用户名: 密码: 验证码:
夏季胶州湾入海污染物总量控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着沿岸社会、经济的快速发展,人口趋海化、经济趋海化形势日益加剧,近岸水体环境污染面临着严峻的形势。入海污染物总量控制作为一种有效连接陆域、海域的管理措施,已成为近岸水体污染防治的一项重要举措,是进行近岸污染控制规划的基础。
     本文以中国北方受人为活动影响较为显著的典型海湾—胶州湾为研究对象,针对目前研究中存在的时间尺度、动力过程、不确定性等研究不足,在分析胶州湾水质及污染负荷现状基础上,从季节尺度、潮周期尺度研究入海污染物总量控制。针对夏季水动力过程、污染负荷的季节特征和潮过程的周期性特征,采用基于POM的三维漫滩水质模型与优化模型,计算了夏季和潮周期的胶州湾入海污染物总量及其优化分配量,讨论了源强随机变化和响应系数场的不确定性,并借助情景分析、决策分析探讨了污染物总量控制的管理措施。主要工作和结论如下:
     1、在对胶州湾历史资料和文献资料分析的基础上,总结胶州湾面临的主要环境压力。为全面了解胶州湾环境状态,根据2010年8月多船58小时同步观测资料,分析胶州湾夏季主要水质因子的空间分布特征。结果表明,2010年夏季胶州湾DIN、PO_4-P、COD、SiO4-Si的平均浓度分别为31.41±17.07μmol L~(-1)、1.63±0.96μmol L~(-1)、1.36±0.15mg L~(-1)和9.01±3.88μmol L~(-1),NH4-N、NO3-N和NO_2-N所占DIN比例分别为45.6%、47.2%和7.16%,其中NO_3-N比例较历史平均结果明显偏高,观测前期由于降水过程引起的地面非点源径流输入是导致NO_3-N比例增大的主要原因,改变了营养盐结构;各类水质因子空间分布规律相似,表现为湾东北部为高值区、西北部为次高值区,并向湾中部和湾口呈递减趋势。水质评价结果表明,胶州湾氮磷比约为19.28±2.02,夏季胶州湾富营养化指数E平均值为7.13,从北向南,从东北、西北向湾中心,呈现富营养—中度营养—贫营养过渡,胶州湾总体呈现轻度磷限制。根据文献资料等,总结胶州湾陆源污染物输入的主要方式是河流输入,其次是污水处理厂输入。并估算了八大排污单元主要污染物的夏季入海通量。
     2、在对胶州湾水质及污染负荷评估的基础上,采用耦合水动力模型的水质模块,数值模拟了胶州湾夏季余流特征和水质因子分布特征。水动力模型基于POM建立,综合考虑风、潮(M2、S2、O1、K1)、径流、斜压效应等过程,水质模块包含营养盐、浮游植物、浮游动物等10个生态变量。通过与同潮图、验潮站水位、典型观测站流速对比等手段验证了水动力模型的可靠性;通过生态变量的年内变化(年尺度)、平面分布(月尺度)以及与观测值(潮周期尺度)对比验证了水质模型的可靠性。同时,分析了胶州湾余流特征,并通过与仅有潮过程的余流对比,证实了将多种水动力过程纳入夏季污染物总量控制分析的必要性。
     3、利用已建立的水质模型,在选取水质控制点的基础上,采用基于响应系数场的线性规划方法,以排海污染物总量最大为目标函数,以海洋功能区划水质标准和排海通量非负为约束函数,计算出夏季胶州湾DIN、DIP、COD的环境容量分别为1848.1t、182.0t和35456.1t,并在各排污单元进行优化分配,其中团岛排污单元分配的容量最大。数值验证结果表明该分配方案合理,满足海洋功能区划要求。进而,考虑排污单元的经济、社会、地理等因素差异,引入公平性,再次分配的DIN、DIP、COD海洋环境容量均有所降低,各排污单元中,团岛排污单元减少量最大,大沽河、墨水河排污单元分配量有所提高,符合实际需求。
     4、考虑到胶州湾是典型的潮控型海湾,水质要求不仅是潮周期内平均值达标,也要保证潮周期达标率,且污染源强是随机变化的。采用源强为对数正态分布的优化分配模型,将潮周期达标率作为约束条件,利用遗传算法求解。计算的分配结果与传统的分配方法有明显差异,各排污单元排污量均有不同程度的减少。
     5、考虑到海洋生态系统中各元素转化的复杂机制属非线性过程,讨论了基于响应系数场线性叠加原理的优化分配可能带来的误差。分析表明,当某一元素处于限制状态时,会导致分配结果和环境容量偏大,当处于过量状态时,会导致分配结果和环境容量偏小。
     6、将数值模型、优化分配与情景分析法结合,应用胶州湾三维漫滩水质模型,采用情景分析法,进行数值实验,评估各方案环境影响,并综合环境、经济、社会效益进行情景方案的决策分析。结果表明污染负荷转移方案环境治理效果最好,可作为备选方案;湿地建设方案各方面效益均较高,是首选的决策方案;污可与湿地建设配合,分别针对河流非点源和污水处理厂点源实施;深水排放方案暂不推荐实施。污染负荷随潮位相排放方案,各种排放方式的湾口通量差异并不显著,不推荐实施。直排外海方案可作为极端条件下的备选方案。最后,从陆海统筹、以海定陆,重点实施、先易后难,终端-源头过程控制,跨界补偿、交易机制和公众参与等角度提出了陆源污染物总量控制的减排建议,尤其是加强不同时间尺度上的入海污染物总量控制与管理。
In recent years, due to the rapid development of coastal society and economy, theincreasing serious water quality problems have widely caused the concerns for thehealth of ocean ecosystem. The total pollutant loads control was used as a valid tool toimprove coastal management.
     Jiaozhou Bay (JZB), located at the southern coast of Shandong Peninsula, is atypical semi-enclosed bay with intensive influence of human activity. As a case, thetotal pollutant loads control and potential management scheme of JZB are discussed.
     A3-dimension physical-biological coupled model with the combined effect oftides (M2、S2、O1、K1), wind, river flow and baroclinic gradient, is used to simulatewater quality response field of pollutants. With the response field and the linearoptimization model, the maximum pollutant loads of DIN, DIP and COD to the bayare calculated and optimally redistributed to eight pollutant sectors in JZB in summer.Scenarios are designed to discuss the management schemes. The major contents,significant results and useful conclusions have been achieved in the following:
     The major environment pressures are summarized from the historical data andliterature. To understand the state of JZB, a18-vessels synchronized biogeochemicalobservation was carried out from Aug28th to31st2010in JZB. The result shows thatthe average concentration of DIN, PO_4P, COD and SiO4-Si are31.41±17.07μmolL~(-1),1.63±0.96μmol L~(-1),1.36±0.15mg L~(-1)and9.01±3.88μmol L~(-1), respectively insummer. The contribution of NH_-N, NO3-N and NO_-N to DIN are45.6%,47.2%and7.16%, respectively. The horizontal distribution of COD, DIN and DIP are similar,which shows a downward trend from two higher-concentration areas includingnortheast area and northwest estuary to low-concentration areas including the centerand mouth. In addition, the contribution of precipitation to nutrients increase, especially NO3-N, is qualitatively analyzed by compared to the historical data andmeteorological record. The evaluation of potential eutrophication index shows thatphosphorus limitation is common (general) in JZB, and PO4-P is the major limitingfactor. Rich eutrophication gradually transit to pool nutrient from north to south.According to the literature, the land-source pollutant loads of DIN, DIP and COD areestimated at eight Pollutant Discharge Sectors (PDSs).
     To simulate the characteristic of residual current and distribution of water qualityparameters in JZB in summer, a3-D hydrodynamic model (POM), including tidal flatthrough WAD (Wet And Dry) technology, with the tides (M2、S2、O1、K1), wind, riverflow and baroclinic effect in consideration, coupling to biological model whichincludes ten biological state variables representing nutrients, phytoplankton andzooplankton, was developed. The model is calibrated and verified by co-tidal chart,water elevation observations at Dagang tide station and current at typical observedstation for hydrodynamic model, and by annual variations (annual scale), distribution(monthly scale) and observed value (tidal scale) for water quality model. The featureof simulated residual current is compared with the result with only tidal process,which indicates that it is necessary to take tide, wind, and river flow and barocliniceffect into account.
     Based on the simulated response field, reference point of water quality and linearoptimization model, the marine environment capacities of DIN, DIP and COD areestimated. And the optimization model is known as the maximum total pollutant loadsto meet water quality standard. If functional standard of seawater quality is set as thetarget, the environment capacity is1848.1tons,182.0tons and35456.1tons in JZB insummer, respectively. The allocation results show that the Tuandao and Moshui RiverPDS allocation discharges are the largest and least percentage, respectively.Furthermore, considering efficiency and fairness among the PDSs, the economic,society and location index are introduced to optimize the maximum allowable loads.The results suggest that the allocated discharge in Tuandao PDS should be decreasedand that of Dagu River and Moshui River PDSs should be increased.
     In addition, if taking into account the impacts of stochastic pollutant dischargeand the fluctuation of water quality in a tide-dominated bay, the source loads obeyinglogarithmic normal distribution and constraint condition expressed in a probabilityform in tidal period are introduced to the above optimization procedure with GeneticAlgorithm to solve The results show that the outcomes are different from the previousresults because this model is more strict on water quality target in tide-dominated bay.
     Due to the complex nonlinear mechanism of transformation among various statevariables in marine ecosystems, the error is unavoidable with the hypothesis thatresponse field obeys the principle of linear superposition. The qualitative analysissuggests that the environment capacity and allowable discharge would beoverestimated when some element is limit, and vice versa.
     With the help of physical-biological coupled model, scenarios of managementare designed and estimated considering environment, economic and society benefit.The results show that scenario Ⅱ with moving excess pollutant loads to the sectorswhere there is residual environment capacity can be an alternative scheme, due to itsmaximum environment benefit and les economic and social benefit. Scenario Ⅴwith wetland construction is the best scheme due to the maximum environmental,economic and social benefit. Scenario Ⅳ with wastewater reuse is the secondscheme with the second highest score and conjunct with scenario Ⅴ for sewagetreatment plant and nonpoint sources, respectively. Scenario Ⅲ with deep seawastewater discharge and scenario Ⅵ with pollutant loads discharging at differenttidal phase are not recommended.
     At last, the author gives the suggestion for the pollutant loads control from theview of structural reduction, engineering reduction and management reduction andcalls on managers to strengthen management for water pollutant loads at differenttime scale.
引文
[1]. ADB. Enabling the Protection of Jiaozhou Bay Water Quality and WetlandEcosystem.Aisa Development Bank.2010.
    [2]. Baumgart H. C., Teichgraeber B. Managing the Lower Lippe. Water Quality International,1999,10(1):46-51
    [3]. Brill Jr E. D., Nakamura M. A Branch and Bound Method for Use in Planning RegionalWastewater Treatment Systems. Water Resources Research,1978,14(1):109-118
    [4]. Burn D. H. Comparison of Optimization Formulations for Waste‐Load Allocations.Journal of environmental engineering,1992,118:597
    [5]. Burn D. H., McBean E. A. Optimization Modeling of Water Quality in an UncertainEnvironment. Water Resources Research,1985,21(7):934-940
    [6]. Burn D. H., Yulianti J. S. Waste-Load Allocation Using Genetic Algorithms. Journal ofWater Resources Planning and Management,2001,127:121
    [7]. Cai Z., Liu Z., Guo X., et al. Density-Driven Current Diagnosed Form SynchronousHydrographic Data in a Tide-Dominant Bay. in submitted,2012,
    [8]. Cardwell H., Ellis H. Stochastic Dynamic Programming Models for Water QualityManagement. Water Resources Research,1993,29(4):803-813
    [9]. Chadderton R. A., Miller A. C., McDonnell A. J. Analysis of Waste Load AllocationProcedures1. JAWRA Journal of the American Water Resources Association,1981,17(5):760-766
    [10]. Chen C., Ji R., Zheng L., et al. Influences of Physical Processes On the Ecosystem inJiaozhou Bay-A Coupled Physical and Biological Model Experiment. Journal ofgeophysical research,1999,104(C12):29925-29949
    [11]. Chen H. W., Chang N. B. Water Pollution Control in the River Basin by Fuzzy GeneticAlgorithm-Based Multiobjective Programming Modeling. Water Science and Technology,1998,37(8):55-63
    [12]. Cho J. H., Seok Sung K., Ryong Ha S. A River Water Quality Management Model forOptimising Regional Wastewater Treatment Using a Genetic Algorithm. Journal ofEnvironmental Management,2004,73(3):229-242
    [13]. Cohon J. L. Multiobjective Programming and Planning. New York: Academic Press.1978.P333.
    [14]. Converse A. O. Optimum Number and Location of Treatment Plants. Journal (WaterPollution Control Federation),1972,48(8):1629-1636
    [15]. Cui M., Zhu H. Coupled Physical-Ecological Modelling in the Central Part of Jiaozhou BayIi. Coupled with an Ecological Model. Chinese Journal of Oceanology and Limnology,2001,19(1):21-28
    [16]. Deininger R. A. Water Quality Management: The Planning of Economically OptimalPollution Control Systems. IllinoisPh.D,1965.
    [17]. Deininger R. A., Su S. Y. Modelling Regional Waste Water Treatment Systems. WaterResearch,1973,7(4):633-646
    [18]. Deng Y., Zheng B., Fu G., et al. Study On the Total Water Pollutant Load Allocation in theChangjiang (Yangtze River) Estuary and Adjacent Seawater Area. Estuarine, Coastal andShelf Science,2010,86(3):331-336
    [19]. Drapper D., Tomlinson R. B., Williams P. Pollutant Concentrations in Road Runoff:Southeast Queensland. Journal of Environmental Engineering,2000,126(4):313-320
    [20]. EMECS. Environmental Conservation of the Seto Inland Sea. Nishinomiya: Asahi PrintCo.,Ltd.2008.
    [21]. Feng S., Ju L., Jiang W. A Lagrangian Mean Theory On Coastal Sea Circulation withInter-Tidal Transports, I. Fundamentals. Acta Oceanologica Sinica,2008,27(6):1-16
    [22]. Fujiwara O., Gnanendran S. K., Ohgaki S. River Quality Management Under StochasticStreamflow. Journal of Environmental Engineering,1986,112(2):185-198
    [23]. Ghosh S., Mujumdar P. P. Fuzzy Waste Load Allocation Model: A MultiobjectiveApproach. Journal of Hydroinformatics,2010,12(1):83-96
    [24]. Goldberg D. E. Genetic Algorithms in Search, Optimization, and Machine Learning.Boston, MA: Addison-Wesley Professional.1989. p412.
    [25]. Graves G. W., Hatfield G. B., Whinston A. B. Mathematical Programming for RegionalWater Quality Management. Water Resource Research,1972,8(2):273-290
    [26]. Halpern B. S., Selkoe K. A., Micheli F., et al. Evaluating and Ranking the Vulnerability ofGlobal Marine Ecosystems to Anthropogenic Threats. Conservation Biology,2007,21(5):1301-1315
    [27]. Halpern B. S., Walbridge S., Selkoe K. A., et al. A Global Map of Human Impact OnMarine Ecosystems. Science,2008,319(5865):948-952
    [28]. Han H., Li K., Wang X., et al. Environmental Capacity of Nitrogen and PhosphorusPollutions in Jiaozhou Bay, China: Modeling and Assessing. Marine Pollution Bulletin,2011,63(5-12):262-266
    [29]. Huang G. H., Xia J. Barriers to Sustainable Water-Quality Management. Journal ofEnvironmental Management,2001,61(1):1-23
    [30]. Joeres E. F., Dressler J., Cho C. C., et al. Planning Methodology for the Design of RegionalWaste Water Treatment Systems. Water Resources Research,1974,10(4):643-649
    [31]. Ju L., Jiang W., Feng S. A Lagrangian Mean Theory On Coastal Sea Circulation withInter-Tidal Transports ⅱ. Numerical Experiments. Acta Oceanologica Sinica,2009,28(001):1-14
    [32]. Kerachian R., Karamouz M. Waste-Load Allocation Model for Seasonal River WaterQuality Management: Application of Sequential Dynamic Genetic Algorithms. ScientiaIranica,2005,12(2):117-130
    [33]. Klemetson S. L., Grenney W. J. Dynamic Optimization of Regional Wastewater TreatmentSystems. Journal (Water Pollution Control Federation),1985,57(2):128-134
    [34]. Kuo J. T., Wang Y. Y., Lung W. S. A Hybrid Neural-Genetic Algorithm for ReservoirWater Quality Management. Water Research,2006,40(7):1367-1376
    [35]. Lee C. S., Chang S. P. Interactive Fuzzy Optimization for an Economic and EnvironmentalBalance in a River System. Water Research,2005,39(1):221-231
    [36]. Lee C. S., Yang C. Y., Chang S. P., et al. Sustainable Watershed Management by FuzzyGame Optimization. Ottawa,Canada:2010.
    [37]. Lee C., Wen C. Application of Multiobjective Programming to Water Quality Managementin a River Basin. Journal of Environmental Management,1996,47(1):11-26
    [38]. Li Y. P., Huang G. H., Nie S. L. An Interval-Parameter Multi-Stage StochasticProgramming Model for Water Resources Management Under Uncertainty. Advances inWater Resources,2006,29(5):776-789
    [39]. Liebman J. C., Lynn W. R. The Optimal Allocation of Stream Dissolved Oxygen. WaterResources Research,1966,2(3):581-591
    [40]. Liu G., Liu Z., Gao H., et al. Simulation of the Lagrangian Tide-Induced Residual Currentin a Tide-Dominated Coastal System: A Case Study of Jiaozhou Bay, China. in Submitted,2012,
    [41]. Liu S., Li X., Zhang J., et al. Nutrient Dynamics in Jiaozhou Bay. Water, Air,&SoilPollution: Focus,2007,7(6):625-643
    [42]. Liu S., Ye X., Zhang J., et al. The Silicon Balance in Jiaozhou Bay, North China. Journal ofMarine Systems,2008,74(1-2):639-648
    [43]. Liu S., Zhang J., Chen H. T., et al. Factors Influencing Nutrient Dynamics in the EutrophicJiaozhou Bay, North China. Progress In Oceanography,2005,66(1):66-85
    [44]. Liu Z., Wei H., Bai J., et al. Nutrients Seasonal Variation and Budget in Jiaozhou Bay,China: A3-Dimensional Physical–Biological Coupled Model Study. Water, Air,&SoilPollution: Focus,2007,7(6):607-623
    [45]. Liu Z., Wei H., Liu G., et al. Simulation of Water Exchange in Jiaozhou Bay by AverageResidence Time Approach. Estuarine, Coastal and Shelf Science,2004,61(1):25-35
    [46]. Lohani B. N., Thanh N. C. Probabilistic Water Quality Control Policies. Journal of theEnvironmental Engineering Division,1979,105(4):713-725
    [47]. Lohani B. N., Thanh N. C. Stochastic Programming Model for Water Quality Managementin a River. Journal (Water Pollution Control Federation),1978,50(9):2175-2182
    [48]. Loucks D. P., Revelle C. S., Lynn W. R. Linear Programming Models for Water PollutionControl. Management Science,1967:166-181
    [49]. Loucks D. P., Stedinger J. R., Haith D. A. Water Resource Systems Planning and Analysis.Englewood Cliffs, N.J: Prentice-Hall.1981. p559.
    [50]. Maeda A. The Emergence of Market Power in Emission Rights Markets: The Role of InitialPermit Distribution. Journal of Regulatory Economics,2003,24(3):293-314
    [51]. Maier H. R., Morgan N., Chow C. W. K. Use of Artificial Neural Networks for PredictingOptimal Alum Doses and Treated Water Quality Parameters. Environmental Modelling&Software,2004,19(5):485-494
    [52]. Marsili-Libelli S., Giusti E. Water Quality Modelling for Small River Basins.Environmental Modelling&Software,2008,23(4):451-463
    [53]. McNamara J. R. An Optimization Model for Regional Water Quality Management. WaterResources Research,1976,12(2):125-134
    [54]. Mohan C., Nguyen H. T. Reference Direction Interactive Method for SolvingMultiobjective Fuzzy Programming Problems. European Journal of Operational Research,1998,107(3):599-613
    [55]. Mostafavi S. A., Afshar A. Waste Load Allocation Using Non-Dominated ArchivingMulti-Colony Ant Algorithm. Procedia Computer Science,2011,3(0):64-69
    [56]. Mujumdar P. P., Saxena P. A Stochastic Dynamic Programming Model for Stream WaterQuality Management. Sadhana,2004,29(5):477-497
    [57]. Mujumdar P. P., Vemula V. R. S. Fuzzy Waste Load Allocation Model:Simulation-Optimization Approach. Journal of computing in civil engineering,2004,18:120
    [58]. Nair S. S., Sohngen B. L., King K. W., et al. Integrated Watershed Economic Model forNon-Point Source Pollution Management in the Upper Big Walnut Creek Watershed, Oh.2010,
    [59]. National Research Council U. C. Assessing the Tmdl Approach to Water QualityManagement. Washing D.C.: Natl Academy Pr.2001.
    [60]. Nishizawa E. Effluent Trading for Water Quality Management: Concept and Application tothe Chesapeake Bay Watershed. Marine Pollution Bulletin,2003,47(1-6):169-174
    [61]. Orlob G. T. Mathematical Modeling of Water Quality in Streams Lakes and Reservoirs.New York: Chichester [West Sussex].1983. p518.
    [62]. Ossman M. E., Badr N. B. E. Lake Edku Water-Quality Monitoring, Analysis andManagement Model for Optimising Drainage Water Treatment Using a GeneticAlgorithm. International Journal of Environment and Waste Management,2010,5(1):152-162
    [63]. Pei P. H., Wang Y. Eutrophication Research of West Lake, Hangzhou, China: ModelingUnder Uncertainty. Water Research,2003,37(2):416-428
    [64]. Pena-Haro S., Pulido-Velazquez M., Llopis-Albert C. Stochastic Hydro-EconomicModeling for Optimal Management of Agricultural Groundwater Nitrate Pollution UnderHydraulic Conductivity Uncertainty. Environmental Modelling&Software,2011,26(8):999-1008
    [65]. Qin X. S., Huang G. H., Zeng G. M., et al. An Interval-Parameter Fuzzy NonlinearOptimization Model for Stream Water Quality Management Under Uncertainty. EuropeanJournal of Operational Research,2007,180(3):1331-1357
    [66]. Rani D., Moreira M. M. Simulation–Optimization Modeling: A Survey and PotentialApplication in Reservoir Systems Operation. Water Resources Management,2010,24(6):1107-1138
    [67]. Raphael B., Smith I. A Direct Stochastic Algorithm for Global Search. AppliedMathematics and Computation,2003,146(2-3):729-758
    [68]. Rauch W., Harremo s P. Genetic Algorithms in Real Time Control Applied to MinimizeTransient Pollution From Urban Wastewater Systems. Water Research,1999,33(5):1265-1277
    [69]. Ray G. C. Conservation Concepts for the Seas and Coasts. Environmental Conservation,1986,13(2):95-96
    [70]. Redfield A. C. The Biological Control of Chemical Factors in the Environment. AmericanScientist,1958,46(3):205-221
    [71]. Revelle C. S., Loucks D. P., Lynn W. R. Linear Programming Applied to Water QualityManagement. Water Resources Research,1968,4(1):1-9
    [72]. Saadatpour M., Afshar A. Waste Load Allocation Modeling with Fuzzy Goals;Simulation-Optimization Approach. Water Resources Management,2007,21(7):1207-1224
    [73]. Sakawa M., Seo F. Interactive Multiobjective Decision-Making in Environmental SystemsUsing the Fuzzy Sequential Proxy Optimization Technique. Large Scale Systems,1983,4:223-243
    [74]. Sasikumar K., Mujumdar P. P. Fuzzy Optimization Model for Water Quality Managementof a River System. Water Resources Planning and Management,1998,124(2):79-88
    [75]. Shen Z. L. Historical Changes in Nutrient Structure and its Influences On PhytoplantkonComposition in Jiaozhou Bay. Estuarine, Coastal and Shelf Science,2001,52(2):211-224
    [76]. Shen Z., Liu Q., Wu Y., et al. Nutrient Structure of Seawater and Ecological Responses inJiaozhou Bay, China. Estuarine, Coastal and Shelf Science,2006,69(1-2):299-307
    [77]. Shi J., Li G., Wang P. Anthropogenic Influences On the Tidal Prism and Water Exchangesin Jiaozhou Bay, Qingdao, China. Journal of Coastal Research,2011,27(1):57-72
    [78]. Sreekanth J., Datta B. Coupled Simulation-Optimization Model for Coastal AquiferManagement Using Genetic Programming-Based Ensemble Surrogate Models andMultiple-Realization Optimization. Water Resources Research,2011,47(4): W4516
    [79]. Srinivas N., Deb K. Muiltiobjective Optimization Using Nondominated Sorting in GeneticAlgorithms. Evolutionary Computation,1994,2(3):221-248
    [80]. Taher I. A., Culver T. B. Cost Optimization for Robust Optimal Tmdl Allocation.Proceedings of World Environmental and Water Resources Congress2008, Honolulu,Hawaii:2008,316.
    [81]. Thomann R. V., Sobel M. J. Estuarine Water Quality Management and Forecasting. Journalof the Sanitary Engineering Division,1964,90(SA5):9-36
    [82]. Tung Y. K., Hathhorn W. E. Multiple-Objective Waste Load Allocation. Water ResourcesManagement,1989,3(2):129-140
    [83]. UNEP. Geo Year Book2004: An Overview of Our Changing Environment. Kenya: UnitedNations Environment Programme.2004.96p.
    [84]. USEPA. Final Water Quality Trading Policy.United States Environment ProtectionAgency.Office of Water.Washington D.C.2003.11p
    [85]. USEPA. Overview of Current Total Maximum Daily Loads-Tmdl-Program andLagulations.Washington DC.2007a.
    [86]. USEPA. Protocol for Developing Nutrient Tmdls.EPA841-B-99-007.Office of Water(4503F).Washington D.C.1999.135p
    [87]. USEPA. Technical Support Document for Water Quality-Based ToxicsControl.EPA/505/2-90-001.Office of Water (EN-336).Washington DC.1991.144p
    [88]. USEPA. Water Quality Trading Toolkit for PermitWriters.EPA-833-R-07-004.Washington DC.2007b.
    [89]. Wanielista M. P., Bauer C. S. Centralization of Waste Treatment Facilities. Journal (WaterPollution Control Federation),1972,44(12):2229-2238
    [90]. Wen C. G., Lee C. S. A Neural Network Approach to Multiobjective Optimization forWater Quality Management in a River Basin. Water Resources Research,1998,34(3):427-436
    [91]. Yandamuri S. R. M., Srinivasan K., Bhallamudi S. M. Multiobjective Optimal Waste LoadAllocation Models for Rivers Using Nondominated Sorting Genetic Algorithm-Ii. Journalof Water Resources Planning and Management,2006,132(3):133-143
    [92]. Yang W., Chen M. J., Liu Y., et al. A System Dynamics Model for Water QualityManagement-Waste Load Allocation. Advanced Materials Research,2011,291:1781-1785
    [93]. Yang X. Economic Development and the Division of Labor. Oxford: Wiley-Blackwell.2003.636p.
    [94]. Zhang G., Zhang J., Liu S. Characterization of Nutrients in the Atmospheric Wet and DryDeposition Observed at the Two Monitoring Sites Over Yellow Sea and East China Sea.Journal of atmospheric chemistry,2007,57(1):41-57
    [95]. Zhang G., Zhang J., Xu J., et al. Distributions, Sources and Atmospheric Fluxes of NitrousOxide in Jiaozhou Bay. Estuarine, Coastal and Shelf Science,2006,68(3–4):557-566
    [96]. Zhang J. Watersheds Nutrient Loss and Eutrophication of the Marine Recipients: A CaseStudy of the Jiaozhou Bay, China. Water, Air,&Soil Pollution: Focus,2007,7(6):583-592
    [97]. Zhang J., Liu M. G. Observations On Nutrient Elements and Sulphate in Atmospheric WetDepositions Over the Northwest Pacific Coastal Oceans-Yellow Sea. Marine chemistry,1994,47(2):173-189
    [98]. Zhao X., Wang X., Shi X., et al. Environmental Capacity of Chemical Oxygen Demand inthe Bohai Sea: Modeling and Calculation. Chinese Journal of Oceanology and Limnology,2011,29(1):46-52
    [99]. Zou R., Carter S., Shoemaker L., et al. Integrated Hydrodynamic and Water QualityModeling System to Support Nutrient Total Maximum Daily Load Development forWissahickon Creek, Pennsylvania. Journal of environmental engineering,2006,132:555
    [100]. Zou R., Liu Y., Riverson J., et al. A Nonlinearity Interval Mapping Scheme for EfficientWaste Load Allocation Simulation-Optimization Analysis. Water Resources Research,2010,46(8): W8530
    [101]. Zou R., Lung W. S., Wu J. An Adaptive Neural Network Embedded Genetic AlgorithmApproach for Inverse Water Quality Modeling. Water Resources Research,2007,43(8):W8427
    [102].鲍献文,闫菊,赵亮等. ECOM模式在胶州湾潮流计算中的应用.海洋科学,1999(5):57-60
    [103].边淑华,胡泽建,丰爱平等.近130年胶州湾自然形态和冲淤演变探讨.黄渤海海洋,2001,19(3):46-53
    [104].蔡惠文,任永华,孙英兰等.海水养殖环境容量研究进展.海洋通报,2009,28(02):109-115
    [105].陈彬,王金坑.福建湄洲湾海域营养状态趋势预测.台湾海峡,2002,21(003):322-327
    [106].陈红霞,华锋,刘娜等.胶州湾近期海岸线、水深变化研究.海洋科学进展,2009,27(2):149-154
    [107].陈梅,钱新.公众参与流域水污染控制的机制研究.环境科学与管理,2010,35(002):5-8
    [108].陈时俊,孙文心,王化桐.胶州湾环流和污染扩散的数值模拟——Ⅱ污染浓度的计算.山东海洋学院学报,1982,12(4):1-12
    [109].褚芹芹,李磊,李培良.胶州湾潮流场的示踪粒子数值模拟研究.中国海洋大学学报(自然科学版),2010,40(11):29-34
    [110].崔正国.环渤海13城市主要化学污染物排海总量控制方案研究.青岛:中国海洋大学,博士,2008.
    [111].邓宗成.胶州湾东北部海域水环境综合整治规划探讨.青岛:中国海洋大学,硕士,2008.
    [112].丁文兰.潮汐和潮流.北京:科学出版社.1992.39-57.
    [113].董兆选,娄安刚,崔文连.胶州湾海水营养盐的分布及潜在性富营养化研究.海洋湖沼通报,2010(03):149-156
    [114].方云子.水资源保护手册.南京:河海大学出版社.1988.1486.
    [115].冯金鹏,吴洪寿,赵帆.水环境污染总量控制回顾、现状及发展探讨.南水北调与水利科技,2004,2(01):45-47
    [116].傅国伟.水污染物排放总量的分配方法与原则.北京:科学出版社.1993.
    [117].高大鲁,魏泽勋,华锋.胶州湾多分潮漫滩数值模拟研究.海洋科学进展,2007,25(2):131-138
    [118].高会旺.海洋浮游生态系统共及模型研究.青岛:青岛海洋大学博士后研究工作报告.1998.
    [119].高会旺,张英娟,张凯.大气污染物向海洋的输入及其生态环境效应.地球科学进展,2002,17(03):326-330
    [120].高云鹏.胶州湾营养盐与浮游植物粒级结构时空变化研究.青岛:中国海洋大学,硕士,2010.
    [121].高振会,马文斋,刘娜娜等.“环湾保护、拥湾发展”战略背景下的胶州湾及邻近海域生态环境问题研究.海洋开发与管理,2009,26(10):87-92
    [122].葛明,王修林,闫菊等.胶州湾营养盐环境容量计算.海洋科学,2003,27(3):36-42
    [123].郭森.纳污海域水环境容量计算与总量分配方法研究.北京:中国环境科学研究院,硕士,2006.
    [124].郭卫东,章小明,杨逸萍等.中国近岸海域潜在性富营养化程度的评价.台湾海峡,1998,17(01):64-70
    [125].郭耀同.胶州湾海域COD浓度场数值计算应用研究.海洋湖沼通报,1997(3):11-17
    [126].国家海洋局.2010年中国海洋环境状况公报.北京.2011.
    [127].韩彬,曹磊,李培昌等.胶州湾大沽河河口及邻近海域海水水质状况与评价.海洋科学,2010,34(08):46-49
    [128].韩笑天,邹景忠,张永山.胶州湾赤潮生物种类及其生态分布特征.海洋科学,2004,28(2):49-54
    [129].何清.杭州湾北部水域污染物扩散输移的数值模拟与分析.上海:华东师范大学,博士,2000.
    [130].华涛,周启星,贾宏宇.人工湿地污水处理工艺设计关键及生态学问题.应用生态学报,2004,15(7):1289-1293
    [131].霍文毅,俞志明,邹景忠等.胶州湾浮动弯角藻赤潮生消动态过程及其成因分析.水产学报,2001,25(03):222-226
    [132].蒋风华,王修林,石晓勇等.胶州湾海底沉积物-海水界面磷酸盐交换速率和通量研究.海洋科学,2003,27(05):50-54
    [133].蒋凤华,王修林,石晓勇等. Si在胶州湾沉积物-海水界面上的交换速率和通量研究.青岛海洋大学学报(自然科学版),2002,32(06):1012-1018
    [134].蒋凤华,王修林,石晓勇等.溶解无机氮在胶州湾沉积物-海水界面上的交换速率和通量研究.海洋科学,2004,28(04):13-24
    [135].李栋,王如松,周传斌.基于LEAP的城市居住区能值评价与复合情景分析.中国科学院研究生院学报,2009,26(1):72-82
    [136].李广玉,鲁静,何拥军.胶州湾浮游植物多样性及其与环境因子的关系.海洋地质动态,2005,21(4):10-13
    [137].李克强.胶州湾主要化学污染物海洋环境容量研究.青岛:中国海洋大学,博士,2007.
    [138].李克强,王修林,阎菊等.胶州湾石油烃污染物环境容量计算.海洋环境科学,2003,22(4):13-17
    [139].李莉.青岛市环胶州湾污染控制单元主要污染物排放容量估算.青岛:中国海洋大学,硕士,2009.
    [140].李敏强.遗传算法的基本原理与应用.北京:科学出版社.2002.425.
    [141].李乃胜,于红军,赵松龄.胶州湾自然环境与地质演化.北京:海洋出版社.2006.282.
    [142].李如忠,钱家忠,汪家权.水污染物允许排放总量分配方法研究.水利学报,2003(05):112-115
    [143].李如忠,舒琨.基于基尼系数的水污染负荷分配模糊优化决策模型.环境科学学报,2010,30(07):1518-1526
    [144].李胜.平原感潮河网地区地表水环境容量及污染物总量控制研究.南京:河海大学,硕士,2006.
    [145].李适宇,李耀初,陈炳禄等.分区达标控制法求解海域环境容量.环境科学,1999(04):96-99
    [146].李艳,李瑞香,王宗灵等.胶州湾浮游植物群落结构及其变化的初步研究.海洋科学进展,2005,23(3):328-334
    [147].李玉,俞志明,宋秀贤.胶州湾水体四季之交之时的污染状况研究.海洋科学,2009,33(11):55-59
    [148].栗苏文,李红艳,夏建新.基于Delft3D模型的大鹏湾水环境容量分析.环境科学研究,2005,18(05):91-95
    [149].林高松.基于公平、效益与多目标优化的河流污染负荷分配方法研究.广州:中山大学,博士,2006.
    [150].林高松,李适宇,江峰.基于公平区间的污染物允许排放量分配方法.水利学报,2006b,37(01):52-57
    [151].林高松,李适宇,江峰.考虑污染源强随机变化的感潮河流环境容量优化.水科学进展,2006a,17(03):317-322
    [152].林亮君.不确定环境下的河川总量管制策略.台中:朝阳科技大学,硕士,2005.
    [153].林巍,傅国伟,刘春华.基于公理体系的排污总量公平分配模型.环境科学,1996,17(03):35-37
    [154].刘宝碇,赵瑞清.不确定规划及进一步的研究问题.指挥技术学院学报,1999,10(006):102-105
    [155].刘贯群,叶玉玲,袁瑞强等.近年胶州湾陆源SGD及其营养盐输送.海洋环境科学,2007,26(06):510-513
    [156].刘哲.胶州湾水体交换与营养盐收支过程数值模型研究.青岛:中国海洋大学,博士,2004.
    [157].娄安刚,王学昌,孙长青等.胶州湾海面溢油轨迹的数值模拟.黄渤海海洋,2001,19(1):1-8
    [158].娄安刚,王学昌,吴德星等.胶州湾大沽河口邻近海域海水水质预测.海洋环境科学,2002,21(1):54-56
    [159].吕新刚,乔方利,夏长水.胶州湾潮汐潮流动边界数值模拟.海洋学报,2008,30(4):21-29
    [160].吕新刚,赵昌,夏长水等.胶州湾水交换及湾口潮余流特征的数值研究.海洋学报(中文版),2010,32(02):20-30
    [161].马妍妍,李广雪,刘勇等.胶州湾湿地动态变化的遥感分析及质量评价.海洋地质与第四纪地质,2008,28(1):69-75
    [162].孟伟.流域水污染物总量控制技术与示范.北京:中国环境科学出版社.2008.263.
    [163].孟伟,苏一兵,郑丙辉.中国流域水污染现状与控制策略的探讨.中国水利水电科学研究院学报,2004,2(04):242-246
    [164].孟祥明,张宏伟,孙韬等.基尼系数法在水污染物总量分配中的应用.中国给水排水,2008,24(23):105-108
    [165].逄勇,陆桂华.水环境容量计算理论及应用.北京:科学出版社.2010.220.
    [166].浦祥.大沽河流域非点源氮输出及其对胶州湾水质影响的数值研究.青岛:中国海洋大学,硕士,2011.
    [167].乔贯宇,华锋,范斌等.基于ADCP湾口测流的纳潮量计算.海洋科学进展,2008,26(3):285-291
    [168].乔旭东.胶州湾排污管理区及其主要排海化学污染物分配容量的准确计算研究.青岛:中国海洋大学,博士,2009.
    [169].青岛市第十四届人民代表大会第四次会议.青岛市国民经济和社会发展第十二个五年计划纲要.青岛.2011.
    [170].青岛市环境保护局.青岛市环境质量报告书(2009).青岛:青岛出版社.2010.184.
    [171].青岛市统计局.青岛市统计年鉴.青岛:青岛出版社.2010.
    [172].曲肇兴.大连湾污染物排放总量控制的研究.大连:大连海事大学,硕士,2007.
    [173].任玲.胶州湾生态系统中浮游体系氮循环模型的研究.青岛:青岛海洋大学,博士,1999.
    [174].沈国英.海洋生态学.北京:科学出版社.2010.360.
    [175].沈志良.胶州湾营养盐结构的长期变化及其对生态环境的影响.海洋与湖沼,2002(03)
    [176].宋国君.论中国污染物排放总量控制和浓度控制.环境保护,2000(06):11-13
    [177].宋秀贤,俞志明.胶州湾东北部养殖海域夏季营养盐分布特征及其对浮游植物生长的影响.海洋与湖沼,2007,38(05):446-452
    [178].孙长青,王学昌,孙英兰等.填海造地对胶洲湾污染物输运影响的数值研究.海洋科学,2002,26(10):47-50
    [179].孙丕喜,王宗灵,战闰等.胶州湾海水中无机氮的分布与富营养化研究.海洋科学进展,2005,23(04):466-471
    [180].孙丕喜,张朝晖,郝林华等.桑沟湾海水中营养盐分布及潜在性富营养化分析.海洋科学进展,2007,25(04):436-445
    [181].孙英兰,陈时俊.胶州湾环流和污染扩散数值模拟Ⅳ胶州湾变边界模型.山东海洋学院学报,1987,17(1):10-25
    [182].孙英兰,王丽霞,史峰岩.洋浦经济开发区污水排海总量控制.青岛海洋大学学报(自然科学版),2000(03):383-389
    [183].孙英兰,张越美.胶州湾三维变动边界的潮流数值模拟.海洋与湖沼,2001,32(4):355-362
    [184].孙优善,孙鹤鲲,王学昌等.胶州湾近岸海域水质状况调查与评价.海洋湖沼通报,2007(04):93-97
    [185].万修全,鲍献文,吴德星等.胶州湾及其邻近海域潮流和污染物扩散的数值模拟.海洋科学,2003,27(5):31-36
    [186].王翠.基于生态系统的海岸带综合管理模式研究.青岛:中国海洋大学,博士,2009.
    [187].王芳.近岸海域污染物总量控制方法及应用研究.天津:天津大学,硕士,2008.
    [188].王刚.胶州湾入海点源、海水养殖污染物通量研究.青岛:中国海洋大学,硕士,2009.
    [189].王化桐,方欣华,匡国瑞等.胶州湾环流和污染扩散的数值模拟——Ⅰ.胶州湾潮流数值计算.山东海洋学院学报,1980,10(1):26-63
    [190].王金南,田仁生,吴舜泽等.“十二五”时期污染物排放总量控制路线图分析.中国人口.资源与环境,2010,20(08):70-74
    [191].王明翠,刘雪芹,张建辉.湖泊富营养化评价方法及分级标准.中国环境监测,2002,18(5):47-49
    [192].王伟,林晓红.基于环境容量的胶州湾水环境保护对策.节能与环保,2010(07):25-27
    [193].王伟,张世奇,纪友亮.环胶州湾海岸线演化与控制因素.海洋地质动态,2006,22(09):7-10
    [194].王修林,李克强,石晓勇.胶州湾主要化学污染物海洋环境容量.北京:科学出版社.2006.293.
    [195].王媛,牛志广,王伟.基尼系数法在水污染物总量区域分配中的应用.中国人口.资源与环境,2008(03):177-180
    [196].吴开治.环境保护中分析化学数据的处理——对数正态分布数据的统计方法及其在评价空气质量方面的应用.环境科学与技术,1984(01):51-59
    [197].吴耀泉.胶州湾沿岸带开发对生物资源的影响.海洋环境科学,1999,18(2):38-42
    [198].吴永森,辛海英,吴隆业等.2006年胶州湾现有水域面积与岸线的卫星调查与历史演变分析.海岸工程,2008,27(03):15-22
    [199].吴玉霖,孙松,张永山.环境长期变化对胶州湾浮游植物群落结构的影响.海洋与湖沼,2005,36(6):487-498
    [200].吴悦颖,李云生,刘伟江.基于公平性的水污染物总量分配评估方法研究.环境科学研究,2006,19(02):66-70
    [201].吴增茂,俞光耀.胶州湾北部水层生态动力学模型与模拟:II.胶州湾北部水层生态动力学的模拟研究.青岛海洋大学学报:自然科学版,1999,29(3):429-435
    [202].吴增茂,翟雪梅,张志南等.胶州湾北部水层—底栖耦合生态系统的动力数值模拟分析.海洋与湖沼,2001,32(6):588-597
    [203].邢乃春,陈捍华. TMDL计划的背景、发展进程及组成框架.水利科技与经济,2005,11(09):534-537
    [204].徐恒振.海水水质级别的模糊综合评价方法.海洋环境科学,1992,11(2):41-48
    [205].徐荟华.流域管理中的公众参与问题.前沿,2004(3):60-62
    [206].闫涵.黄海海域大气气溶胶与氮元素沉降通量研究.青岛:中国海洋大学,硕士,2008.
    [207].闫菊.胶州湾海域海岸带综合管理研究.青岛:中国海洋大学,博士,2003.
    [208].闫菊,鲍献文,王海等.胶州湾污染物COD的三维扩散与输运研究.环境科学研究,2001,14(2):14-17
    [209].闫菊,王海,鲍献文.胶州湾三维潮流及潮致余环流的数值模拟.地球科学进展,2001,16(2):172-177
    [210].杨积武.近岸海域实施污染物排放总量控制的理论与实践.海洋信息,2001(02):24-26
    [211].杨龙,王晓燕,孟庆义.美国TMDL计划的研究现状及其发展趋势.环境科学与技术,2008,31(09):72-76
    [212].杨世伦,陈启明,朱骏等.半封闭海湾潮间带部分围垦后纳潮量计算的商榷——以胶州湾为例.海洋科学,2003,27(8):43-47
    [213].姚云,郑世清,沈志良.利用人工神经网络模型评价胶州湾水域富营养化水平.海洋环境科学,2008,27(01):10-12
    [214].叶常明.水污染理论与控制.北京:学术书刊出版社.1989.281.
    [215].叶小敏,纪育强,郑全安等.胶州湾海岸线历史变迁的分形分析.海洋科学进展,2009,27(04):495-501
    [216].于丽敏.青岛及中国近海大气沉降中无机氮组分的研究.青岛:中国海洋大学,硕士,2007.
    [217].余静,孙英兰,张越美等.宁波-舟山海域入海污染物环境容量研究.环境污染与防治,2006,28(01):21-24
    [218].余云军.胶州湾流域与海岸带综合管理研究.青岛:中国海洋大学,博士,2010.
    [219].俞光耀,陈时俊.胶州湾环流和污染扩散的数值模拟Ⅲ.胶州湾拉格朗日余流与污染物质的迁移.山东海洋学院学报,1983,13(1):1-14
    [220].俞光耀,吴增茂.胶州湾北部水层生态动力学模型与模拟:I.胶州湾北部水层生态动力学模型.青岛海洋大学学报:自然科学版,1999,29(3):421-428
    [221].张存智,韩康,张研峰等.大连湾污染排放总量控制研究:海湾纳污能力计算模型.海洋环境科学,1998,17(003):1-5
    [222].张晓晓,姚庆祯,陈洪涛等.黄河下游营养盐浓度季节变化及其入海通量研究.中国海洋大学学报:自然科学版,2010,40(7):82-88
    [223].张学庆.近岸海域环境数学模型研究及其在胶州湾的应用.中国海洋大学,2006.
    [224].张学庆,孙英兰.胶州湾入海污染物总量控制研究.海洋环境科学,2007,26(04):347-350
    [225].张学庆,孙英兰,蔡惠文等.胶州湾COD、N、P污染物浓度数值模拟.海洋环境科学,2005,24(3):64-67
    [226].张燕.海湾入海污染物总量控制方法与应用研究.青岛:中国海洋大学,博士,2007.
    [227].张永胜.浙江省象山港入海污染物总量控制规划研究.青岛:中国海洋大学,硕士,2004.
    [228].张哲,王江涛.胶州湾营养盐研究概述.海洋科学,2009,33(11):90-94
    [229].赵瑾.环胶州湾河流对胶州湾水沙输送的数值模拟.青岛:中国海洋大学,硕士,2007.
    [230].赵亮,魏皓,赵建中.胶州湾水交换的数值研究.海洋与湖沼,2002,33(01):23-29
    [231].赵全升,李悦,谢新民等.环境系统分析原理.北京:地质出版社.2005.236.
    [232].郑全安,徐鸿楷.胶州湾遥感研究Ⅰ:总水域面积和总岸线长度量算.海洋与湖沼,1991,22(3):194-199
    [233].郑淑英.“十一五”我国海洋环境质量变化趋势分析.中国海洋报.2006
    [234].周春艳,李广雪,史经昊.胶州湾近150年来海岸变迁.中国海洋大学学报(自然科学版),2010,40(07):99-106
    [235].周克钊,周敉.城市污水处理厂设计进水水质确定和出水水质评价.给水排水,2006(09):26-30
    [236].周明,孙海栋.遗传算法原理及应用.北京:国防工业出版社.1999.202.
    [237].周蓉蓉.基于ANN与遗传算法的胶州湾近岸海域水污染总量控制研究.青岛:中国海洋大学,硕士,2009.
    [238].周雯. TMDL中MOS的确定方法及其在感潮河流中的应用.广州:中山大学,硕士,2007.
    [239].周孝德,郭瑾珑,程文等.水环境容量计算方法研究.西安理工大学学报,1999,15(03):1-6
    [240].邹景忠,董丽萍,秦保平.渤海湾富营养化与赤潮问题的初步探讨.海洋环境科学,1983,2(2):41-54
    [241].邹锐,张祯祯,刘永等.神经网络模型用于数值水质模型逼近的适用性及非敏感参数的欺骗效应.环境科学学报,2010(10):1964-1970
    [242].邹锐,朱翔,贺彬等.基于非线性响应函数和蒙特卡洛模拟的滇池流域污染负荷削减情景分析.环境科学学报,2011,31(10):2312-2318
    [243].左华,朱磊,康广凤.胶州湾入海污染物目标总量控制研究.环境科技,2009,22(06):54-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700