John Wiley and Son.71-103.
    [104] Zienkiewicz O C, Shiomi T.1984. Dynamic behavior of saturatedporous media: the generalized Biot formulation and its numericalsolution. Int J Numer Analyt Methods Geomech,8:71-96.
    [105] Prevost J H.1985. Wave Propagation in fluid-saturated porous media:an efficient finite element procedure. Soil Dyn Earthq Engrg,4(4):183-202.
    [106] Lacy S J, Prevost J H.1987. Nonlinear seismic response analysis ofearth dams. Soil Dyn Earth Engrg,6(1):48-63.
    [107] Cundall P A.1971. A computer model for simulating progressive largescale movements in blocky rock systems. In: Proceedings of theInternational Symposium on Rock Mech. ISRM, Nancy, Ⅱ-8,129-136.
    [108]王泳嘉.1986.离散单元法—一种适用于节理岩石力学分析的数值方法.见:第一届全国岩石力学数值计算及模型试验讨论会论文集.成都:西南交通大学出版社.
    [109]石根华.数值流形方法与非连续变形分析[M].裴觉民译.北京:清华大学出版社,1993.
    [110]裴觉民,石根华.岩石滑坡体的动态稳定和非连续变形分析[J].水力学报,1993,24(3):28-34.
    [111]金峰,贾光伟,王光纶.离散元-边界元动力耦合模型[J].水力学报,2001,32(1):23-27.
    [112] HANNAS, JURAN I, LEVY O, et al. Recent developments in soilnailing-design and practice[J]. Journal of Engineering and AppliedScience,1998.81(5):259-284.
    [113] Sandri, D., Retaining walls stand up to the Northridge earthquake,Geotechnical Fabrics Report, IFAI, St. Paul, MN, USA, Vol.12, No.4,(1994)30-31.
    [114] COTTON P E, DAVID M, LUARK P F, et al. Seismic response andextended life analys is of the deepest topdown soil nail wall in the U.S[J]. Geotechnical Special Publication,2004,124(3):723-740.
    [115] VUCETIC M, TUFENKJIAN M R, DOROUDIAN M. Dynamiccentrifuge testing of soilnailed excavations[J]. Teotechnical TestingJournal,1993,16(2):172-187.
    [116]陈建仁.土钉加筋边坡之耐震研究[D].台湾:台湾大学土木工程学研究所,2001.
    [117]赖荣毅.土钉模型边坡动态反应仿真[D].台湾:台湾大学土木工程学研究所,2003.
    [118]马天忠,朱彦鹏.地震作用下复合土钉支护边坡动力响应分析[J].兰州理工大学学报,2010,36(5):108-112.
    [119]张森,言志信,等.复合土钉墙支护结构的静力和动力响应分析[J].路基工程,2011,1:45-47.
    [120]董建华.地震作用下土钉支护边坡动力分析与抗震设计方法研究
    [D]:[博士学位论文].兰州:兰州理工大学,2008.
    [121]董建华,朱彦鹏.土钉土体系统动力模型的建立及地震响应分析[J].力学学报,2009,41(2):236-242.
    [122]朱彦鹏,董建华.土钉支护边坡动力模型的建立及地震响应分析,岩土力学,2010,31(4):1013-1022.
    [123]董建华,朱彦鹏.地震作用下土钉支护边坡稳定性分析[J].中国公路学报,2008,21(6):20-25.
    [124]董建华,朱彦鹏.地震作用下土钉支护边坡稳定性计算方法[J].振动与冲击,2009,28(3):122-127.
    [125]董建华,朱彦鹏.地震作用下土钉支护边坡永久位移计算方法研究[J].工程力学,2011,28(10):101-110.
    [126]董建华,朱彦鹏.地震作用下土钉支护高速公路边坡动力参数分析[J].西安建筑科技大学学报(自然科学版),2007,39(5):661-666.
    [127]朱彦鹏,谢强,等.基于ADINA的深基坑土钉支护在正常及地震作用下的弹塑性三维有限元分析[J].四川建筑科学研究,2008,34(1):88-93.
    [128]杨文峰,张明聚,等.基于FLAC3D的土钉支护结构地震稳定性分析[J].三峡大学学报(自然科学版),2009,31(5):46-48.
    [129]王辉,冉红玉,等.基于离散元法的柔性挡土坝稳定分析[J].中国农村水利水电,2010,9:44-47.国农村水利水电,2010,9:44-47.
    [130]李凯玲.锚杆(索)抗滑桩与岩土体相互作用研究[硕士学位论文[D].西安:长安大学,2004.
    [131]周勇.框架预应力锚杆柔性支护结构的理论分析与试验研究[D].兰州:兰州理工大学,2007.
    [132]刘东升,雷用,王平.锚杆抗拔力的可靠性分析与设计[J].地下空间,2001,21(4):323-327.
    [133]赵明华,张天翔,邹新军.支挡结构中锚杆抗拔承载力分析[J].中南公路工程,2003,28(4):4-7.
    [134] Marcuson. WF.111. Moderator's Report for Sessionon Earth Damsand Stability of Slopes Under Dynamic Loads. in InternationalConference on Recent Advances in Geotechnical EarthquakeEngineering and soil Dynamics. St. Louis Missouri.
    [135] Seed.H. B, Soil Liquefaction and Cyclic Mobility Evaluation forLevel Ground during Earthquake[J]. Journal of Geotechnicalengineering Division, ASCE,1979.105(2):201-255.
    [136] Takaaki Kagawa. Lateral Pile-Group Response Under Seismic Loading[J]. Soils and Foundations,1983,23(4):75-86.
    [137] Seed, H. B. and Idriss, I. M., Soil moduli and damping factor fordynamic response analysis, Report EERC7010, Earthquake ResearchEngineering Center, University of California, Berkeley, Dec.,(1970).
    [138] M.帕兹.结构动力学理论与计算[M].北京:地震出版社,1993.
    [139] Collin, J.G., Chouery-Curtis, V.E. and Berg, R.R.. Field observationsof reinforced soil structures under seismic loading[J]. EarthReinforcement Practice, Ochiai, Hayashi&Otani (eds), Balkema,Rotterdam,1992:223-228.
    [140]朱彦鹏,罗晓辉,周勇.支挡结构设计[M].北京:高等教育出版社,2008.
    [141]朱彦鹏,王秀丽,周勇.支挡结构设计计算手册[M].北京:中国建筑工业出版社,2008.
    [142]郑善义.框架预应力锚杆支护结构的设计与分析研究[硕士学位论文D].兰州:兰州理工大学,2007.
    [143]陈肇元,崔京浩.土钉支护在基坑工程中的应用(第2版)[M].北京:中国建筑工业出版社,2000.
    [144]周勇,朱彦鹏.黄土地区框架预应力锚杆支护结构设计参数的灵敏度分析[J].岩石力学与工程学报,2006,25(增1):3115-3122.
    [145]朱彦鹏,郑善义,张鸿,等.黄土边坡框架预应力锚杆支挡结构的设计研究[J].岩土工程学报,2006,28(增):1582-1585.
    [146]顾慰慈.挡土墙土压力计算手册[M].北京:中国建材工业出版社,2005.
    [147]董曾南,章梓雄.非粘性流体力学[M].北京:清华大学出版社,2003.
    [148]董建华,朱彦鹏.地震作用下土钉支护边坡动力分析[J].重庆建筑大学学报,2008,30(6):90-95.
    [149]李忠,朱彦鹏.框架预应力锚杆边坡支护结构稳定性计算方法及其应用[J].岩石力学与工程学报,2005,24(21):3922-3926.
    [150]杜修力.工程波动理论及方法[M].北京:科学出版社,2009.
    [151]蒋溥,戴丽思.工程地震学概论[M].北京:地震出版社,1993.
    [152]李海光等编著.新型支挡结构设计与工程实例(第1版)[M].北京:人民交通出版社,2004.
    [153] Yanpeng Zhu and Yong Zhou. Analysis and design of frame supportingstructure with pre-stressed anchor brs on loess slope, ACMSM2004(Perth, Australia),2004,1089-1094.
    [154] Yong Zhou and Yan-Peng Zhu. Optimum design of grillagesupporting structure with pre-stressed anchor bars on loess slope[J].Proceedings of the Ninth International Symposium on StructuralEngineering for Young Experts, Fuzhou&Xiamen, China,2006,(2):1567-1573.
    [155]杨桂通.土动力学[M],北京:中国建材工业出版社,2000.
    [156]谢定义.土动力学[M],西安:西安交通大学出版社,1998.
    [157]祁生文.边坡动力响应分析及应用研究[D].北京:中国科学院地质与地球物理研究所,2002.
    [158]祁生文,俉法权,等.岩质边坡动力反应分析[M].北京:科学出版社,2007.
    [159]陈国兴.岩土地震工程学[M].北京:科学出版社,2007.
    [160]刘汉龙,费康,高玉峰.边坡地震稳定性时程分析方法[J].岩土力学,2003,24(4):553-556,560.
    [161]钱家欢,卢盛松,郭志平.土坝动力分析(有限元法)的几点改进[J].华东水利学院学报,1982,01:14-27.
    [162] H.B.Seed and G.R.Martin. The Seismic coefficient in earthdamdesign[J]. Journal of Soil Mechanics and Foundation Division,1966,92(SM3):25-58.
    [163] ADINA在交通土建工程中的应用[M].亚得科技有限公司,2004.
    [164]李广信.高等土力学(第1版)[M].北京:清华大学出版社,2004.
    [165]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996.
    [166] Roscoe K. H. and Bur land J. B. On the Generalized Stress-StrainBehavior of Wet Clay, Engineering Plastisity, ed.Heyman L andLeckie F. A., Cambridge Univ.Press.1998,5(1):23-45.
    [167] His J. P, Small c. Simulation of excavation in an elastic-plasticmaterial and analysis method[J]. Geomech,1992,16(1):123-134.
    [168]徐长节,李庆金.支护参数对复合支护基坑变形的影响分析[J].岩土力学,2005,26(2):295-298.
    [169]张学岩,闫澍旺主编.岩土塑性力学基础(第1版)[M].天津:天津大学出版社,2004.
    [170]方同.工程随机振动[M].北京:国防工业出版社,1995,6.
    [171]方远翔,陈安宁.振动模态分析技术[M].北京:国防工业出版社,1993.
    [172]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2005.
    [173]戴德沛.阻尼技术在工程中的应用[M].北京:清华大学出版社,1991.
    [174]张玉敏,盛谦,张勇惠,等.高山峡谷地区大型地下洞室群非平稳人工地震动拟合[J].岩土力学,2009,30(增刊):41-46.
    [175]蒋溥,梁小华,雷军.工程地震动时程合成与模拟[M].北京:地震出版社,1991.
    [176]陶明星.土—地下结构动力相互作用有限元分析[D].西北工业大学硕士学位论文,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700