用户名: 密码: 验证码:
大规模计算系统的光互联技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪第一个十年,人类社会进入了一个崭新的时代——“计算时代”。在这个时代里,各种形式的信息处理设备、个性化的信息服务触手可及。这些无处不在的信息服务从根本上都依赖于强大的信息支持平台——大规模计算系统。随着微处理器技术的进一步发展以及多核芯片的出现,传统计算系统的处理瓶颈逐渐得到克服,取而代之的是互联瓶颈:首先,芯片之间、服务器之间以及机架之间互联带宽成为互联网络的稀缺资源;其次,大规模的数据通信和处理造成巨大的能量消耗;再次,电子技术从根本上无法支持高速传输。与此同时,光通信技术经历了电信网阶段、数据通信阶段,现在到计算通信阶段。与传统的光通信网络相比,计算通信阶段的光通信设计目标不仅仅是高带宽,更重要的是要考虑低功耗、低时延、小物理尺寸以及高的芯片集成密度。
     为了解决下一代计算系统通信瓶颈,围绕光互联技术在未来大规模计算系统中的应用,本论文从光互联构架以及网络实验平台;硅基光电子器件的互联技术;以及支持流媒体业务的光突发交换网络等三个方面,通过实验和仿真验证光互联网络相关技术与机制。
     论文主要工作可以归纳如下:
     第一,提出用于数据中心的光互联构架,包括开放式光交换平台和虚拟光互联接口适配卡,并且实现了一种具有跨层信息交互能力的光网络节点。随着云服务业务继续普及并且形成规模化,下一代数据中心互联网络的设计必须考虑到全带宽需求、带宽灵活性需求和低功耗需求。针对全带宽需求和低功耗需求,设计实现了一个支持多种交换速度和交换功能的开放式光交换原型机。利用这个平台,实现了无阻塞的4×4交换机:交换总时延为50.7-ns,交换速度为ns级;成功演示了T比特每秒每端口的无误码光分组交换:功率代价1-dB之内的波长输入功率的动态范围超过4-dB,多数波长的功率代价小于1-dB。针对带宽灵活性需求,成功演示了一种可重构波长的混合光分组交换和电路交换机制:不仅提供波长数目可重构的WDM分组交换,而且可以选择波长作为电路交换。其次,通过设计基于10-GE光互联接口适配卡,成功演示了端到端高清视频的传输与交换,同时演示了这种光接口对Wimax用户流媒体业务的支持。最后,设计实现了一种具有跨层信息交互能力的光网络节点,通过统一的控制平而将光性能检测设备提取的OSNR(?)PMD信息告知控制平面决定重新路由或者信号再生。
     第二,首次实现了40-Gb/s DPSK分组数据在硅基光电子器件中的交换;提出一种基于硅基光电子器件的新型分组交换节点结构和可集成的波长选择和空间混合交换平台。首先,通过实验验证这款微环谐振交换器件的高带宽特性(3-dB带宽为70-GHz)、波长选择特性、快速交换特性(贯通端口:上升速度和下降速度分别为1.46-ns和1.3-ns;分叉端口:上升速度和下降速度分别为1.71-ns和0.87-ns)以及多波长交换特性。其次,研究40-Gb/s DPSK信号交换性能,实验结果表明:两个端口均可以达到无误码状态,其中,贯通端口的功率代价为0.6-dB,分叉端口的功率代价为2.4-dB;并且通过实验研究了此款器件的相位响应。接着,提出一种新型的分组交换节点结构:利用微环作为交换单元、逻辑器件作为路由判决和可调谐的驱动电路来缓解热效应,并且实验验证了10-Gb/s1536-ns分组数据包的无误码交换和热效应的缓解技术。最后,提出一种可集成的波长选择和空间混合交换平台。并且,实验验证了以微环器件为波长选择开关和以SOA为空间交换器的混合交换网络对于数据码型和交换速率的透明性。
     第三,提出一种支持流媒体业务的OBS时间组帧和提前预约机制:研究突发重传机制对于UDP和TCP等传输层协议的性能影响;为了进一步保证突发交换网络的可靠性,提出一种简单有效的全局竞争管理机制和偏置时间选择算法。首先,结合高清视频业务的高带宽、短连接特性和突发光交换网络的高突发适配特性,提出一种支持流媒体业务的OBS时间组帧和提前预约机制,并且在OBS实验床上成功演示了高清视频的传输和交换。实验表明,采用这种机制之后,100%的视频质量评价均为极好(Excellent)。其次,研究突发重传机制对于UDP和TCP等传输层协议的性能影响,其中,突发重传机制对UDP有利,但是必须考虑重传带来的延迟,需要根据应用需求给重传数据包设定定时器,如果超过门限则重传失去意义,应该及时丢包,保证后续突发包的正常发送;重传机制同样造成时延敏感的高速TCP协议(FAST-TCP)的拥塞窗口变化,从而降低平均的吞吐量。最后,为了进一步保证突发交换网络的可靠性,提出一种简单有效的全局竞争管理机制和偏置时间选择算法,仿真结果表明,与传统的JET-OBS相比,新的控制机制不但可以极大的改善突发网络的丢包率,而且可以通过优化偏置时间的设定,减小端到端的突发时延。
The first decade of the twenty-first century has witnessed the debut of the new technical era—Computing Era. This new era features with increasing embedded intelligence in everyday objects and ubiquitous cloud services, which are all supported by the large-scale computing systems. With the continued advancements in performance of the microprocessors and the emergence of multiprocessors (CMP), the future computing systems are eventually challenged by the communication bound systems, where networking bandwidths become scarce resource, energy consumption of networking infrastructure has become the key issue and the performance of interconnection networks is fundamentally constrained by the underlying electronic technologies. At the same time, the commercial deployments of optical technologies have gone through telecom, datacom and currently entered the computercom, which features with increasing integration of optics with decreasing cost, decreasing power and increasing density.
     In order to overcome the interconnect bottleneck in large-scale computing systems, the thesis primarily emphasizes on three issues, which include the optical interconnects architectures and testbed, optical interconnects technologies based on silicon photonic device as well as the optical burst switch networking technologies supporting streaming media applications. Through testbed experiment and simulation, we have verified the feasibility of optical interconnection technologies and related mechanisms.
     The main works of this thesis are summarized as follows:
     1. We propose a ubiquitous end-to-end optical interconnection architecture featuring a configurable optical switching platform and a network agnostic optical network interface card (O-NIC). With the prevailing and scaling of cloud-based applications, the design of next-generation datacenter networks should take considerations into three main requirements, which are full bisection bandwidth capability, network bandwidth flexibility and low power consumption. Firstly, a modular optical switch fabric prototyping platform is designed and implemented to support technologies enabling diversified switching speeds and switching functionalities. A4×4switching architecture is designed with this platform, showing the ns-scale switching speed and50.7-ns total switching delay.1-Tb/s/port optical packet switching by this configured4×4optical platform is also demonstrated and bit-error-rate measurements indicate error-free transmission for all wavelengths with over4-dB input power dynamic range. A wavelength reconfigurable optical packet-and circuit-switching testbed is also constructed and experimentally verified by utilizing this optical switching platform. Secondly, an optical network interface card capable of bridging the gap between the computing systems and optical networks is developed and high-definition video streaming through this end-to-end optical system is also demonstrated. We also demonstrated a network interface to adapt the streaming services from Wimax clients. Lastly, a cross-layer-enabled optical network node for monitoring and addressing multiple impairments is proposed. Real-time monitoring and reactivity to two impairments (e.g. OSNR, PMD) via dynamically switched wavelengths and lightpath restoration are successfully shown.
     2. We investigate the optical interconnects technologies based on silicon photonic microring resonators. Firstly, we experimentally characterize the device which shows very high passband bandwidth (70-GHz of3-dB passband bandwidth), wavelength selection, very fast (1.46-ns and1.3-ns of rise and fall time for through port,1.71-ns and0.87-ns for drop port) and multiwavelength switching capability. Secondly, we experimentally demonstrate switching of a40-Gb/s differential-phase-shift-keyed (DPSK) signal through a coupled silicon photonic microring switch. Packetized transmission of the40-Gb/s DPSK signal is achieved with power penalties of0.6-dB and2.4-dB for through port and drop port signals respectively. Furthermore, we experimentally investigate the phase response of the coupled microrings. Thirdly, we present a broadband packet-switching node that utilizes silicon photonic technology. The node design uses a silicon microring for switching functionality, leverages in-flight header processing for arbitration, and has a tunable driving circuit for thermal-effect mitigation. We experimentally demonstrated an error-free routing of10-Gb/s wavelength-striped packets with lengths of up to1536-ns. Lastly, we proposed and demonstrate a hybrid optical packet and wavelength selective switching platform for high-performance data center networks. This architecture based on cascaded silicon microrings and semiconductor optical amplifiers (SOAs) supports wavelength reconfigurable packet and circuit switching, and is highly scalable, energy efficient and potentially integratable.
     3. We investigate optical burst switch networking technologies supporting streaming media applications. Firstly, in order to efficiently support high definition video clip (HDVC) services over optical networks, we propose the HDVC over optical burst switching (OBS) network and time-based assembly with advance reservation to guarantee smooth transmission of video services over this network. We experimentally demonstrate100%"excellent" of performance of HDVC transmission assisted with this novel scheme. Secondly, performances of transport layer protocols (UDP and several favors of TCPs) are experimentally investigated over OBS testbed with Burst Retransmission (BR). Experimental results show that BR is suitable for UDP when the delay caused by retransmission is still acceptable for applications, but is not suitable for FAST-TCP. Lastly, a novel contention-aware offset-time allocation mechanism (CA-OAM) is proposed to avoid burst contention in the intermediate nodes of LOBS architecture. Simulation results show that CA-OAM help to keep burst loss probability lower than10-3in LOBS network and the corresponding delay is still lower than simple JET-OBS.
引文
[1]G. E. Moore, "Cramming more components onto integrated circuits," Electronics, vol.38, no.8, pp.114-117, Apr.19,1965.
    [2]http://washingtontechnology.com/articles/2010/06/01/hp-automation-and-trim-wo rkforce.aspx
    [3]http://www.datacenterknowledge.com/archives/2009/05/26/apple-planning-1-billi on idatacenter/
    [4]http://news.cnet.com/8301_10784_3-9955184-7.html
    [5]C. K. Kao and G. A. Hockham, "Dielectric fiber surface waveguides for optical frequencies," IEE Proc. J. Optoelectronics, vol.133, no.3, pp.191-198,1966.
    [6]A. Benner, "Optical Interconnect Opportunities in Supercomputers and High End Computing," in Proceedings of Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America,2012), paper OTu2B.4.
    [7]N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, "Helios:a hybrid electrical/optical switch architecture for modular data centers," in Proceedings of the ACM SIGCOMM 2010 Conference, pp.339-350.
    [8]D. Meisner, B. T. Gold, and T. F. Wenisch, "PowerNap:eliminating server idle power," in Proc. of the 14th Int. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS'09),2009, pp.205-216.
    [9]D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, "Energy proportional datacenter networks," in Proc. of 37th Annu. Int. Symp. Computer Architecture (ISCA'10),2010, pp.338-347.
    [10]Broadcom. BCM56840 Series High Capacity StrataXGS Ethernet Switch Series. http://www.broadcom.com/products/features/BCM56840.php
    [11]M. Al Fares, A. Loukissas. and A. Vahdat, "A scalable, commodity data center network architecture", in the proceedings of ACM SIGCOMM (2008).
    [12]A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, S. Sengupta, "VL2:a Scalable and Flexible Data Center Network", in Proceedings of the ACM SIGCOMM 2009, August 16 21,2009, Barcelona, Spain
    [13]William James Dally and Brian Towle, "Principles and practices of interconnection networks", Morgan Kaufmman Publishers, an imprint of Elsevier, ISBN:0 12 2007514,2004
    [14]J. L. Hennessy and D. A. Patterson, "Computer Architecture:A Quantitative Approach", San Francisco, CA:Morgan Kaufmann,4th edition,2007
    [15]Keren Bergman, "Optical Interconnection Networks in Advanced Computing Systems", Optical Fiber Telecommunications VB (Elsevier Publishers, Academic Press, San Diego, CA,2008), Chap.19.
    [16]http://www.fulcrummicro.com/
    [17]Make IT Green:Cloud Computing and its Contribution to Climate Change. Greenpeace International,2010.
    [18]http://www.green500.org/
    [19]J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M.Watanabe, "109-Tb/s (7x97x172 Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core-fiber," in Proceedings of Optical Fiber Communication Conference 2011 (2011), PDPB6.
    [20]M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, "Transmission at 2×100Gb/s, over two modes of 40km long prototype few mode fiber, using LCOS based mode multiplexer and demultiplexer," in Proceedings of Optical Fiber Communication Conference 2011 (2011), PDPB9.
    [21]E. Mannie, Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Architecture", RFC 3945. http://tools.ietf.org/html/rfc3945.
    [22]S. J. Ben Yoo, "Optical burst and packet switching", Optical Fiber Telecommunications VB (Elsevier Publishers, Academic Press, San Diego, CA, 2008), Chap.16.
    [23]C. Qiao and M. Yoo, "Optical burst switching (OBS)-a new paradigm for an optical internet," J. High Speed Netw., vol.8, no.1, pp.6984,1999.
    [24]Y. Chen, C. Qiao and X. Yu, "Optical Burst Switching (OBS):a new area in optical networking research," IEEE Netw., vol.18, no.3, pp.1623,2004.
    [25]C. Qiao, "Labeled optical burst switching for IP-over-WDM integration," IEEE Commun. Mag., vol.38, no.9, pp.104 114,2000.
    [26]A. Vahdat, M. Al Fares, N. Farrington, R. N. Mysore, G. Porter, and S. Radhakrishnan, "Scale-out networking in the data center," IEEE Micro,30(4), 29-41 (2010).
    [27]K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, K. Yelick, and P. Kogge, Exascale computing study:technology challenges in achieving exascale systems [Online]. Available:http://www.cse.nd.edu/Reports/2008/TR 2008 13.pdf.
    [28]R. Luijten and R.Grzybowski, "The OSMOSIS Optical Packet Switch for Supercomputers", in Proceedings of Optical Fiber Communication Conference 2009, paper OTuF3.
    [29]A. Shacham, B. G. Lee, K. Bergman, "A Wideband, Non Blocking,2x2 Switching Node for a SPINet Network," IEEE Photonics Techn. Letters 17 (12) 2742 2744 (Dec 2005).
    [30]O. Liboiron-Ladouceur, et al. "The data vortex optical packet switched interconnection network". J. Lightwave Technol, vol.26, no.13, pp.1777-1789, 2008.
    [31]G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. E. Ng, M. Kozuch, and M. Ryan, "c-Through:part time optics in data centers," in SIGCOMM'10 Proceedings of the ACM SIGCOMM 2010, pp.327-338.
    [32]A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang, "Proteus:a topology malleable data center networks," in Hotnets '10 Proceedings of the Ninth ACM SIGCOMM Workshop on Hot Topics in Networks (ACM,2010), article 8.
    [1]A. Vahdat, M. Al-Fares, N. Farrington, R. N. Mysore, G. Porter, and S. Radhakrishnan, "Scale-out networking in the data center," IEEE Micro,30(4),29 41 (2010).
    [2]Kachris, C.; Tomkos, I.;, "A Survey on Optical Interconnects for Data Centers," Communications Surveys & Tutorials, IEEE (accepted).
    [3]N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz. V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, "Helios:a hybrid electrical/optical switch architecture for modular data centers," in Proceedings of the ACM SIGCOMM 2010 Conference, pp.339-350.
    [4]G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. E. Ng, M. Kozuch, and M. Ryan, "c-Through:part-time optics in data centers," in SIGCOMM'10 Proceedings of the ACM SIGCOMM 2010 conference on SIGCOMM (ACM, 2010), pp.327 338.
    [5]A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang, "Proteus:a topology malleable data center networks," in Hotnets '10 Proceedings of the Ninth ACM SIGCOMM Workshop on Hot Topics in Networks (ACM,2010), article 8.
    [6]Greenberg, A., Lahiri, P., Maltz, D.a., Patel, P., Sengupta, S. "Towards a next generation data center architecture:scalability and commoditization." In PRESTO Workshop at SIGCOMM (2008).
    [7]J. Dean and S. Ghemawat. "MapReduce:Simplified Data Processing on Large Clusters". USENIX Symposium on Operating Systems Design and Implementation, 2004.
    [8]M. Al Fares, A. Loukissas, and A. Vahdat, "A scalable, commodity data center network architecture", in the proceedings of ACM SIGCOMM (2008).
    [9]A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, "VL2:a scalable and flexible data center network", in the proceedings of A CM SIGCOMM (2009).
    [101S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, "The nature of data center traffic:measurements & analysis," in Proc.9th ACM SIGCOMM conference on Internet measurement conference, IMC'09,2009, pp.202-208.
    [11]T. Benson, A. Anand, A. Akella, and M. Zhang, "Understanding data center traffic characteristics," in Proc.1st ACM workshop on Research on enterprise networking,2009, pp.65-72.
    [12]T. Benson, A. Akella, and D. A. Maltz, "Network traffic characteristics of data centers in the wild," in Proc.10th annual conference on Internet measurement (IMC),2010, pp.267-280.
    [13]Srikanth Kandula, Jitu Padhye, Victor Bahl, "Flyways to De-Congest Data Center Networks," in Hotnets'09 Proceedings of the Eighth ACM SIGCOMM Workshop on Hot Topics in Networks (ACM,2009).
    [14]D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, "Energy proportional datacenter networks," in Proc. of 37th Annu. Int. Symp. Computer Architecture (ISCA'10),2010, pp.338-347.
    [15]K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards, A. Scarpelli. S. Scott, A. Snavely, T. Sterling, R. S. Williams, K. Yelick, and P. Kogge, Exascale computing study:technology challenges in achieving exascale systems [Online]. Available:http://www.cse.nd.edu/Reports/2008/ TR-2008-13.pdf.
    [16]Alan Benner, "Optical Interconnect Opportunities in Supercomputers and High End Computing", in proceedings of OFC 2012, OTu2B.
    [17]Krishna Kant,"Power Control of High Speed Network Interconnects in Data Center", Workshop on High Speed Networks (HSN'09),2009
    [18]Cedric F. Lam, Hong Liu, Bikash Koley, Xiaoxue Zhao, Valey Kamalov, and Vijay Gill, "Fiber Optic Communication Technologies:What's Needed for Datacenter Network Operations", IEEE Communications Magazine, vol. Vol.48 No.7(2010).
    [19]Bergman, K.;, "Optically interconnected high performance data centers," Optical Communication (ECOC),2010 36th European Conference and Exhibition on,19 23 Sept.2010。
    [20]H. Wang, A. S. Garg, K. Bergman, M. Glick, "Design and Demonstration of an All Optical Hybrid Packet and Circuit Switched Network Platform for Next Generation Data Centers," in Proceedings of Optical Fiber Communication Conference 2010, paper OTuP3.
    [21]Satoshi Shinada, Hideaki Furukawa, and Naoya Wada, "Huge capacity optical packet switching and buffering," Opt. Express 19, B406-B414 (2011)
    [22]D. Brunina, C. P. Lai, K. Bergman, "A Data Rate-and Modulation Format-Independent Packet-Switched Optical Network Test-Bed," IEEE Photonics Technology Letters 24 (5) 377379 (Mar 2012).
    [23]Bazzaz, H.H., Tewari, M., Wang, G., Porter, G., Ng, T.S.E., Andersen, D.G., Kaminsky, M., Kozuch, M.A., and Vahdat, A. "Switching the Optical Divide: Fundamental Challenges for Hybrid Electrical/Optical Datacenter Networks,"In Proceedings of SOCC'11:ACM Symposium on Cloud Computing, Cascais, Portugal, Oct.2011.
    [24]N. Farrington, Y. Fainman, H. Liu, G. Papen, and A. Vahdat. "Hardware requirement for optical circuit switched data center networks". In Proceedings of Optical Fiber Conference (OFC/NFOEC'll), Mar.2011.
    [25]W. Zhang, D. Liu, H. Wang, K. Bergman, "Experimental Demonstration of Wavelength-Reconfigurable Optical Packet-and Circuit-Switched Platform for Data Center Networks", the First IEEE Optical Interconnects Conference (01) WB 5 (May.2012).
    [26]A. Shacham, B. G. Lee, K. Bergman, "A Wideband, Non-Blocking,2x2 Switching Node for a SPINet Network," IEEE Photonics Techn. Letters 17 (12) 2742 2744 (Dec 2005).
    [27]Z. Lu, D. K. Hunter, "Optical Packet Contention Resolution through Edge Smoothing into Decomposed Sub-flows", IEEE/OSA Journal of Optical Communications and Networking, vol.1, no.7, December 2009, pp622-635.
    [28]W. Zhang, A. S. Garg, H. Wang, C. P. Lai, J. Wu, J. Lin, K. Bergman, "Experimental Demonstration of 10-Gigabit Ethernet Based Optical Interconnection Network Interface for Large-Scale Computing System," IEEE Photonics 2011 (IPC11) WG3 (Oct 2011).
    [29]http://www.plda.com/index.php
    [30]http://freeware.sgi.com/Installable/nttcp-1.47.html
    [31]http://www.videolan.org/vlc/
    [32]Han, S.; Lee, M.S.; "AC-coupled burst-mode optical receiver employing 8B/10B coding," Electronics Letters, vol.39, no.21, pp.1527-1528,16 Oct.2003 doi:10.1049/e1:20031008
    [33]Rotem, E.; Sadot, D.; "Performance analysis of AC-coupled burst mode receiver for fiber optic burst switching networks," Communications, IEEE Transactions on, vol.53, no.5, pp.899-904, May 2005
    [34]Sandvine Global Internet Phenomenon Report, Fall 2011. http://www.sandvine. com/news/pr_detail.asp?ID=312
    [35]C. P. Lai, J. Yang, A. S. Garg, M. S. Wang, M. R. Chitgarha, A. E. Willner, K. Bergman, "Experimental demonstration of packet rate 10-Gb/s OOK OSNR monitoring for QoS-aware cross layer packet protection," Optics Express 19 (16) 14871-14882 (Aug 2011).
    [36]C. P. Lai, C. Ware, B. G. Bathula, D. Brunina, A. S. Garg, K. Bergman, "Intelligent highly functional cross layer optimized interfaces for future access/aggregation networks [invited]," 13th International Conference on Transparent Optical Networks (ICTON) 2011 (Jun 2011).
    [37]Baldine, I., Vellala, M., Wang, A., Rouskas, G., Dutta, R., and Stevenson, D. "A unified software architecture to enable cross-layer design in the future internet" In Proc. of Sixteenth IEEE International Conference on Computer Communications and Networks (ICCCN) (Honolulu, HI, Aug.2007).
    [38]Xiaojun Lin; Shroff, N.B.; Srikant, R.;, "A tutorial on cross layer optimization in wireless networks", Selected Areas in Communications, IEEE Journal on, vol.24, no.8, pp.1452-1463, Aug.2006
    [39]Y.K. Lize, J. Y. Yang, L.C. Christen, X.-X. Wu, S. Nuccio, T. Wu, A.E. Willner, R. Kashyap, F. Seguin, "Simultaneous and independent monitoring of OSNR, chromatic and polarization mode dispersion for NRZ-OOK, DPSK and Duobinary", in Proceedings of Optical Fiber Communication Conference, Paper OThN2, Anaheim, CA, March 2007.
    [1]Jalali, B.; Fathpour, S.;, "Silicon Photonics," Lightwave Technology, Journal of, vol.24, no.12, pp.4600-4615, Dec.2006
    [2]H. L. R. Lira, S. Manipatruni, and M. Lipson, "Broadband hitless silicon electro optic switch for on-chip optical networks," Opt. Express, vol.17, pp. 22271-22280,2009.
    [3]Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro optic modulator," Nature 435,325-327 (2005).
    [4]B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol.,15,998-1005 (1997).
    [5]OIDA/CIAN Data center Workshop, "Quantitative Metrics for Data Centers," OFC/2012.
    [6]Nathan Binkert, Al Davis, Norman P. Jouppi, Moray McLaren, Naveen Muralimanohar, Robert Schreiber, and Jung Ho Ahn. "The role of optics in future high radix switch design". In Proceedings of the 38th annual international symposium on Computer architecture (ISCA'11). ACM, New York, USA, 437-448.
    [7]A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett.36 (4) 321-322 (2000).
    [8]B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, "All-optical comb switch for multiwavelength message routing in silicon photonic networks," IEEE Photon. Technol. Lett., vol.20, no.10, pp.767-769, May 15,2008.
    [9]B. G. Lee, B. A. Small, K. Bergman, Q. Xu, M. Lipson, "Transmission of high-data-rate optical signals through a micrometer-scale silicon ring resonator,' Optics Letters, vol.31, no.18, pp.2701-2703, Sep 2006.
    [10]A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, "Broadband operation of nanophotonic router for silicon photonic networks-on-chip," IEEE Photon. Technol. Lett., vol.22, no.12, pp.926-928, Jun. 15,2010.
    [11]A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, M. Lipson, K. Bergman, "Broadband CMOS-compatible silicon photonic electro-optic switch," Conference on Lasers and Electro Optics, CPDA11, May 2010.
    [12]Q. Xu, D. Fattal, and R. G. Beausoleil, "Silicon microring resonators with 1.5-microm radius," Opt. Express 16(6),4309-4315 (2008).
    [13]L. Xu, C. Li, C. Y. Wong, and H. K. Tsang, "Optical differential-phaseshift-keying demodulation using a silicon microring resonator," IEEE Photon. Technol. Lett., vol.21, no.5, pp.295-297, Mar 2009.
    [14]L. Xu, W. Zhang, Q. Li, J. Chan, H. L. R. Lira, M. Lipson, K. Bergman, "40-Gb/s DPSK Data Transmission Through a Silicon Microring Switch," IEEE Photonics Technology Letters 24 (6) 473-475 (Mar 2012).
    [15]B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, "Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED's," IEEE J. Quantum Electron., vol.18, no.10, pp.1509-1515, Oct 1982.
    [16]A. Shacham, B. G. Lee, K. Bergman, "A Wideband, Non-Blocking,2x2 Switching Node for a SPINet Network," IEEE Photonics Technology Letters 17 (12) 2742-2744 (Dec 2005).
    [17]Xia, F., Sekaric, L. & Vlasov, Y. "Ultracompact optical buffers on a silicon chip". Nature Photon.1,65-71 (2007).
    [18]W. Zhang, L. Xu, Q. Li, H. L. R., Lira, M. Lipson, K. Bergman, "Broadband Silicon Photonic Packet-Switching Node for Large Scale Computing Systems", IEEE Photonics Technology Letters, vol.24, no.8, pp.688-690, April 15,2012.
    [19]K. Padmaraju, J. Chan, L. Chen, M. Lipson, K. Bergman, "Dynamic Stabilization of Microring Modulator Under Thermal Perturbation," Optical Fiber Conference (OFC) 2012 OW4F.2 (Mar 2012).
    [20]L. Xu, W. Zhang, H. L. R. Lira, M. Lipson, K. Bergman, "A hybrid optical packet and wavelength selective switching platform for high-performance data center networks", Optics Express 19 (24) 24258-24267 (Nov 2011).
    [1]Didier Colle, Goutam Das, Mario Pickavet and Piet Demeester, "Architectural Trade offs for Video Transport Networks", in Proceedings of Optical Fiber Communication Conference 2010 (OFC2010),0WH6.
    [2]Cisco, "Cisco Visual Networking Index:Forecast and Methodology,2010 2015" (2011)(http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns70 5/ns827/white paper c11-481360 ns827 Networking Solutions White Paper.ht ml).
    [3]D. Simeonidou, D. K. Hunter, M. Ghandour and R. Nejabati, "Optical Network Services for Ultra High Definition Digital Media Distribution", IEEE GOSP 2008, London, United Kingdom, Sept 2008
    [4]T. Rahrer, et al., "Triple-play service quality of experience (QoE) requirements," Technical report (TR 126) of DSL Forum, Dec.2006
    [5]W. Zhang, X. Hong, Y. Yin, H. Jiang, L. Liu, H. Guo, J. Wu, and J.'Lin, "Experimental investigation of high definition video clips (HDVC) streaming over OBS Networks," in 35th European Conference on Optical Communication, 2009. ECOC'09 (2009), pp.1-2.
    [6]H. Guo, Z. Lan, J. Wu, and J. Lin, "A testbed for optical burst switching network", in Proc.OFC, OFA6, Mar 2005.
    [7]Hongxiang Guo, Yawei Yin, Takehiro Tsuritani, Peiwei Huang, Guannan Zheng, Jian Wu, Tomohiro Otani, Masatoshi Suzuki and Jintong Lin. "Experimental Demonstration of Interworking GMPLS with OBS Networks", Mo.1.6.3,2007 33th European Conference on Optical Communication, ECOC 2007, Berlin, Germany
    [8]X. Cao, J. Li, Y. Chen and C. Qiao, "Assembling TCP/IP Packets in Optical Burst Switched Networks", in Proceeding of IEEE GLOBECOM'2002,2002
    [9]J. Xu, C. Qiao and J. Li, "Efficient Channel Scheduling Algorithms in Optical Burst Switched Networks," in Proceedings of IEEE INFOCOM'2003, vol.3, pp. 2268-2278,2003.
    [10]W. Zhang, A.S. Garg, H. Wang, C.P. Lai, J. Wu, J. Lin, K. Bergman, "Experimental Demonstration of 10-Gigabit Ethernet Based Optical Interconnection Network Interface for Large Scale Computing System," IEEE Photonics 2011 (IPC11) WG3 (Oct 2011).
    [11]J. Klaue, B. Rathke, and A. Wolisz, "EvalVid-A framework for video transmission and quality evaluation," in Proceedings of the International Conference on Model ling Techniques and Tools for Computer Performance Evaluation,2003, pp.255-272.
    [12]J. Zheng, B. Zhang, H.T. Mouftah, "Toward automated provisioning of advance reservation service in next generation optical Internet," IEEE Communications Magazine (November) (2006) pp.68-74.
    [13]D. K. Hunter, M. C. Chia, and I. Andonovic. "Buffering in optical packet switches." IEEE/OSA Journal of Lightwave Technology,16(12):2081-2094, December,1998.
    [14]A. Bononi, G. A. Castanon, and O. K. Tonguz. "Analysis of hot potato networks with wavelength conversion." IEEE/OSA Journal of Lightwave Technology, 17(4):525-534, April 1999.
    [15]B. Ramamurthy and B. Mukherjee. "Wavelength conversion in WDM networking." IEEE Journal on Selected Areas in Communications, 16(7):1061-1073, September 1998
    [16]Q. Zhang, Vinod M. Vokkarane, Yuke Wang, Jason P. Jue, "Analysis of TCP over Optical Burst Switched Networks with Burst Retransmission", IEEE Globecom 2005, vol.4, pp.1978-1983.
    [17]S. Chi, Y. Yin, J. Wu, X. Hong, J. Lin, "Experimental Evaluatoin of TCP Performance over OBS Network with Burst Retransmission", in Proc. of the 7th International Conference of Optical Internet (COIN),2008.
    [18]Katz, D., and Ward, D., "Bidirectional Forwarding Detection", draft-IETF-bfd-base 09.txt, Feb.2009.
    [19]W. Zhang, Y. Yin, J. Wu, J. Lin, "Experimental Investigation of Transport Layer Protocols over OBS Testbed with Burst Petransmission", Proc. of The 8th International Conference of Optical Internet (COIN),2009.
    [20]Y. Yin, W. Zhang, H. Guo, X. Hong, J. Wu, H. Jiang, X. Wang, X. Cao, L. Liu, J.Lin, T. Tsuritani, T. Otani, "Demonstration of QoS Classified Survivability Schemes in Transparent OBS/GMPLS Networks Using Streaming Media Transmission", paper 4.6.4, the 35th European Conference on Optical Communication (ECOC2009), Vienna, Austria, Sep.20th 24th,2009.
    [21]Welsh J., Clark J. RFC4445. A Proposed Media Delivery Index.2006.
    [22]L. Liu, X. Hong, J. Wu, Y. Yin, S. Cai, J. Lin, "Experimenal comparison of high speed transmission control protocols on a traffic-driven labeled optical burst switching network test bed for grid applications", J. Optical Networking, Vol.8, No.5, May 2009, pp.491-503.
    [23]S. Floyd. (2003, Feb.) High Speed TCP for Large Congestion Windows. Internet draft. [Online]. Available:http://www.icir.org/floyd/papers/draft-floyd-tcp-highspeed-02.txt
    [24]Injong Rhee, Lisong Xu. "CUBIC:A New TCP-Friendly High Speed TCP Variants". PFLDnet 2005,2005, Lyon, France
    [25]Kelly, T. "Scalable TCP:Improving performance in highspeed wide area networks". ACM SIGCOMM Computer Communication Review 33,2 (April 2003),83-91.
    [26]C. Jin, D. X. Wei, and S. H. Low, "FAST-TCP:motivation, architecture, algorithms, performance". IEEE Infocom'04, Hongkong, China, Mar.2004
    [27]M. Gerla, M. Y. Sanadidi, R. Wang, A. Zanella, C. Casetti, and S. Mascolo, "TCP Westwood:Congestion window control using bandwidth estimation". IEEE Globecom 2001, Volume:3, pp.1698-1702
    [28]E. He, P. Vicat Blanc Primet, and M. Welzl, "A survey of transport protocols other than standard TCP", Open Grid Forum (OGF) draft, GFD.55 (2005), http://www.ogf.org/docuinents/GFD.55.pdf.
    [29]W. Zhang, J. Wu, X. Hong, J. Lin, "Novel Contention-Aware Offset-time Allocation Mechanism in LOBS Network", in Proc. of the 7th International Conference of Optical Internet (COIN),2008.
    [30]"Gigabit capable Passive Optical Networks (GPON):General characteristics" ITU T, G.984.1,03/2003.
    [1]OIDA/CTAN Data center Workshop, "Quantitative Metrics for Data Centers," OFC/2012.
    [2]http://www.cian-erc.org/
    [3]Amin Vahdat, "Delivering Scale Out Data Center Networking with Optics Why and How", in Proceedings of Optical Fiber Communication Conference 2012, OTulB.
    [4]Alan Benner, "Optical Interconnect Opportunities in Supercomputers and High End Computing", in Proceedings of Optical Fiber Communication Conference 2012,OTu2B.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700