用户名: 密码: 验证码:
射频微波SiGe HBT建模与参数提取技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信产业的高速发展,器件特征尺寸不断减小,锗硅异质结双极晶体管(SiGe HBT)最高特征频率已达到375GHz。与Ⅲ-Ⅴ族器件相比,采用SiGe工艺制作的集成电路兼容于传统CMOS工艺、集成度高和成本低等优势使其成为无线移动通信系统最佳候选。
     为了提高射频SiGe工艺集成电路设计成功率,缩短设计时间,降低设计成本,需要建立工作在射频频段精确的SiGe HBT模型。目前普遍应用的SiGe HBT模型存在模型精度不够高,模型开发周期较长等等缺点,需要付出更多的努力,使得射频SiGe HBT模型更加成熟,满足绝大部分集成电路设计的要求。本文主要研究了射频微波SiGe HBT器件建模与参数提取技术,基于这个研究课题,取得了以下所述研究成果:
     1)提出了一种改进的SiGe HBT小信号等效电路模型,该模型包含了基极发射极与集电极发射极之间的金属效应,考虑了基极发射极与基极集电极分布式电容效应;同时给出了一种半分析模型参数提取方法。提出的SiGe HBT小信号等效电路建模和参数提取方法通过测试发射极面积为0.2×5.9μm2的SiGe HBT器件验证,验证频率达到40GHz。
     2)提出了一种基于MEXTRAM模型的SiGe HBT大信号模型,模型考虑了高基极电流低集电极电压状态下的软膝效应(Soft-knee effect),改进了模型直流精度;提出的模型由ADS电路仿真Verilog-A语言开发,并形成可用于电路设计ADS软件中的电路基本元件。
     3)针对GP模型大信号工作状态下精度不足的缺点,提出了一种发射极面积可缩放SiGe HBT大信号模型,该模型考虑了自热效应和基极集电极雪崩效应。给出了一种改进的热阻参数提取技术,减小了基极电流变化对热阻的影响,提高了热阻参数提取精度。提出的尺寸可缩放模型与参数提取技术由发射极面积为0.3×20.3、0.3×13.9、0.3x9.9与0.3×1.9μm2的SiGe HBT器件验证。
     4)提出了一种基于微带传输线理论的去嵌技术,与传统去嵌技术相比,该去嵌技术不仅能去除顶层金属引入的寄生效应,同时能去除下层金属的寄生影响,提出的去嵌技术通过面积为20×2um2的多晶硅电阻验证。
     研究课题得到以下基金支持:华东师范大学博士研究生学术新人奖(项目编号:2010025),东南大学毫米波国家重点实验室开放项目(项目编号:K201002),教育部重点工程项目(项目编号:210080),国家自然基金(项目编号:61176036)
With the rapid growth of wireless communication, the device feature size continues to decrease. The transit frequencies for SiGe heterojunction bipolar transistors have been up to375GHz. As higher integration level, lower cost than III-V devices, SiGe HBT quickly becomes popular in mobile communication systems.
     For improving integrated circuit design yield, reducing the design cycle time and the time to market in the CAD-based design flow, validated and accurate SiGe HBT models are needed properly to be implemented in the design tools. With longer development cycle, poor accuracy for the universal application of the SiGe HBT model, more effort is needed to pay for the RF SiGe HBT model to meet most of the IC design requirements. The parameter extraction and modeling of SiGe HBT is studied im this paper. Based on this research topic, the following research results achieved have been listed as following:
     1) An improved small-signal equivalent-circuit model for silicon-germanium heteroj unction bipolar transistors is proposed. The proposed model has taken into account the effects of the base and collector metallisations. The prsented transistor model takes into account the parasitic effects such as substrate effect and the extrinsic capacitances. A semianalytical parameter-extraction procedure is proposed for the SiGe HBT small-singal modeling. The proposed modeling approach and parameter-extraction method are validated by SiGe HBT with0.2x5.9μm2emitter area up to40GHz.
     2) An improved large-signal equivalent-circuit model for SiGe HBT based on the MEXTRAM model (level504.5) is proposed. The proposed model has taken into account the soft knee effect. The accuray for DC performance of the proposed model is improved. The model has been implemented into the ADS circuit simulator using Verilog-A program.
     3) A scalable large-signal model for SiGe heterojunction bipolar transistors is presented. Compared with GP model, the proposed model has taken into account the self-heating effects and a new base-collector break-down description. An improved method for extracting thermal resistance is proposed. Compared with the conventional method, more accurate thermal resistance has been extracted by using the proposed approach. The proposed scalable model is verified by the SiGe HBT with emitter area of0.3x20.3,0.3x13.9,0.3x9.9and0.3x1.9μm2.
     4) Accurate de-embedding technique based on transmission line theory is presented and applied to on-wafer polysilicon resistors modeling. Compared with the conventional de-embedding methods, not only the top metal layer but also the under-layer metal parasitics are removed from the on-wafer passive devices. The proposed de-embedding technique is validated by polysilicon resistors with occupying areas of20x2um2.
     This work is supported in part by the Doctoral Post Graduate Academic New Artist of ECNU (grant no.2010025), the Open Research Program of State Key Laboratory of Millimeter Waves, Southeast University (grant no.K201002), the Key Project of Chinese Ministry of Education (grant no.210080) and National Natural Science Foundation of China (No.61176036).
引文
[1]高建军.场效应晶体管射频微波建模技术[M],电子工业出版社,2007:3-15。
    [2]李秀萍.高建军.微波射频测量技术基础[M],机械工业出版社,2007:5-13。
    [3]林玲InGaP/GaAs微波HBT器件及VCO电路研究[D],上海.中国科学院上海微系统与信息技术研究所博士学位论文,2007:3-11。
    [4]吴强.HBT参数提取方法及InP基单片集成器件的研究[D].北京,北京邮电大学博士研究生学位论文,2008:13-16。
    [5]曾树荣.半导体器件物理基础[M].北京:北京大学出版社,2007:20-55。
    [6]J.McMacken, S.Nedeljkovic, J.Gering, et al. HBT modeling [J]. IEEE Microwave Magazine Aprill.2008:48-72.
    [7]H.K.Gummel, H.C.Poon, An intergral charge control model of bipolar transistors [C] Bell System Technology.1970,49,827-850.
    [8]罗杰馨,陈静,伍青青,肖德元,王曦.BJT等效电路模型的发展[J],电子器件,第33卷,第3期,2010:308-316。
    [9]刘军,孙玲玲,Ⅲ-Ⅴ族化合物HBT模型参数提取[J],半导体学报,第27卷,第5期,2006:874-880。
    [10]孙玲玲,刘军,微波HBT建模技术研究综述[J],电子学报,第33卷第5期,2005:336-340。
    [11]王子宇等译,射频电路设计一理论与应用[M],北京,电子工业出版社,2002:233-265。
    [I]J.McMacken, S.Nedeljkovic, J.Gering, et al. HBT modeling[J]. IEEE Microwave Magazine Aprill.2008:48-72.
    [2]J.Gao, X.Li, H.Wang and G.Boeck, Improved analytical method for determination of small-signal equivalent circuit model parameters for InP/InGaAs HBTs[J], IEE Proceedings Circuits, Devices and Systems, Vol.152,No.6,2006:661-666.
    [3]P.J.Tasker and M.F.Barciela, HBT small signal T and π: model extraction using a simple, robust and fully analytical procedure[C],2002 IEEE MTT-S Digest: 2129-2132.
    [4]孙玲玲,刘军,微波HBT建模技术研究综述,电子学报,2005年5月第33卷第5期:336-340。
    [5]B.Han,.Cheng, S.Li, G.Zhai and J.Gao, An improved small-signal model for SiGe HBTs[J]. International Journal of Electronics, Vol.98, No.6, June 2011:781-791.
    [6]B.Li, S.Prasad, L.W.Yang and S.C.Wang, A semianalytical parameter-extraction procedure for HBT equivalent circuit[J]. IEEE Transactions on Microwave Theory and Techniques, Vol.46,No.10,1998:1427-1435.
    [7]B.Han, H.Wang, J.Gao, An approach for SiGe HBT small-signal modeling up to 40 GHz[J], Microwave and Optical Technology Letters, (under review).
    [8]H.K.Gummel and H.C.Poon, An integral charge control model of bipolar transistors[J], Bell System Technology[J], Vol.49, No.5,1970:827-852.
    [9]C.C. McAndrew, J.A. Seitchik, D.F. Bowers, M. Dunn, et al. VBIC95, the vertical bipolar inter-company model [J]. IEEE J. Solid-State Circuits, Vol.31, No.10, 1996,1476-1483.
    [10]M.Schroter. (2005) HICUM, a scalable physics-based compact bipolar transistor model. User's Manual HICUM/Level2. [Online].Available:www.iee.et.tudresden. de/iee/eb/eb-homee.htm.
    [11]B.Ardouin, et al. Transit time parameter extraction for the HICUM bipolar model[C], IEEE Bipolar Circuits and Technology Meeting,2001:106-109.
    [12]M.S.S.Lehmann, S.Fregonese, and T.Zimmer, A computationally efficient physics-based compact bipolar transistor model for circuit design—part I:model formulation[J], IEEE Transactions on Electron Devices, Vol.53, No.2, Feb. 2006:279-286.
    [13]S.Fregonese, S.Lehmann, T.Zimmer, M.Schroter, D.Celi, B.Ardouin,H.Beckrich, P.Brenner, and W.Kraus, A computationally efficient physics-based compact bipolar transistor model for circuit design—part II:parameter extraction and experimental results [J], IEEE Transactions on Electron Devices, Vol.53, No.2, Feb 2006:287-295.
    [14]R. van der Toorn, J.C.J. Paasschens, and W.J. Kloosterman, The mextram bipolar transistor model [Online]. Available:http://www.nxp.com/acrobat_download/ other/philipsmodels /nlur2000811.pdf.
    [15]HBT model equations [Online]. Available:http://hbt.ucsd.edu.
    [16]M.Rudolph, Documentation of the FBH HBT model. [Online]. Available: http://www.fbh-berlin.de/modeling.html.
    [17]Agilent heterojunction bipolar transistor model [Online]. Agilent Advanced Design System Doc.2006A, Nonlinear Devices.
    [18]J.Gao. RF and microwave modeling and measurement techniques for field effect transistors [M]. USA:SciTech Publishing,2009.
    [19]J.Gao, L.Zhang, J.Xu and Q.J.Zhang. Nonlinear HEMT modeling using artificial neural network technique [A]. IEEE MTT-S International Microwave Symposium Digest [C].USA:IEEE Press,2005:469-472.
    [20]Z.D.Marinkovic, et al. Bias-dependent scalable modeling of microwave FETs based on artificial neural networks [J]. Microwave and Optical Technology Letters,Vol.48,No.10,2006:1932-1936.
    [21]V.Markovic, S.Prasad and A.Stoic. Noise modeling of heterojunction bipolar transistors using neural network approach [J]. Microwave and Optical Technology Letters,Vol.49,No.4,2007:852-854.
    [22]H.Taher, D.Schreurs and B.Nauwelaers. Constitutive relations for nonlinear modeling of Si/SiGe HBTs using an ANN model [J]. International Journal of RF and Microwave Computer-Aided Engineering,Vol.15,No.2,2005:203-209.
    [23]Y.Harkouss, J.Rousset, H.Chehade,E. Ngoya, D.Barataud and J.P.Teyssier . The use of artificial neural networks in nonlinear microwave devices and circuits modeling:An application to telecommunication system design (invited article) [J]. International Journal of RF and Microwave Computer-Aided Engineering, Vol.9,No.3,1999:198-215.
    [24]J. Horn et al. X-Parameters:Extending S-parameters for measurement, modeling, and simulation of nonlinear components[C], IEEE Power Amplifier Symposium, Orlando, Fl., USA, January,2008
    [25]D.E.Root et al. Broad-band poly-harmonic distortion (PHD) behavioral models from fast automated simulations and large-signal vectorial network measurements[J], IEEE Transactions on Microwave Theory and Techniques, Vol.53,No.11, No.2005,3656-3664.
    [26]J. Verspecht and D.E.Root, Poly-harmonic distortion modeling [J], IEEE in Microwave Theory and Techniques Microwave Magazine, Vol.7, No 3, June, 2006:pp.44-57
    [27]林茂六,于海雁,一种新的大信号射频功率器件建模方法[J],电子学报,第31卷第9期,2003:1320-1322。
    [1]B.Han, J.Cheng, S.Li, et al, An improved small-signal model for SiGe HBTs[J]. International Journal of Electronics, Vol.98, No.6, June 2011:781-791.
    [2]P.J.Tasker, M.F.Barciela, HBT small signal T and π : model extraction using a simple, robust and fully analytical procedure[C],2002 IEEE MTT-S Digest: 2129-2132.
    [3]T.R.Yang, J. M.L.Tsai, C.L.Ho, et al. SiGe HBT's small-signal pi modeling[J]. IEEE Transactions on Microwave Theory and Techniques, Vol.55, No.7, July. 2007:1417-1424.
    [4]U.Schaper and B. Holzapfl, Analytical parameter extraction of the HBT equivalent circuit with T-like topology from measured S-parameters[J]. IEEE Transactions on Microwave Theory and Techniques, Vol.43, No.3,1995:493-498.
    [5]A.Oudir, M.Mahdouani, R.Bourguiga, et al, An analytic procedure for extraction of metallic collector-up InP/InGaAsP/InGaAs HBT small signal equivalent circuit parameters[J]. Solid-State Electronics 52,2008:1742-1750.
    [6]Y.Govert, P.J.Tasker, and K.H.Bachem, A physical, yet simple, small-signal equivalent circuit for the heterojunction bipolar transistor [J], IEEE Transactions on Microwave Theory and Techniques, Vol.45, No.1, June.1997:147-153.
    [7]H.Y.Chen, K.M.Chen, G.W.Huang, Small-signal modeling of SiGe HBTs using direct parameter-extraction method[J]. IEEE Transactions on Electron Devices, Vol.53, No.9, September 2006:2287-2295.
    [8]K.Lee, K.Choi, S.H.Kook, et al. Direct parameter extraction of SiGe HBTs for the VBIC bipolar compact model [J]. IEEE Transactions on Electron Devices, Vol. 52, No.3, March,2005:375-384.
    [9]M.Sotoodeh, L.Sozzi, A.Vinay, et al, Stepping toward standard methods of small-signal parameter extraction for HBT's [J], IEEE Transactions on Electron Devices, Vol.47, No.6, June,2000:1139-1151.
    [10]J.Gao, X.Li, H.Wang, et al. Approach for determination of extrinsic resistance for equivalent circuit model of metamorphic InP/InGaAs HBTs[J]. IEE Proceedings Microwaves, Antennas and Propagation, Vol.152, No.3, June,2005, 195-200.
    [11]H.Taher, D.Schreurs, B.Nauwelaers. Extraction of small-signal equivalent circuit model parameters for Si/SiGe HBT using S-parameters measurements and one geometrical information[J]. International Journal of Electronic and Communications 60,2006:567-572.
    [12]S.J.Ho, M.K.Choi, and D.W.Weide. A robust parameter extraction method for HBT small-signal equivalent circuit[J]. Microwave and Optical Technology Vol. 49, No.8, Aug.2007:1845-1848.
    [13]J.Gao, X.Li, H.Wang, et al. Improved analytical method for determination of small- signal equivalent circuit model parameters for InP/InGaAs HBTs[J]. IEE Proceedings Circuits, Devices and Systems, Vol.152, No.6, Dec.2005:661-666.
    [14]S.Bousnina, P.Mandeville, A.B.Kouki, et al, Direct parameter-extraction method for HBT small-signal model[J]. IEEE Transactions on Microwave Theory and Techniques, Vol.50, No.2, Feb 2002:529-536.
    [15]王永利,SiGe HBT小信号模型研究及SiGe BiCMOS工艺宽带低噪声放大器设计[D].南京,东南大学硕士研究生学位论文,2008:38-46。
    [16]B.Li, S.Prasad, L.W.Yang, et al A semianalytical parameter-extraction procedure for HBT equivalent circuit [J]. IEEE Transactions on Microwave Theory and Techniques, Vol.46, No.10, Oct 1998:1427-1435.
    [17]Q.Wang, C.Yuan, Y.Huang, J.Gao, An approach for determining MOSFET small-signal circuit model parameters[J], Microwave Journal, Vol 51, No.10, Oct. 2008:116-128.
    [18]J.Gao, X.Li, H.Wang. An approach to determine small-signal model parameters for InP-based Heteroj unction Bipolar Transistors[J]. IEEE Transactions on Semiconductor Manufacturing, Vol.19, No.1, Feb.2006:138-145.
    [19]U.Basaran, N.Wieser, G.Feiler, and M.Berroth, Small-signal and high-frequency noise modeling of SiGe HBTs[J], IEEE Transactions on Microwave Theory and Techniques, Vol.53,No.3,2005:919-928.
    [20]B.Han, T.Zhou, X.Xu, P.Li, J.Gao, Scalable large-signal model for SiGe HBTs[J], International Journal of RF and Microwave Computer Aided Engineering. Vol.22 No.2.March.2012:175-183.
    [1]D.H.C.Graaff, W.J.Kloosterman, New formulation of the current and charge relations in bipolar transistor modeling for CACD purposes [J], IEEE Transactions on Electron Devices,Vol.32,No.11, Nov.1985:2415-2419.
    [2]H.K.Gummel and H.C.Poon. An integral charge control model of bipolar transistors[J]. Bell System Technical. Vol.49, No.5,1970:827-852.
    [3]C.C. McAndrew, J.A. Seitchik, D.F. Bowers, M. Dunn, et al. VBIC95, the vertical bipolar inter-company model[J]. IEEE J. Solid-State Circuits, Vol.31, No.10, Oct, 1996:1476-1483.
    [4]M. Schroter. (2005) HICUM, a scalable physics-based compact bipolar transistor model. User's Manual HICUM/Leve12.[Online].Available:www.iee.et.tu-dresden. de/iee/eb/eb h-ome.html.
    [5]R. van der Toorn, J.C.J. Paasschens, and W.J. Kloosterman. The Mextram bipolar transistormodel.[Online].Available:http://www.nxp.com/acrobat_download/other/ philipsmodels/nlur2000811.pdf.
    [6]M.S.S.Lehmann, S.Fregonese, and T.Zimmer, A computationally efficient physics-based compact bipolar transistor model for circuit design—part I: model formulation[J], IEEE Transactions on Electron Devices, Vol.53, No.2, Feb.2006,279-286.
    [7]S.Fregonese, S.Lehmann, T.Zimmer, M. Schroter, D.Celi, B.Ardouin,H.Beckrich, P.Brenner, and W.Kraus, A computationally efficient physics-based compact bipolar transistor model for circuit design—part Ⅱ: parameter extraction and experimental results [J], IEEE Transactions on Electron Devices, Vol.53, No.2, Feb 2006:287-295.
    [8]J.McMacken, S.Nedeljkovic, J.Gering, et al. HBT modeling [J]. IEEE Microwave Magazine Aprill 2008:48-72.
    [9]W.J.Kloosterman and J.A.M.Geelen. Parameter extraction for the bipolar transistor model mextram, level 504. [Online]. Available:www.semiconduc-tors.philips.com.
    [10]S.Lehmann and M.Schroter. (2005) HICUM/Leve10. [Online].Available:http:// www.iee.et.tu--dresden.de/iee/eb.
    [11]Agilent heterojunction bipolar transistor model [Online]. Agilent Advanced Design System Doc.2006A, Nonlinear Devices.
    [12]F.X.Sinnesbichler, G.R.Olbrich, Accurate large-signal modeling of SiGe HBTs[C].2000 IEEE MTT-S Digest:749-752.
    [13]M.Rudolph. Documentation of the FBH HBT model. [Online]. Available:http:// www.fbh-berlin.de/modeling.html.
    [14]HBT model equations [Online]. Available:http://hbt.ucsd.edu.
    [15]C.J.Wei, J.C.M.Hwang, W.J.Ho and J.A.Higgins, Large-signal modeling of self-heating, collector transit-time, and RF-breakdown effects inpower HBTs[J], IEEE Transactions on Microwave Theory and Techniques, Vol.44, No.12, Dec 1996:2641-2647.
    [16]K.Lu, P.A.Perry, and T.J.Brazil, A new large-signal AlGaAs/GaAs HBT model including self-heating effects, with corresponding parameter-extraction procedure[J], IEEE Transactions on Microwave Theory and Techniques, Vol.43, No.7,Nov 1996,1433-1445.
    [17]M.Rudolph, R.Doerner, K.Beilenhoff, and P.Heymann, Unified model for collector charge in heterojunction bipolar transistors[J], IEEE Transactions on Microwave Theory and Techniques, Vol.50, No 7, Jul.2002:1747-1751.
    [18]Q. M. Zhang, H.Hu, J.Sitch, R.K.Surridge, and J.M.Xu, A new large signal HBT model[J], IEEE Transactions on Microwave Theory and Techniques, Vol.44, No.11,Nov 1996:2001-2009.
    [19]W.J.Kloosterman and H.C.DeGraaff, Avalanche multiplication in a compact bipolar transistor model for circuit simulation[J], IEEE Transactions on Electron Devices, Vol.36, No.7, Jul 1989:1376-1380.
    [20]K.Lee, D.H.Cho, K.W.Park and Kim, Improved VBIC model for SiGe HBTs with an unified model of heterojunction barrier effects[J], IEEE Transactions on Electron Devices, Vol.53, No.4, Apr 2006:743-752.
    [21]W.J.Kloosterman, Comparison of Mextram and theVbic95 bipolar transistor model[A], Philips Electronics N.V.1996.
    [22]B.Han, S.Li, J.Cheng, Q.Yin and J.Gao, MEXTRAM model based SiGe HBT large-signal modeling[J], Journal of Semiconductors, Vol.31, No.10, October 2010:401-406
    [24]H.Wang. L.Sun, Z.Yu, et al. MOS model 20 based RF-SOI LDMOS large-signal modeling[J], Journal of Semiconductors, Vol.29 No.10.Oct.2008:1922-1927.
    [25]B.Han, T.Zhou, X.Xu, P.Li and J.Gao, Scalable large-signal model for SiGe HBTs[J], International Journal of RF and Microwave Computer Aided Engineering, Vol.22 No.2.March.2012:175-183.
    [26]M.Rudolph, Uniqueness problems in compact HBT models caused by thermal effects[J], IEEE Transactions on Microwave Theory and Techniques, Vol. 52,No.5, May 2004:1399-1403.
    [27]C.Raya, F.Pourchon, T.Zimmer, D.Celi, and P.Chevalier, Scalable approach for HBT's base resistance calculation[J], IEEE Transactions on Semiconductor Manufacturing, Vol.21, No.2, May.2008:186-194.
    [28]M.Rudolph, R.Doerner, K.Beilenhoff, and P.Heymann, Scalable GalnP/GaAs HBT large-signal model[J], IEEE Transactions on Microwave Theory and Techniques, Vol.48, No.12, Dec.2000:2370-2376.
    [29]T.Vanhoucke, H.M.J.Boots, and W.D. van Noort, Revised method for extraction of the thermal resistance applied to bulk and SOI SiGe HBTs[J], IEEE Electron Device Letters, Vol.25, No.3, March 2004:150-152.
    [1]J.McMacken, S.Nedeljkovic, J.Gering, and D.Halchin, HBT modeling[J], IEEE Microwave Magazine, April 2008:48-72.
    [2]H. Mnif T. Zimmer, J.L. Battaglia, B. Ardouin, Modeling the self-heating effect in SiGe HBTs[C], IEEE BCTM 5.3,2002:96-99
    [3]H. Mnif, T. Zinmer, J.L. Battagha, B. Ardouin, D. Berger, D. Celi, A new approach for modeling the thermal behaviour of bipolar transistors [C], Fourth IEEE International Caracas Conference on Devices. Circuits and Svstems, Aruba. Ami 1,2002,17-19.
    [4]S.E.Shams, C.C.McAndrew, I.S.Lim and A.Zlotnicka, SiGe HBT self-heating modeling and characterization from AC data[C], IEEE BCTM 5.2,2002:92-95.
    [5]N.Bovolon, P.Baureis, J.-E.Miiller, P.Zwicknagl, R.Schultheis, and E.Zanoni, A simple method for the thermal resistance measurement of AlGaAs/GaAs heterojunction bipolar transistors[J], IEEE Transactions on Electron Devices, Vol. 45, No.8, Aug.1998:1846-1848.
    [6]S.P.Marsh, Direct extraction technique to derive the junction temperature of HBTs under high self-heating bias conditions[J], IEEE Transactions on Electron Devices, Vol.47, No.2, Feb,2000:288-291.
    [7]T.Vanhoucke, H.M.J.Boots, and W.D.Noort, Revised method for extraction of the thermal tesistance applied to bulk and SOI SiGe HBTs[J], IEEE Electron Device Letters, Vol.25, No.3, March,2004:150-152.
    [8]J.-S.Rieh, D.Greenberg, B.Jagannathan, G.Freeman, and S.Subbanna, Measurement and modeling of thermal resistance of high speed SiGe heterojunction bipolar transistors[C], in Proc. Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Ann Arbor, MI,2001:110-113.
    [9]B.Han, T.Zhou, X.Xu, P.Li, J.Gao, Influence of base resistance on extracting thermal resistance for SiGe HBTs[J], International Journal of RF and Microwave Computer Aided Engineering, Vol.22 No.3.May.2012:353-358.
    [10]M. Schroter. (2005) HICUM, a scalable physics-based compact bipolar transistor model.User'sManualHICUM/Level2.[Online].Available:www.iee.et.t-udresden.de/iee/eb/eb_Hom-ee.html,2005.
    [11]R. van der Toorn, J.C.J. Paasschens, and W.J. Kloosterman. The Mextram bipolar transistor model,[Online].Available:http://www.nxp.com/acrobat_down load/other/philipsmodels/nlur2000811.pdf.
    [1]李秀萍.高建军.微波射频测量技术基础[M],机械工业出版社,2007:82-100。
    [2]蒋晓红.矢量网络分析仪的原理和使用[J],空载雷达,2002年第4期:69-79。
    [3]G Engen, C Hoer. Thru-reflect-line:An improved technique for calibrating the dual six-port automatic network analyzer [J]. IEEE Transactions on Microwave Theory and Techniques, Vol.27, No.12,1979:987-993.
    [4]J Butler.16-term error model and calibration procedure for on wafer network analysis measurements [C].IEEE Microwave Symposium Digest,1991: 1125-1127.
    [5]A Davidson, E Strid, K Jones.Achieving greater on-wafer S-parameter accuracy with the LRM calibration technique[C]. Cascade Microtech Application note, 1995.
    [6]H.Packard. Network Analysis:Specifying Calibration standards for the HP8510 network analyzer[C]. Hewlett-packard product note 8510-5A,1997.
    [7]D Metzger.Improving TRL calibrations of vector network analyzers [J]. Microwave Journal [J],Vol.38, No.5,1995:56-64.
    [8]Cascade Microtech.Technique Verifies LRRM Calibrations for GaAs Measurements [Online]. Cascade Microtech Technical Brief.1994.
    [9]P. J. van Wijnen, H. R. Claessen, and E. A.Wolsheimer, A new straight-forward calibration and correction procedure for "on-wafer" high frequency S-parameter measurements (45 MHz-18 GHz)[C], in Proc. IEEE Bipolar/BiCMOS Circuits Technology Meeting, Sep.1987:70-73.
    [10]M. C. A.M. Koolen, J. A.M. Geelen, and M. P. J. G. Versleijen, An improved de-embedding technique for on-wafer high frequency characterization[C], in Proc. IEEE Bipolar/BiCMOS Circuits Technology Meeting, Sep.1991:188-191.
    [11]L.F. Tiemeijer, Ramon J. Havens, Andre B. M. Jansman, and Yann Bouttemen, Comparison of the "pad-open-short" and "open-short-load" deembedding techniques for accurate on-wafer RF characterization of high-quality passives[J], IEEE Transactions on Microwave Theory and Techniques, Vol.53, No.2, Feb. 2005:723-729.
    [12]I.M.Kang, S.J.Jung, T.H.Choi, J.H.Jung, C.Chung, H.S.Kim, H.O.Hyun W.Lee, G.Jo, Y.K.Kim, H.G.Kim, and K.M.Choi, Five-step (pad-pad short-pad open-short-open) De-embedding method and its verification[J], IEEE Electron Device Letters, Vol.30, No.4, April 2009:398-400.
    [13]A. Mangan, Millimeter-wave device characterization for Nano-CMOS IC design[A], Master's thesis, Univ. Toronto, ON, Canada,2005.
    [14]A. M. Mangan, S. P. Voinigescu, M.-T. Yang, and M. Tazlauanu, De-embedding transmission line measurements for accurate modeling of ic designs[J], IEEE Transactions on Electron Devices, Vol.53, No.2, Feb.2006:235-241.
    [15]Kenneth H. K. Yau, Alain M. Mangan, Pascal Chevaliert, Peter Schvant, and Sorin P. Voinigescu, A transmission-line based technique for De-Embedding noise parameters[C], IEEE Intemnational Conference on Microelectronic Test Structures, March.2007:237-242.
    [16]B.Han, T.Zhou, X.Xu, P.Li, M.Cai, J.Huang, J.Gao, Improved de-embedding technique for polysilicon resistor modeling[J], International Journal of Electronics,(under review).
    [17]Rizwan Murji and M. Jamal Deen, Accurate modeling and parameter extraction for meander-line N-well resistors[J], IEEE Transactions on Electron Devices, Vol. 52, No.7, July.2005:1364-1369.
    [18]H.H.Chen, H.W.Zhang, S.J.Chung, J.T.Kuo, and T.C.Wu, Accurate systematic model-parameter extraction for On-Chip spiral inductors[J], IEEE Transactions on Electron Devices, Vol.55, No.11, Nov.2008:3267-3273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700