用户名: 密码: 验证码:
双半轴式转台结构振动传递特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
惯性导航和制导技术在航空、航天、航海领域中具有重要作用。随着惯性元件和惯性系统精度的不断提高,对测试设备的要求也越来越高。在实际工作中,测试设备由于多源激励,产生振动能量,经多个传递路径传递到被测元件上,这影响和制约着被测元件精度和性能的提高。因此,研究测试设备的振动产生机理和振动能量传递分布情况对降低设备运行中的振动噪声具有重要意义。本文以测试设备中广泛应用的双半轴式转台结构为研究对象,通过理论计算、数值仿真和实验相结合的方式,研究振动能量在双半轴式转台结构中的传递特性。具体研究工作如下:
     针对复杂结构系统中子结构的连接方式与振动能量传递路径之间的关系,根据多刚体理论对结构系统的图论描述,建立复杂结构系统振动能量传递模型。利用四端参数传递矩阵法建立链式系统振动能量分析模型;针对复杂结构系统中振动能量有分支的问题,提出四端参数矢量法和多体系统传递矩阵法相结合的方法,建立分支式振动能量传递模型和网络式振动能量传递模型。通过子系统界面间的运动协调性与力的平衡关系,推导出用于计算功率流的各连接点力和速度表达式,结合传递路径分析方法,建立复杂结构系统的振动能量传递路径分析模型。
     根据复杂结构系统振动能量传递分析模型,结合双半轴式转台结构的结构特点,基于导纳功率流法进行双半轴式转台结构振动传递特性分析。根据子结构分析方法将其划分为:半轴子结构、轴承子结构、框架子结构以及支座基础子结构,并分别推导各子结构的四端参数传递矩阵,利用多体系统传递矩阵法建立双半轴式转台结构耦合分析系统,进而获得各子结构的导纳功率流。利用导纳功率流对比不同激励情况下的双半轴式转台结构进行振动传递特性分析,识别影响目标结构的主要振源和主要振动传递路径。
     根据双半轴式转台结构主要为板壳结构和实体结构组合结构的特点,从有限元动力学方程出发,结合功率流理论推导板壳结构和实体结构的连续体功率流计算公式,并将其运用到不同激励情况下的双半轴式转台结构振动传递特性中,识别主要传递路径。针对板壳结构与实体结构结合面处多节点传递振动能量的问题,提出一种均方根功率流为评价指标的方法,识别多激励情况下的振源对目标结构的重要度。利用脚本语言对有限元软件进行二次开发,将功率流作为场变量,实现双半轴式转台结构振动功率流可视化研究。
     根据相关研究内容建立双半轴式转台结构实验系统。通过进行双半轴式转台结构模态测试实验,实验结果与前文有限元仿真结果吻合较好,表明所建立的双半轴式转台结构有限元模型合理,表明仿真结果在一定程度上能反映实际结构的振动特性。根据振动声强法进行双半轴式转台结构振动功率流测试实验研究,分析结构的振动传递特性,给出实验数据曲线图,与理论值进行对比分析证明前文理论计算的正确性。
It is universally acknowledged that inertial navigation and guidance technology takes thevital place in aviation, spaceflight, navigation field. As the precision of the inertial system andcomponents have been improved, higher requirements of the test equipment need to besatisfied as well. However, test equipment motivated by multiexciter, and then produces anamount of vibration energy. The energy transfers to components under detection viadistinguished paths, which may have a severe impact in the testing process and pose a threatto the improvement of the system performance. Therefore, the study of vibration generatingmechanism and vibration energy transfer distribution in test equipments is of greatsignificance in reducing the vibration noise. This dissertation took the most widely useddouble half shafts type turntable as research object, made the combination of the theoreticalanalysis and numerical simulation, and conducted the transfer characteristics of the vibrationenergy in double half shafts structure. Specific research work is as follows:
     According to the relation of each substructure connection type and vibration energytransfer path in vibration system, based on structure system description by graph theory inmulti-rigid-body theory, the paper builds complex structural vibration energy transmissionmodeling. The four-pole parameter vector method was adopted to establish a vibration energyanalysis model of chain system when subsystems had equal input and output in the statevector. In case the input and output of subsystems were not equal, four-pole parameter vectormethod was combined with transfer matrix of multi-object system to establish vibrationenergy models of branch-type vibration system and network vibration system. Additionally,the force and velocity formula of connection points was attained through the motioncoordination and force equilibrium relationship between the interfaces of joint subsystems. Sothat it was simple to get corresponding power flow calculation method. In this case, the powerflow was taken as the evaluation index for vibration to analyze energy transfer in everyvibration transmission path and identify the main vibration energy flow path.
     With respect to vibration analysis methods of complex systems, double half shaftsturntable structure feature and the generating mechanism of vibration, the new approach ofvibration transfer characteristics was put forward on the basis of the mobility power flow. First of all, according to vibration analysis method of complex system, the system wasdivided into4parts: half shaft subsystem, bearing subsystem, frame subsystem and supportbase subsystem. The paper derived transfer matrixes of each subsystem based on four-poleparameter. Then the double half shafts coupling equation was established by transfer matrixmethod of multi-body system. The power flow of subsystem was obtained. The mainvibration source and transfer paths were identified using mobility power flow method undermulti-excitation.
     According to the feature that double half shafts turntable was made up of plate and solidstructure, taking the finite element dynamic equation into consideration, the calculationformula for power flow in continuum was derived. The method was applied on double halfshafts turntable to identify main transfer path. For multiple nodes transmission vibrationenergy in the connection face of plate and solid, the paper presented a mean square powerflow of evaluation approach. The approach was identified importance of vibration sourceunder multi-excitation. The finite element ABAQUS software was secondary development byscenarios language. The power flow was regarded as field variable. The power flow visibilityof double half shafts turntable was implemented.
     Several relevant experiments were performed to design and establish double half shaftsexperimental platform. First of all, experiments on the dynamic characteristics of the doublehalf shafts system were conducted to obtain the modal characteristic parameters of thisstructure. The experiment results were in good agreement with the calculations, the analysisof simulation result reflected vibration characteristics of real structure to some extent.Secondly, the test vibration transmissibility of double half shafts turntable was conductedbased on vibration intensity. The experimental results were consistent with the theoreticalanalysis and numerical simulation results to some extent, therefore the theoretical analysis inthis dissertation could be proved feasible.
引文
[1] M. Sedighi, M. Mohammadi. On The Static and Dynamic Analysis of A Small Satellite.Proceedings of the3rd IAA International Symposium on SmallSatellites for EarthObservation.2003,5:107-109P
    [2]翟有新,冯培德.振动条件下平台角振动对惯导系统误差的影响研究.中国惯性技术学报.2000,8(1):1-6页
    [3]王芳,郭青.惯性平台的振动引起惯导系统航向漂移的研究.弹箭与制导学报.2006,26(1):42-44页
    [4]周长义.三轴飞行仿真转台控制系统设计与控制算法研究.中国科学院长春光学精密机械与物理研究所博士论文.2005:2页
    [5]耿雷,季旭,李海越.三轴转台结构静动态特性分析.组合机床与自动化加工技术.2008,(4):1-4页
    [6]李杰.精密光电跟踪转台框架的静动态特性分析.光电工程.2010,37(1):61~64页
    [7]李志佳.高频响三轴转台O型框架的拓扑分析和优化设计.哈尔滨工业大学硕士学位论文2007:22-48页
    [8]刘一薇,陈效中.平台框架的设计与加工工艺.导弹与航天运载技术.1995,(4):41-47页
    [9]赵鹏,杨牧,张葆.航空机载光学设备的振动分析及座架减震器的设计.光学精密工程.1997,5(3):58-63页
    [10]贾平,张葆.航空光电侦察平台关键技术及其发展.光学精密工程.2003,11(1):82-88页
    [11]程锋,任戈.惯性稳定平台建模及振动传递率分析.光电工程:2006,33(4):19-22页
    [12]艾云慧,周擎坤,金忠庆.舰载天线稳定平台振动分析与减振设计.新技术新工艺.2006,(4):61-64页
    [13]王卿,杨朋军,王佳民.惯性平台结构系统振动特性的实验分析与控制.战术导弹控制技术.2006,(52):92-95页
    [14]洪华杰,王学武等.武装直升机用稳定平台减振器特性的仿真研究.兵工学报.2009,30(12):1647-1652页
    [15] H.G.D. Goyder and R.G. White. Vibration Power Flow from Machines into Built-upStructures. Part III: Power Flow through Isolation System, J.S.V.1980,1(68),77-96P
    [16] Fahy, F. J. Statistical energy analysis: a critical overview. Phil. Trans. R. Soc. Lond.1994, A346,431-447P
    [17] Miller D. W and Folotow A.H. A Traveling Wave Approach to Power Flow in SturcturalNetworks. Joural of Sound and Vibration.1989,128(1):145-162P
    [18] Langley R.S. On the vibrational conductivity approach to high frequency dynamics fortow-dimensional structural components. Joural of Sound and Vibration.1995,182(4):637-657P
    [19] Signorell I, Flotow A. H. V. Wave propagation power flow and resonance in a trussbeam. Joural of Sound and Vibration.1988,126:127-144P
    [20] Bealel S., Accorasi M. L. Power flow in two and three dimensional frame structures.Joural of Sound and Vibration.1995,18(4):685-702P
    [21] Noiseux D. U. Measurement of power flow in uniform beams and plates. Joural AcousSoc Am1970,47(2)
    [22]朱翔,李天匀.基于有限元的损伤结构功率流可视化研究.机械工程学报,2009,45(2):132-137页
    [23]宋孔杰等.功率流理论在柔性振动控制技术中的应用与发展.机械工程学报,2003,(9):23-28页
    [24] Snowdon J. C. Vibration and shock in damped mechanical System,1968.
    [25] Ewins D.J. On prediction point mobility plota from measurement of other mobilityparameters. Joural of Sound and Vibration.1980,70(1):685-702P
    [26]宋孔杰.机械阻抗法在振动隔离技术中的应用.噪声与振动控制,1983,8(2)
    [27]殷学文,崔宏飞等.功率流理论、统计能量分析和能量有限元法之间的关联性.船舶力学.2007,11(4):637-646页
    [28]曾勤谦,华宏星.耦合结构中的功率流有限元法.上海交通大学学报.2000,34(4):503-506页
    [29] R.J.Pinnington and R.G.White, Power Flow through Machine Isolators to Resonant andNon-Resonant Beams. Joural of Sound and Vibration.1981,75(2),179-197P
    [30] R.J.Pinnington and R.G.White. Vibration power transmission to a seating of a vibrationisolated motor. Joural of Sound and Vibration.1987,118(3),515-530P
    [31] R.J.Pinnington. Vibration Power Transmission from a Finite Source Beam to an InfiniteReceiver Beam via a Continuous Compliant Mount. Joural of Sound andVibration.1990,137(1):117-129P
    [32] B. Petersson. Effective mobility for the description of vibration transmission betweenmachinery and foundation. Pro. Inter. Noise’80, Florida, USA,719-722P
    [33] B. Petersson, J. Plunt. On effective mobilities in the prediction of structure-boren soundtransmission between a source structure and receiving strcucture. part I: Th eoreticalbackground and basic experimental studies. Joural of Sound and Vibration:1982,4(82)
    [34] R. G. Dejong. The role of dynamic structural stiffness in successful vibration isolation.Pro. Of Noise-Con’83,43P
    [35] Mead D. J. White R.G. and Zhang X. M. Power Transmission in a PeriodicallySupported Infinite Beam Excited at a Single Point. Joural of Sound and Vibration.1994,169(4):558-561P
    [36] Pan J and Hansen H. Total Power Flow from a Vibration Rigid Body to a Flexible Panelthrough Multiple Elastic Mounts. Journal of Acoustical Society of Americal.1992,92(2):895-907P
    [37] Cuscieri J.M. Stuctural Power-flow Analysis Using a Mobility Approach of anL-Shaped Plate. Journal of Acoustical Society of Americal.1990,87(3):1159-1165P
    [38] Todd E. R. and Rajendra S. Power flow through mulitidimensional compliant jointsusing mobility and modal approaches. Journal of Acoustical Society of Americal.1995,97(5):2882-2891P
    [39] Dai J. and Lai J.C.S.etd. Investigation of Vibration Power Tansmission over aRectangular Excitation Area Using Effective Point Mobility. Joural of Sound andVibration.1999,225(5):831-844P
    [40] Y. P.Xiong. Power Flow Analysis of Complex Coupled Systems by ProgressiveApproaches. Joural of Sound and Vibration.2001,239(2):275-295P
    [41] Y. P. Xiong, J. T. Xing and W.G. Price. A power flow mode theory based on a systemsdamping dis tribution and power flow design approaches. Proceedings of the RoyalSociety.2005,461,3381-3411P
    [42] Sun L., Leung A.Y. T., Lee Y. Y., Song K. Vibrational Power-flow Analysis of a MIMOSystems Using the Transmission Matrix Approach. Mechanical Systems and SignalProcessing.2007,21:365-388P
    [43] W.J.Choi, Y. P. Xiong and R. A. Shenoi. Power flow analysis for a floating sandwichraft isolation system using a higher-order theory. Joural of Sound and Vibration.2009,319:228-246P
    [44]严济宽.振动功率流的一般表达式及其测量方法.噪声与振动控制.1987,(1):24-29页
    [45]周保国.复杂隔振系统的功率流研究.上海交通大学博士学位论文.1994:25-30页
    [46]熊冶平,宋孔杰,程德林.非对称多支承柔性隔振系统分析.山东工业大学学报.1991,21(1):15-24页
    [47]霍睿.复杂隔振系统的功率流传递特性与控制策略研究.山东工业大学博士论文1998:12页
    [48]毛映红.复杂连续隔振器系统功率流传递与控制研究.山东工业大学博士论文1998:12页
    [49]孙玲玲,宋孔杰.复杂机械系统多维耦合振动传递矩阵分析.机械工程学报.2005,41(4):38-43页
    [50]牛军川,李蒙,郭浩男.柔性基础上斜置隔振系统的功率流传递特性.内燃机学报.2010,28(5):470-474页
    [51]陈荣,孙玲玲等.斜置弹性支承隔振系统功率流特性分析.噪声与振动控制.2009,(10):54-57页
    [52]赵飞,孙玲玲等.浮筏隔振系统多维耦合振动特性分析.2010,(6):47-50页
    [53]盛美萍,王敏庆等.多支承弹性非保守耦合系统导纳功率流.机械科学与技术.2001,20(2):249-250页
    [54]颜松,盛美萍,陈晓利.多源激励下浮筏隔振系统导纳功率流研究.噪声与振动控制.2006,(4):26-28页
    [55]行晓亮,汪源源,盛美萍.壳板组合结构功率传递分析.机械科学与技术.2005,24(10):1194-1196页
    [56]钱斌,汪源源,盛美萍,孙进才.距离对板壳结构传递点导纳的影响.西北工业大学学报.2005,23(4):156-160页
    [57]陈晓利,盛美萍.多加筋圆柱壳体振动特性的导纳法研究.振动与冲击.2007,26(4):132-136页
    [58]苏尔敦,王敏庆.梁板耦合结构振动功率流特性研究.噪声与振动控制.2009,(4):6-9页
    [59]李天匀,张维衡,张小铭.L形加筋板结构的导纳功率流研究.1997,10(1):112-117页
    [60]闫志安,崔润卿.耦合板的导纳功率流.焦作工学院学报(自然科学版).2001,20(2):144-147页
    [61]仪垂杰,陈伟宁等. BBD板结构的振动功率流研究.力学学报.1995,27(4):495-500页
    [62]亓文果,宋孔杰,张蔚波.齿轮箱类结构振动功率流分析.山东工业大学学报.2002,32(1):6-9页
    [63]张蔚波,于复生等.导纳法与模态法结合的复杂系统功率流特性研究.现代制造工程,2007(9):6-10页
    [64] Mickol J.D.Bernhard R.J.Ray W Herrick. An investigation of Energy transmission dueto flexural wave propagation in lightweight, built-up structure. Report No.0353-4HL86-40, Indiana: Ray W. Herrick Laboratories, Purdue University,1986
    [65] J.T. Xing and W. G. Price. A power flow analysis based on continuum dynamics.Mathematical, Physical&Engineering Sciences,1999,455:400-438P
    [66] C. Simmons Structure-borne sound transmission through plate junctions and estimatesof sea coupling loss factors using the finite element method. Journal of Sound andVibration,1991,144(2):215-227P
    [67] J. A. Steel and R. J. M. Craik Statistical Energy Analysis of Structure-borne SoundTransmission by Finite Element Methods. Journal of Sound and Vibration,1994,178(4):553-561P
    [68] B. R. MACE AND P. J. SHORTER ENERGY FLOW MODELS FROM FINITEELEMENT ANALYSIS. Journal of Sound and Vibration,2000,233(3):369-389P
    [69] S.A.Hambric Power flow and mechanical intensity calculations in structural finiteelement analysis. Journal of Vibration and Acousti,1990:542-549P
    [70]伍先俊,朱石坚.基于有限元的功率流计算及隔振系统优化设计技术研究.船舶力学,2005,9(4):38-145页
    [71]关姗姗.基于有限元动力计算的浮筏隔振系统功率流研究.舰船科学技术.2007,29(5):132-135页
    [72]谢基榕.基于有限元的功率流分析方法及实现.船舶力学.2009,13(1):144-149页
    [73]张雪冰.变压器油箱振动功率流研究.振动与冲击.2009,28(5):188-191页
    [74]杨德庆,罗放,陈静.有限元功率流落差计算方法研究.噪声与振动控制.2009,(6):127-131页
    [75]顾太平,何琳,赵应龙,胡宗成.一种计算全三维功率流的新型有限元方法.武汉理工大学学报(交通科学与工程版).2009,33(3):561-564页
    [76]顾太平,何琳,孟凡明.基于功率流的空气弹簧最优安装位置与载荷分配计算方法.船舶力学.2010,14(1-2):168-171页
    [77]李凯.基于声强可视化的船舶结构声振能量特性研究.大连理工大学博士学位论文.2011:3-14页
    [78] F. J. Fahy. Measurement of mechanical input power to a structure. Journal of Sound andVibration.1969,10(3):517-518P
    [79] R. J. Pinnington, R. G. White. Power flow through machine isolators to resonant andnon-resonant beams. Journal of Sound and Vibration.1981,75(2):179-197P
    [80]俞微,张建武,沈荣瀛,韩斌.浮筏隔振系统功率流的实验研究.振动、测试与诊断.1996,16(2):44-47页
    [81]吴广明,沈荣瀛,华宏星.多层隔振系统功率流实验研究.振动工程学报.2004,17(S)936-938页
    [82]朱建国.振动功率流防振系统.噪声与振动控制.2001,(1):13-17页
    [83]葛蕴珊,刘志刚,张文平.隔振装置中振动功率流的测量研究.哈尔滨工程大学学报.1999,20(2):7-14页
    [84]钟章贵,余永丰,邓海华,李红钢.整舱浮筏隔振系统功率流理论与实验研究.噪声与振动控制.2007,(6):24-27页
    [85] D.U. Noiseux. Measurement of power flow in uniform beams and plates. Journal of theAcoustical Society of America.1970,47(1):238-247P
    [86] G. Pavic. Measurement of structure borne wave intensity I:.Formulation of the methods.Journal of Sound and Vibration.1976,49(2):221-230P
    [87] P. D. Bauman. Analytical and Experimental Evaluation of Various Techniques for theCase of Flexural Waves in One-Dimensional Structures, Journal of Sound and Vibration,Vol.14, No.5,677–694P
    [88] Pan J, Ming R, Hansen C H, Clark R L. Experimental determination of the totalvibratory power transmission in an elastic beam. The Journal of the Acoustical Societyof America.1998,104(2):898-906P
    [89] Pinnington R J, Briscoe A R.Externally applied sensor for axis symmetric waves in afluid filled pipe. Journal of Sound and Vibration.1994,173(4):503-516P
    [90] Briscoe A R, Pinnington R J. Axisymmetric vibrational power measurement in emptyand fluid filled pipes. Journal of Sound and Vibration.1996,192(4):771-791P
    [91]李天匀,刘土光,刘理.结构声强测量方法及误差分析.振动、测试与诊断.1999,19(1):30-34页
    [92]朱传焕.振动能量的测量不确定度评价.计测技术,2008,28(2):32-38页
    [93]陆益民.互谱声强测量误差分析及修正方法研究.合肥工业大学博士学位论文.
    [94] J. W.Verheij. Cross-spectral density method for measuring structure borne power flowon beams and pipes. Journal of Sound and Vibration.1980,70(1):133-139P
    [95] J.W. Verheij. Measurements of structure-borne wave intensity on lightly damped pipes.Noise Control Engineering Journal.1990,35(2):69-76P
    [96]陈胜鹏,王照奎,邱桂明.机械结构噪声转动功率流的测量.汕头大学学报(自然科学版)2003,18(4):52-58页
    [97] Linjama. J,Lahti T.Measurement of bending wave reflection and impedance in a beamby the structural intensitytechnique. Journal of Sound and Vibration.1993,161(2):317-331P
    [98] L.Gavric. Measurement of structural intensity using a normal mode approach. Journalof Sound and Vibration.1997,206(1):87-101P
    [99] Halkyard C. R., Mace B. R. A Fourier series approach to the measurement of flexuralwave intensity in plates. Joural of Sound and Vibration.1997,203(1):101-126.
    [100]王术新,姜哲,朱志伟.一种测量一维结构振动功率流的新方法.振动工程学报.2003,16(3):368-372页
    [101]赵东升.振动功率流测量方法的研究.机械研究与应用.2007,20(4):32-33.
    [102] Du Jing-Tao, Jin Guo-Yong, Yang Tie-Jun, etal. Experimental study on measurement ofstructural surface volume veloeity based on distributed Piezoeleetrie sensor. Journal ofVibration Engineering.2008,21(3):235-240P
    [103] Williams E G,Dardy H D,Fink R G.A technique for measurement of structure-borneintensity in plates.The Journal of the Acoustical Society of America.1985,78(6):2061-2068P
    [104] Saijyou K.,Yoshikawa S. Structural intensity measurement of cylindrical shell based onNAH technique and influences of a rib on the acoustic energy flow. Journal of heAcoustical Society of America.1999,20(2):125-136P
    [105] Freschi A. A., Pereira A.K. A., Ahmida K. M., Frejlich J.,etal. Analyzing the totalstructural intensity in beams using a homodyne laser doppler vibrometer. Shock andVibration.2000,7(5):299-308P.
    [106]郭荣,万钢,左曙光.燃料电池轿车车内噪声传递路径分析研究.汽车工程.2007,29(8):635-64页
    [107]韩旭,郭永进,管西强等.动力总成引起的轿车乘员室结构噪声传递路径分析与控制.机械强度.2009,31(4):537-542页
    [108]张义民.频域内振动传递路径的传递度排序.自然科学进展.2007,17(3):410-41页
    [109] Transfer Path Analysis. The qualification and quantification of vibro-acoustic transferpaths. LMS International. Application Notes. Belgium: LMS International.1995.
    [110]张义民.振动系统随机传递路径响应分析.工程力学.2008,25(1):133-136页
    [111] Plunt J. Strategy for transfer path analysis (TPA) applied to vibro-acoustic systems atmedium and high frequencies. Proceedings of the23rd International Conference onNoise and Vibration Engineering, ISMA23. Leuven Belgium: International Seminar onModal Analysis (ISMA),1998.
    [112]龙岩,史文库,梁天也,周舟,张军.基于改进传递路径分析方法的动力总成悬置系统优化及评价.汽车工程.2009,31(10):957-962页
    [113]郝鹏,郑四发,杨殿阁,连小珉,李克强.运动物体噪声场分解的传递路径声全息方法.振动工程学报.2010,23(6):591-595页
    [114]王万英,勒晓雄,彭为,郭辉,尹燕莉.轮胎振动噪声结构传递路径分析.振动与冲击.2010,29(6):88-91页
    [115]白景萧,曹贻鹏,张文平.内燃机燃烧噪声传递路径及评价.内燃机学报.2010,28(6):530-535页
    [116]赵薇,张义民.振动传递路径系统输入的重要性分析.中国工程机械学报.2010,8(2):132-137页
    [117]王成,梁天也,龙岩.基于动力总成三点悬置的改进TPA方法应用研究.2011,4(2):34-37页
    [118] Petersson B.A.T., Gibbs B.M. Use of the source descriptor concept in studies ofmulti-point and multi-directional vibrational sources. Journal of Sound and Vibration.1993,168(1):157-176P
    [119] Petersson B.A.T., Gibbs B.M. Towards a structure-borne sound source characterization.Applied Acoustics.2000,61(3):325-343P
    [120] Gibbs B.M., Petersson B.A.T., Qiu S. Characterization of structure-borne emission ofbuilding services machinery using the source descriptor concept. Noise ControlEngineering Journal.1991,37(2):53-61P
    [121] Fulford R.A., Gibbs B.M. Structure-borne sound power and source characterisation inmulti-point-connected systems, Part I: case studies for assumed force distributions.Journal of Sound and Vibration.1997,204(4):659-677P
    [122] Fulford R.A., Gibbs B.M. Structure-borne sound power and source characterization inmulti-point-connected systems, Part II: about mobility functions and free velocities.Journal of Sound and Vibration.1999,220(2):203-224P
    [123] Fulford R.A., Gibbs B.M. Structure-borne sound power and source characterization inmulti-point-connected systems, Part III: force ratio estimates. Journal of Sound andVibration.1999,225(2):239-282P
    [124] Kim S., Inoue A., Singh R. Experimental study of structure-borne noise transfer pathsover the mid-frequency regime. SAE Paper2005-01-2338.2005.
    [125] Inoue A., Kim S.B., Singh R. Comparative evaluation of structure-borne noise transferpaths in a laboratory experiment. Noise Control Engineering Journal.2006,54(6):382-395P
    [126] Inoue A., Singh R., Fernandes G.A. Absolute and relative path measures in a discretesystem by using two analytical methods. Journal of Sound and Vibration.2008,313(3-5):696-722P
    [127] Lee S.K. Application of vibrational power flow to a passenger car for reduction ofinterior noise. Shock and Vibration.2000,7(5):277-285P
    [128] Lee S.K. Identification of a vibration transmission path in a vehicle by measuringvibrational power flow. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering.2004,218(2):167-175P
    [129] Ho-Jung Lee, Kwang-Joon Kim. Multi-dimensional vibration power flow analysis ofcompressor system mounted in outdoor unit of an air conditioner. Journal of Sound andvibration.2004,(272):607-625P
    [130] Xu Han, Yongjin Guo, Yan'e Zhao, Ping Zhu. Structure-borne noise reduction in thecompartment of a passenger car using power-based transfer path analysis. InternationalJournal of Vehicle Noise and Vibration (IJVNV).2008,4(2)
    [131] C. Q. Liu. Combination of an improved FRF-based substructure synthesis anad powerflow method with application to vehicle axle noise analysis.Journal of Shock andvibration.2008,15:51-60P
    [132]赵群,张义民,赵晋芳.振动传递路径的功率流传递灵敏度分析.振动与冲击.2009,28(7):183-186页
    [133]赵群,张义民,赵晋芳.非线性刚度振动传递路径系统灵敏度分析.东北大学学报(自然科学版).2009,30(8):1174-1177页
    [134]冯国平,谌勇,黄修长,华宏星.舰艇艉部纵向激励传递特性分析.噪声与振动控制.2009,6:132-135页
    [135]冯国平,谌勇,黄修长,华宏星.基于功率流的柔性系统振动传递特性分析.机械强度.2010,32(5):719-722页
    [136]师汉民.机械振动系统——分析测试建模对策(下册).武汉:华中科技大学出版社.2004:35-40页
    [137]江国和,吴广明,沈荣瀛.振动控制中的功率流方法研究现状.华东船舶工业学院学报(自然科学版).2003,17(4):17-22页
    [138]曾攀主编.工程有限元方法.北京:科学出版社.2010:2-7页
    [139]高云剑,徐时吟.复杂柔性隔振系统研究概述.噪声与振动控制.2011,(5):27-31页
    [140]王文亮,杜作润编著.结构振动动态子结构方法.上海:复旦大学出版社.1985:275-280页
    [141]左鹤声.机械阻抗方法与应用.北京:机械工业出版社.1987:128-130页
    [142]王维凡,王有智.多输入多输出振动传递系统的模型及算法.应用力学学报.1995,12(1):46-52页
    [143]刘延柱,洪嘉振,杨海兴著.多刚体系统动力学.北京:高等教育出版社.1989:74-75页
    [144]芮筱亭,贠来峰,陆毓琪,何斌,王国平著.多体系统传递矩阵法及其应用.北京:科学技术出版社.2008,15页,117-126页
    [145]杨富锋,芮筱亭,展志焕.含有分叉的受控多体系统传递矩阵法.动力学与控制学报.2008,6(3):213-218页
    [146]朱石坚.振动理论与隔离技术.北京:国防工业出版社,2006:282-284,45-63页
    [147]陈冰鸣.滚动轴承振动与噪声分析.中国高新技术企业.2010,(16):13-14页
    [148] Tang Bin. Dynamic analysis of crankshafts using dynamic stiffnessmatrix. Journal ofShip Mechanics.2009,13(3):465-476P
    [149]谢涛,刘品宽,陈在礼.转台轴系轴承刚度矩阵的理论推导与数值计算.哈尔滨工业大学学报.2003,3(35):329-333页
    [150] Lim T.C.Singh R. Vibration transmission through rolling element bearings.part I:bearing stiffness formulation. Journal of Sound and Vibration,1990,139(2):179-199P
    [151] Rook T.E, Singh R. Mobility analysis of structure-born noise power flow throughbearings in gear box-like structures. Noise Control Eng. J.1996,44(2):69-78P
    [152]曹志远编著.板壳振动理论.北京:中国铁道出版社.1989:13-18页
    [153]徐芝纶.弹性力学(下册).北京:高等教育出版社.1982:7-9页
    [154] Stephen A.Hambric and Richard P.Szwerc. Predictions of structural intensity fieldsusing solid finite elements. Noise Control Eng,1999,47(6):209-217P
    [155]曹金凤,王旭春.Python语言在ABAQUS中的应用.机械工业出版社.2011:149-154页
    [156]朱兆华,黄菊花等. ABAQUS前后处理模块二次开发的应用.设计与研究.2009,(1):30-33页
    [157]李德葆著.实验模态分析及其应用.北京:科学技术出版社.2001:1-10页
    [158]刘习君,贾启芬著.工程振动与测试技术.天津:天津大学出版社.1999:1-10页
    [159]哈里斯,刘树林.冲击与振动手册(第5版).北京:中国石化出版社.2008,245-248页
    [160] Mazurek D F, Dewolf J T. Experimental study of bridge monitoring technique.Journalof the Structural Engineering. ASCE,1990,116(9):2532-49P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700