用户名: 密码: 验证码:
中国汉族致心律失常性右室心肌病家系桥粒基因筛查及DSG2~(F531C)突变的致病机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分中国汉族家系致心律失常性右室心肌病桥粒基因的筛查
     背景:致心律失常性右室心肌病(arrhythmogenic right ventricular cardiomyopathy, ARVC)是青壮年和运动员猝死的常见原因之一,其特征性病理改变为心肌进行性地被纤维或纤维脂肪组织替代。已证实50%以上的ARVC患者携带有桥粒蛋白基因突变。然而,中国汉族家系ARVC患者五个桥粒基因筛查尚未见报道。
     目的:本研究的目的是筛查一个中国汉族ARVC家系的致病基因,并分析这一家系的临床特征。
     方法:采集一个大的ARVC家系(DS家系),共5代32个成员。对DS家系同意进入本研究的亲属进行病史采集、标准十二导联心电图记录、24小时动态心电图监测、超声心动图检查和血浆采集。依据家族性ARVC的诊断标准确定该家系的患病成员。对该家系成员进行PKP2、DSP、JUP、DSG2和DSC2桥粒基因突变筛查,并以200名健康志愿者为对照,分析核苷酸变异的出现频率。基因核苷酸变异在人群中出现频率<1%者被认为是基因突变,≥1%者被认为是单核苷酸多态性。同时与西班牙ARVC基因突变数据库(http://www.arvcdatabase.info/)和美国遗传性心律失常数据库(http://www.fsm.it/cardmoc/)中收录的桥粒基因突变比较,确定新的突变位点。
     结果:共有13名家系成员入选本研究,其中7例被确诊为ARVC。DS家系的平均发病年龄在50.56.38岁,所有患者均有胸闷和心悸,其中先证者的大姐在50岁发生猝死。随访期间,先证者的二姐左心室亦受累,表现为双心室增大、LVEF值由原先的63.1%下降至54%。先证者的二弟虽然没有出现临床心力衰竭的表现,但超声提示心功能下降,EF值为43.5%。所有患者的胸前导联T波广泛倒置,起源于右心室的频发室性期前收缩,4例同时合并左束支传导阻滞型室速。除先证者小妹外,其余6例患者体表心电图V1-3导联终末激动时间延长[90.5±18.8(65-120)ms],且在QRS波之后ST段起始部出现典型的Epsilon波。先证者的大弟弟在2010年随访时发现与4年前的心电图比较有动态改变,V1-5导联出现典型的Epsilon波。对DS家系13个成员的外周血5个桥粒基因外显子测序,发现编码桥粒蛋白DSG2基因发生变异c.1592T>G,导致第531位的半胱氨酸被苯丙氨酸替代。DSG2c.1592T>G变异在正常人的检出率为1/400。生物信息学分析发现,该突变位点所在的氨基酸从低等生物、脊椎动物甚至于DSG2所在的钙粘素蛋白家族中的其他成员都是十分保守的。所有患者均为纯合子,杂合子携带者不患病。
     结论:DS家系ARVC患者均合并典型的心电图改变,超声心动图的动态演变提示ARVC是一种进展性心肌病。该家系的致病基因为DSG2,具有较高的外显率,有可能以常染色体隐性遗传方式传递。DSG2c.1592T>G突变很可能是一个致病突变。
     第二部分转录组学和分子生物学研究揭示DSG2基因致ARVC机制
     背景:DSG2是一种单次跨膜桥粒钙粘糖蛋白,其功能区域的结构和生物化学相互作用的研究已经证实,DSG2蛋白在细胞分化、增值、凋亡和迁移过程中扮演了重要的角色。有研究报道,致心律失常性右室心肌病患者约10%携带有DSG2基因突变。我们先前的研究发现,DSG2沉默后,纤维化指标(Collal, Col1a2, Co13al)、脂肪化指标(Adiponectin, PPAR-y, C/EBP-a)以及细胞凋亡显著增加,类似于人类ARVC的分子改变。然而,DSG2基因致ARVC的分子机制目前并不清楚。
     目的:以心房肿瘤细胞系HL-1细胞为研究对象,分析DSG2基因沉默后转录水平改变,为ARVC机制研究提供新的思路。
     方法:合成特异性针对DSG2基因编码区的干扰序列,构建pGPU6/GFP/Neo-ShDSG2(ShDSG2)真核表达质粒转染HL-1细胞,G418筛选获得稳定转染的细胞株。用RT-PCR和Western blot检测DSG2在mRNA和蛋白水平表达变化,筛选出沉默效率最佳的细胞株。应用NimbleGen mRNA真核生物基因表达谱芯片寻找沉默DSG2基因后差异的表达基因。通过GO功能注释和KEGG在线数据库筛查新的靶点和信号通路。
     结果:我们筛选出沉默效率最高的HL-1细胞株(ShDsg2-273细胞系,DSG2基因在mRNA水平下降71.67%,蛋白水平下降51.72%,P<0.05),分析发现一共有2282个差异表达基因,改变一致的基因有2224个。其中,上调差异表达基因820个,下调差异表达基因1404个。通过GO数据库对基因功能注释并进行基因功能聚类分析发现,这些差异表达基因主要参与:心脏的发育,心肌收缩,肌丝组装和滑行速度,肌原纤维的组装,心肌细胞形态,信号转导,转录调节,细胞凋亡、增殖、分化和发育,免疫应答,炎症反应,离子通道运输过程,脂肪酸代谢等生物学过程。同时,我们应用在线MAS3.0软件中"KEGG pathway"功能模块进行分析,发现差异基因共富集14个信号通路,包括酪氨酸代谢、MAPK信号通路、细胞间通讯、粘附和紧密连接、钙离子信号通路、脂肪细胞因子通路、调节肌动蛋白骨架、Wnt信号通路和细胞周期等。DSG2表达被抑制后出现心肌结构蛋白、凋亡、纤维化、脂肪化和CX43等的mRNA表达均出现了显著的改变,类似于ARVC的分子改变;多个离子通道相关蛋白,特别是复极化相关的离子通道的基因mRNA表达出现了显著下调。DSG2基因沉默后,PG蛋白表达显著下调,β-catenin入核增多,激活AKT/β-catenin信号通路。
     结论:DSG2基因沉默后,转录水平的改变类似于人类ARVC的分子改变。细胞凋亡增加、缝隙连接蛋白Cx43重构以及离子通道蛋白相关蛋白的显著下调共同参与ARVC的发生。
     第三部分心脏特异表达DSG2F536C转基因小鼠的建立及表型初步分析
     背景:本中心对中国汉族家系ARVC患者基因筛查研究发现一个高度保守的DSG2基因F531C突变。但该突变对DSG2蛋白功能的影响及其可能的致病机制目前并不清楚。
     目的:建立心脏特异表达的DSG2F536C转基因小鼠,同时初步分析其心脏结构、功能改变。
     方法:把DSG2F536C基因插入a-MHC启动子下游,构建转基因表达载体,显微注射法建立B6CBF1DSG2F536C转基因小鼠,PCR鉴定转基因小鼠的基因型,采用Western Blot鉴定DSG2F536C在心脏组织中的表达,记录转基因小鼠死亡情况。利用心脏超声影像分析其心脏整体功能,同时通过HE和Masson染色观察转基因小鼠心肌病理学改变。
     结果:建立了3个表达水平不同的心脏组织特异表达的DSG2F536C转基因小鼠品系和2个DSG2WT转基因小鼠品系。突变型转基因小鼠于6周出现心功能下降,而野生型转基因小鼠心功能和同窝非转基因小鼠相比,无明显异常。其中高表达Line (Tg-FC/H)在出生时,体型均小于同窝非转基因小鼠。Masson染色发现Tg-FC/H小鼠心肌细胞排列正常,但左心室出现局灶性纤维化、心肌细胞体积增大。免疫荧光发现闰盘区域PG蛋白显著下调而beta-catenin代偿性上调。
     结论:DSG2F536C转基因小鼠的建立为DSG2突变与心肌病发病机制的关系的研究提供了有价值的疾病动物模型。
Part I:Screening of desmosome genes in a Chinese family with Arrhythmogenic right ventricular cardiomyopathy
     Background:Arrhythmogenic right ventricular cardiomyopathy (ARVC), characterized by right ventricular fibrofatty replacement and malignant ventricular arrhythmias, is a common reason to premature death. Mutations in the desmosome-encoding genes have been reported in patients with ARVC. However, there are hardly any genetic studies in Asians. In this study, we aimed to investigate the clinical characteristics, cardiac manifestations and desmosome gene mutations in one extended Chinese ARVC family.
     Objectives:The aim of this study was to investigate the phenotype of Chinese ARVC family and to screen the mutations in desmosome-encoding genes in this family.
     Methods:The family members were evaluated by12-lead ECG, two-dimensional echocardiography (2-DE) and24-hour Holter. Genomic DNA of subjects in this study was extracted from peripheral whole blood and the mutational analysis of desmosmes was performed using polymerase chain reaction (PCR) and direct sequencing. The DNA sequence variants in this study were searched in the Single-nucleotide Polymorphism (SNP) Database and the Inherited Arrhythmias Database to detect whether the variants had been reported previously. New nonsynonymous sequence variant would be assessed in a population of200ethnically matched normal controls (400allels) to exclude the possibility of SNP.
     Results:Thirteen out of32members were recruited for this study, seven of which were diagnosed ARVC. All patients presented with palpitations and chest dyspnea, and the eldest sister of the index case died suddenly at the age of50. The age of onset of symptomatic ARVC was50.5±6.38years. Regional wall motion abnormalities were identified by2-DE in right ventricular free wall in all patients. During follow-up,2-DE revealed biventricular dilation with RV aneurysm in the proband's elder sister. Despite the systolic impairment in proband's younger brother, the NYHA functional class remained II. Twelve-lead ECG demonstrated extended T wave inversion. Except for the youngest sister, all patients presented with Epsilon wave after the QRS complex and the terminal activation delay was90.5±18.8(65-120) ms. The eldest brother had no epsilon waves upon S-ECG, when initially diagnosed ARVC. Four years later, QRS complex was widen and Epsilon waves were detected in precordial leads. In this family, all were homoozygous for the F531C mutation in DSG2, and this mutation was highly conservative in different species.
     Conclusion: Mutations in DSG2display a high degree of penetrance. Dynamic changes of ECG and2-DE suggest ARVC is a progressive disease with LV involvement as a prominent feature in this family.
     Part Ⅱ:Transcriptome profiling and molecular biological study reveals a major role for DSG2in the pathogenesis of ARVC
     Background:Desmoglein-2(DSG2) is transmembrane cell adhesion protein of desmosomes. Mutations of DSG2have been reported in arrhythmogenic right ventricular cardiomyopathy (ARVC), suggesting that DSG2may play a role in the pathogenesis of ARVC. In our previous study, we found the loss of DSG2recapitulate the molecular changes of ARVC. However, no study has examined the mechanistic contribution of DSG2deficiency to ARVC.
     Objectives:The aim of our study is to investigate the loss of DSG2on the apoptosis of HL-1cell and changes of transcriptome profiling.
     Methods:A set of DSG2-specific siRNAs were synthesized and cloned into the vectors pGPU6/GFP/Neo. The recombinant plasmids pGPU6/GFP/Neo-ShDSG2(ShDSG2) were transfected into HL-1cells, and the positive cells clones were screened with G418. The suppression effect of DSG2mRNA and protein was measured by RT-PCR and Western blot to select the optimal cell line. NimbleGen mRNA microarray were used to examine differentially expressed genes between normal HL-1cells and DSG2silenced HL-1cells.
     Results:Four recombinant ShDSG2plasmids were constructed successfully and transfected into HL-1cells to induce RNAi, and stable cell lines were enstablished. ShDSG2-273group could effectively knockdown the DSG2gene expression in mRNA level (71.67%, P=0.004) and in protein level (51.72%, P<0.001), as compared with the normal HL-1cell line. We found2282differential expressed gene (up-regulated820genes, down-regulated1404genes). Meanwhile, Gene Ontology analysis showed significant alteration of gene functions such as cardiac muscle fiber development, actomyosin structure organization and regulation of heart contraction. Cardiac ion channels composed of potassium and calcium were significantly decreased after DSG downregulation. In addition, KEGG Pathway analysis demonstrated deregulation of many important signaling pathways including Tyrosine metabolism, MAPK signaling pathway and Cell Communication. Moreover, we found that loss of DSG2activated AKT/beta-catenin.
     Conclusion:Loss of DSG2in HL-1cell produced broad transcription changes that were similar to human ARVC. The occurrence of apoptosis, remodeling of Cx43and deregulation of ion channels may contribute to the pathogenesis of ARVC.
     Part Ⅲ:The estabilishement and analysis the phenotype of cardiac-specific DSG2F536c transgenic mice
     Background:In our previous study, we found a highly conservative mutation F531C in DSG2gene associated arrhythmogenic right ventricular cardiomyopathy (ARVC). However, the relationship between this mutation and ARVC is unclear.
     Objective:To generate the cardiac-specific DSG2F536C expression transgenic mice and to determine the cardiac functional and morphological changes of the mice.
     Methods:The transgenic vector was constructed by inserting the mouse DSG2F536C gene into the downstream of α-MHC promoter. The transgenic mice were created by the method of micro injection. The genotype of the transgenic line was identified by PCR and the expression level of the gene was determined by Western blot. The pathologic changes were analyzed with echocardiography and Masson staining.
     Results:Three lines of B6CBF1DSG2F536C and two lines of DSG2WT transgenic mice were established. The high expressed line was smaller than the littermates after birth. The histological examination of Tg-H transgenic mice showed increased size of cardiomyocytes and decreased percent fractional shortening (FS%) compared with the DSG2WTtransgenic mice by echocardiography analysis. Myocardial hypertrophy and fibrosis were observed by histological analysis.
     Conclusions The DSG2F536C transgenic mice produce a similar pathological phenotype with the human arrhythmogenic right ventricular cardiomyopathy (ARVC). The transgenic mice could be a useful animal model to explore the mechanisms of mutation in DSG2causing ARVC.
引文
1. Sen-Chowdhry S, Morgan RD, Chambers JC, McKenna WJ. Arrhythmogenic Cardiomyopathy:Etiology, Diagnosis, and Treatment. Annu Rev Med,2010; 61: 233-53.
    2. Saffitz JE. The Pathobiology of Arrhythmogenic Cardiomyopathy._Annu Rev Pathol,2011; 6:299-321.
    3. Polin GM, Haqqani H, Tzou W, Hutchinson MD, Garcia FC, Callans DJ, Zado ES, Marchlinski FE. Endocardial unipolar voltage mapping to identify epicardial substrate in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Heart Rhythm,2011;8:76-83.
    4. Li CH, Lin YJ, Huang JL, et al. Long-Term Follow-Up in Patients with Arrhythmogenic Right Ventricular Cardiomyopathy. JCE, 2012.doi:10.1111/j.1540-8167.2011.02288.x.Epub ahead of print
    5. Oxford EM, Musa H, Maass K, et al. Connexin43 remodeling caused by inhibition of plakophilin-2 expression in cardiac cells. Circ Res, 2007;101:703-11.
    6. van der Zwaag PA, Jongbloed JD, van den Berg MP, et al A genetic variants database for arrhythmogenic right ventricular dysplasia/cardiomyopathy. Hum Mutat,2009; 30:1278-83.
    7. Gehmlich K, Asimaki A, Cahill T, et al. Novel missense mutations in exon 15 of desmoglein-2:Role of the intracellular cadherin segment in arrhythmogenic right ventricular cardiomyopathy? Heart rhythm,2010,7:1446-53.
    8. Krusche CA, Holthofer B, Hofe V, et al. Desmoglein 2 mutant mice develop cardiac fibrosis and dilation. Basic Res Cardiol,2011; 106:617-33.
    9. Saffitz JE, Asimaki A, Huang H. Arrhythmogenic right ventricular cardiomy-opathy:new insights into mechanisms of disease. Cardiovasc Pathol, 2010;19:166-70.
    10. Huber O. Structure and function of desmosomal proteins and their role in development and disease. Cell Mol Life Sci,2003; 60:1872-90.
    11. Thomason HA, Scothern A, Mcharg S and Garrod DR. Desmosomes:adhesive strength and signalling in health and disease. Biochem J,2010:429:419-33.
    12. Simpson CL, Green KJ. Identification of desmogleins as disease targets. The Journal of investigative dermatology 2007; 127:E15-6.
    13. Nishifuji K, Amagai M. Loss of adhesive function of desmogleins in bullous diseases: pemphigus and impetigo. Tanpakushitsu Kakusan Koso 2006;51:796-802.
    14. Arnemann J, Spurr NK, Magee AI, Buxton RS. The human gene (DSG2) coding for HDGC, a second member of the desmoglein subfamily of the desmosomal cadherins, is, like DSG1 coding for desmoglein DGI, assigned to chromosome 18. Genomics 1992; 13:484-6.
    15. Pilichou K, Remme CA, Basso C, et al. Myocyte necrosis underlies progressive myocardial dystrophy in mouse dsg2-related arrhythmogenic right ventricular cardiomyopathy. The Journal of experimental medicine 2009;206:1787-802.
    16. Eshkind L, Tian Q, Schmidt A, Franke WW, Windoffer R, Leube RE. Loss of desmoglein 2 suggests essential functions for early embryonic development and proliferation of embryonal stem cells. European journal of cell biology 2002;81:592-8.
    17. Bhuiyan ZA, Jongbloed JD, van der Smagt J, et al. Desmoglein-2 and desmocollin-2 mutations in dutch arrhythmogenic right ventricular dysplasia/cardiomypathy patients:results from a multicenter study. Circ Cardiovasc Genet 2009;2:418-27.
    18. Claycomb WC, Lanson NA, Jr., Stallworth BS, et al. HL-1 cells:a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proceedings of the National Academy of Sciences of the United States of America 1998;95:2979-84.
    19. Jansen R, Greenbaum D, Gerstein M. Relating whole-genome expression data with protein-protein interactions. Genome Res 2002;12:37-46.
    20. Li C, Li H. Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 2008;24:1175-82.
    21. Zhang JD, Wiemann S. KEGGgraph:a graph approach to KEGG PATHWAY in R and bioconductor. Bioinformatics 2009;25:1470-1.
    1. Sen-Chowdhry S, Morgan RD, Chambers JC, McKenna WJ. Arrhythmogenic cardiomyopathy:etiology, diagnosis, and treatment. Annu Rev Med.2010; 61: 233-53.
    2. Saffitz JE. The pathobiology of arrhythmogenic cardiomyopathy. Annu Rev Pathol.2011; 6:299-321.
    3. Basso C, Corrado D, Thiene G. Cardiovascular causes of sudden death in young individuals including athletes. Cardiol Rev.1999; 7(3):127-35.
    4. Tabib A, Loire R, Chalabreysse L, Meyronnet D, Miras A, Malicier D, et al. Circumstances of death and gross and microscopic observations in a series of 200 cases of sudden death associated with arrhythmogenic right ventricular cardiomyopathy and/or dysplasia. Circulation.2003; 108(24):3000-5.
    5. van der Zwaag PA, Jongbloed JD, van den Berg MP, van der Smagt JJ, Jongbloed R, Bikker H, et al. A genetic variants database for arrhythmogenic right ventricular dysplasia/cardiomyopathy. Hum Mutat.2009; 30(9):1278-83.
    6. Franke WW, Borrmann CM, Grund C, Pieperhoff S. The area composita of adhering junctions connecting heart muscle cells of vertebrates. I. Molecular definition in intercalated disks of cardiomyocytes by immunoelectron microscopy of desmosomal proteins. Eur J Cell Biol.2006; 85(2):69-82.
    7. McKenna WJ, Thiene G, Nava A, Fontaliran F, Blomstrom-Lundqvist C, Fontaine G, et al. Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology. Br Heart J.1994; 71(3):215-8.
    8. Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation.2010; 121(13): 1533-41.
    9. Hamid MS, Norman M, Quraishi A, Firoozi S, Thaman R, Gimeno JR, et al. Prospective evaluation of relatives for familial arrhythmogenic right ventricular cardiomyopathy/dysplasia reveals a need to broaden diagnostic criteria. J Am Coll Cardiol.2002; 40(8):1445-50.
    10. Protonotarios N, Tsatsopoulou A, Fontaine G. Naxos disease:keratoderma, scalp modifications, and cardiomyopathy. J Am Acad Dermatol.2001; 44(2):309-11.
    11. McKoy G, Protonotarios N, Crosby A, Tsatsopoulou A, Anastasakis A, Coonar A, et al. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet.2000; 355(9221):2119-24.
    12. Awad MM, Dalal D, Cho E, Amat-Alarcon N, James C, Tichnell C, et al. DSG2 mutations contribute to arrhythmogenic right ventricular dysplasia/cardiomyopathy. Am J Hum Genet.2006; 79(1):136-42.
    13. Awad MM, Dalal D, Tichnell C, James C, Tucker A, Abraham T, et al. Recessive arrhythmogenic right ventricular dysplasia due to novel cryptic splice mutation in PKP2. Hum Mutat.2006; 27(11):1157.
    14. Bauce B, Nava A, Beffagna G, Basso C, Lorenzon A, Smaniotto G, et al. Multiple mutations in desmosomal proteins encoding genes in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Heart Rhythm.2010; 7(1):22-9.
    15. Zhang M, Tavora F, Oliveira JB, Li L, Franco M, Fowler D, et al. PKP2 mutations in sudden death from arrhythmogenic right ventricular cardiomyopathy (ARVC) and sudden unexpected death with negative autopsy (SUDNA). Circ J.2012; 76(1):189-94.
    16. Huber O. Structure and function of desmosomal proteins and their role in development and disease. Cell Mol Life Sci.2003; 60(9):1872-90.
    17. Asimaki A, Tandri H, Duffy ER, Winterfield JR, Mackey-Bojack S, Picken MM, et al. Altered desmosomal proteins in granulomatous myocarditis and potential pathogenic links to arrhythmogenic right ventricular cardiomyopathy. Circ Arrhythm Electrophysiol.2011; 4(5):743-52.
    18. Buxton RS, Magee AI. Structure and interactions of desmosomal and other cadherins. Semin Cell Biol.1992; 3(3):157-67.
    19. Thomason HA, Scothern A, McHarg S, Garrod DR. Desmosomes:adhesive strength and signalling in health and disease. Biochem J.2010; 429(3):419-33.
    20. Pilichou K, Nava A, Basso C, Beffagna G, Bauce B, Lorenzon A, et al. Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation.2006; 113(9):1171-9.
    21. Pilichou K, Remme CA, Basso C, Campian ME, Rizzo S, Barnett P, et al. Myocyte necrosis underlies progressive myocardial dystrophy in mouse dsg2-related arrhythmogenic right ventricular cardiomyopathy. J Exp Med.2009; 206(8):1787-802.
    22. Kant S, Krull P, Eisner S, Leube RE, Krusche CA. Histological and ultrastructural abnormalities in murine desmoglein 2-mutant hearts. Cell Tissue Res.2012.
    23. Sotomayor M, Schulten K. The allosteric role of the Ca2+ switch in adhesion and elasticity of C-cadherin. Biophys J.2008; 94(12):4621-33.
    24. Marcozzi C, Burdett ID, Buxton RS, Magee AI. Coexpression of both types of desmosomal cadherin and plakoglobin confers strong intercellular adhesion. J Cell Sci.1998; 111 (Pt 4):495-509.
    25. Yin T, Getsios S, Caldelari R, Godsel LM, Kowalczyk AP, Muller EJ, et al. Mechanisms of plakoglobin-dependent adhesion:desmosome-specific functions in assembly and regulation by epidermal growth factor receptor. J Biol Chem. 2005; 280(48):40355-63.
    26. Yin T, Green KJ. Regulation of desmosome assembly and adhesion. Semin Cell Dev Biol.2004; 15(6):665-77.
    27. Bhuiyan ZA, Jongbloed JD, van der Smagt J, Lombardi PM, Wiesfeld AC, Nelen M, et al. Desmoglein-2 and desmocollin-2 mutations in dutch arrhythmogenic right ventricular dysplasia/cardiomypathy patients:results from a multicenter study. Circ Cardiovasc Genet.2009; 2(5):418-27.
    28. Syrris P, Ward D, Asimaki A, Evans A, Sen-Chowdhry S, Hughes SE, et al. Desmoglein-2 mutations in arrhythmogenic right ventricular cardiomyopathy:a genotype-phenotype characterization of familial disease. Eur Heart J.2007; 28(5):581-8.
    1. Huber O. Structure and function of desmosomal proteins and their role in development and disease. Cell Mol Life Sci 2003;60:1872-90.
    2. Franke WW, Borrmann CM, Grund C, Pieperhoff S. The area composita of adhering junctions connecting heart muscle cells of vertebrates. I. Molecular definition in intercalated disks of cardiomyocytes by immunoelectron microscopy of desmosomal proteins. Eur J Cell Biol 2006;85:69-82.
    3. Simpson CL, Green KJ. Identification of desmogleins as disease targets. The Journal of investigative dermatology 2007;127:E15-6.
    4. Nishifuji K, Amagai M. Loss of adhesive function of desmogleins in bullous diseases: pemphigus and impetigo. Tanpakushitsu Kakusan Koso 2006;51:796-802.
    5. Arnemann J, Spurr NK, Magee AI, Buxton RS. The human gene (DSG2) coding for HDGC, a second member of the desmoglein subfamily of the desmosomal cadherins, is, like DSG1 coding for desmoglein DGI, assigned to chromosome 18. Genomics 1992; 13:484-6.
    6. Pilichou K, Remme CA, Basso C, et al. Myocyte necrosis underlies progressive myocardial dystrophy in mouse dsg2-related arrhythmogenic right ventricular cardiomyopathy. The Journal of experimental medicine 2009;206:1787-802.
    7. Eshkind L, Tian Q, Schmidt A, Franke WW, Windoffer R, Leube RE. Loss of desmoglein 2 suggests essential functions for early embryonic development and proliferation of embryonal stem cells. European journal of cell biology 2002;81:592-8.
    8. Waschke J. The desmosome and pemphigus. Histochemistry and cell biology 2008;130:21-54.
    9. Delmar M, McKenna WJ. The cardiac desmosome and arrhythmogenic cardiomyopathies:from gene to disease. Circulation research 2010;107:700-14.
    10. Amagai M. Autoimmune and infectious skin diseases that target desmogleins. Proc Jpn Acad Ser B Phys Biol Sci 2010;86:524-37.
    11. Bhuiyan ZA, Jongbloed JD, van der Smagt J, et al. Desmoglein-2 and desmocollin-2 mutations in dutch arrhythmogenic right ventricular dysplasia/cardiomypathy patients:results from a multicenter study. Circ Cardiovasc Genet 2009;2:418-27.
    12. Claycomb WC, Lanson NA, Jr., Stallworth BS, et al. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proceedings of the National Academy of Sciences of the United States of America 1998;95:2979-84.
    13. Masseroli M, Pinciroli F. Using Gene Ontology and genomic controlled vocabularies to analyze high-throughput gene lists:three tool comparison. Computers in biology and medicine 2006;36:731-47.
    14. Pereira GS, Brandao RM, Giuliatti S, Zago MA, Silva WA, Jr. Gene Class expression:analysis tool of Gene Ontology terms with gene expression data. Genet Mol Res 2006;5:108-14.
    15. Jansen R, Greenbaum D, Gerstein M. Relating whole-genome expression data with protein-protein interactions. Genome Res 2002; 12:37-46.
    16. Li C, Li H. Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 2008;24:1175-82.
    17. Zhang JD, Wiemann S. KEGGgraph:a graph approach to KEGG PATHWAY in R and bioconductor. Bioinformatics 2009;25:1470-1.
    18. Basso C, Corrado D, Marcus FI, Nava A, Thiene G. Arrhythmogenic right ventricular cardiomyopathy. Lancet 2009;373:1289-300.
    19. Awad MM, Dalal D, Cho E, et al. DSG2 mutations contribute to arrhythmogenic right ventricular dysplasia/cardiomyopathy. Am J Hum Genet 2006;79:136-42.
    20. Asimaki A, Tandri H, Huang H, et al. A new diagnostic test for arrhythmogenic right ventricular cardiomyopathy. The New England journal of medicine 2009;360:1075-84.
    21. Garcia-Gras E, Lombardi R, Giocondo MJ, et al. Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. The Journal of clinical investigation 2006; 116:2012-21.
    22. Richards A, Luccarini C, Pope FM. The structural organisation of LAMA4, the gene encoding laminin alpha4. European journal of biochemistry / FEBS 1997;248:15-23.
    23. Wang J, Hoshijima M, Lam J, et al. Cardiomyopathy associated with microcirculation dysfunction in laminin alpha4 chain-deficient mice. The Journal of biological chemistry 2006;281:213-20.
    24. Krusche CA, Holthofer B, Hofe V, et al. Desmoglein 2 mutant mice develop cardiac fibrosis and dilation. Basic research in cardiology 2011;106:617-33.
    25. Kant S, Krull P, Eisner S, Leube RE, Krusche CA. Histological and ultrastructural abnormalities in murine desmoglein 2-mutant hearts. Cell and tissue research 2012.
    26. Basso C, Corrado D, Thiene G. Cardiovascular causes of sudden death in young individuals including athletes. Cardiol Rev 1999;7:127-35.
    27. Sen-Chowdhry S, Morgan RD, Chambers JC, McKenna WJ. Arrhythmogenic cardiomyopathy:etiology, diagnosis, and treatment. Annual review of medicine 2010;61:233-53.
    28. Kottkamp H, Hindricks G. Catheter ablation of ventricular tachycardia in ARVC: is curative treatment at the horizon? Journal of cardiovascular electrophysiology 2006;17:477-9.
    29. Kaplan SR, Gard JJ, Protonotarios N, et al. Remodeling of myocyte gap junctions in arrhythmogenic right ventricular cardiomyopathy due to a deletion in plakoglobin (Naxos disease). Heart rhythm:the official journal of the Heart Rhythm Society 2004; 1:3-11.
    30. Lory P, Bidaud I, Chemin J. T-type calcium channels in differentiation and proliferation. Cell Calcium 2006;40:135-46.
    31. Nattel S, Maguy A, Le Bouter S, Yeh YH. Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 2007;87:425-56.
    32. Lakatta EG, Sollott SJ. Perspectives on mammalian cardiovascular aging: humans to molecules. Comp Biochem Physiol A Mol Integr Physiol 2002;132:699-721.
    33. Kornyeyev D, Petrosky AD, Zepeda B, Ferreiro M, Knollmann B, Escobar AL. Calsequestrin 2 deletion shortens the refractoriness of Ca(2) release and reduces rate-dependent Ca(2)-alternans in intact mouse hearts. Journal of molecular and cellular cardiology 2012;52:21-31.
    34. Biedermann K, Vogelsang H, Becker I, et al. Desmoglein 2 is expressed abnormally rather than mutated in familial and sporadic gastric cancer. The Journal of pathology 2005;207:199-206.
    35. Brennan D, Hu Y, Joubeh S, et al. Suprabasal Dsg2 expression in transgenic mouse skin confers a hyperproliferative and apoptosis-resistant phenotype to keratinocytes. Journal of cell science 2007;120:758-71.
    36. Brennan D, Peltonen S, Dowling A, et al. A role for caveolin-1 in desmoglein binding and desmosome dynamics. Oncogene 2011.
    37. Klessner JL, Desai BV, Amargo EV, Getsios S, Green KJ. EGFR and ADAMs cooperate to regulate shedding and endocytic trafficking of the desmosomal cadherin desmoglein 2. Molecular biology of the cell 2009;20:328-37.
    38. Williams TM, Medina F, Badano Ⅰ, et al. Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. The Journal of biological chemistry 2004;279:51630-46.
    39. Qayyum T, Fyffe G, Duncan M, et al. The interrelationships between Src, Cav-1 and RhoGD12 in transitional cell carcinoma of the bladder. British journal of cancer 2012.
    40. Zajchowski LD, Robbins SM. Lipid rafts and little caves. Compartmentalized signalling in membrane microdomains. European journal of biochemistry / FEBS 2002;269:737-52.
    41. Volonte D, Galbiati F, Li S, Nishiyama K, Okamoto T, Lisanti MP. Flotillins/cavatellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins in vivo. Characterization and epitope-mapping of a novel flotillin-1 monoclonal antibody probe. The Journal of biological chemistry 1999;274:12702-9.
    42. Rajendran L, Beckmann J, Magenau A, et al. Flotillins are involved in the polarization of primitive and mature hematopoietic cells. PLoS ONE 2009;4:e8290.
    43. Slaughter N, Laux Ⅰ, Tu X, et al. The flotillins are integral membrane proteins in lipid rafts that contain TCR-associated signaling components:implications for T-cell activation. Clin Immunol 2003; 108:138-51.
    44. Morrow IC, Parton RG. Flotillins and the PHB domain protein family:rafts, worms and anaesthetics. Traffic 2005;6:725-40.
    45. Kwon C, Cordes KR, Srivastava D. Wnt/beta-catenin signaling acts at multiple developmental stages to promote mammalian cardiogenesis. Cell Cycle 2008;7:3815-8.
    46. Li D, Liu Y, Maruyama M, et al. Restrictive loss of plakoglobin in cardiomyocytes leads to arrhythmogenic cardiomyopathy. Human molecular genetics 2011;20:4582-96.
    1. Roy-Chowdhury J, Horwitz MS. Evolution of adenoviruses as gene therapy vectors. Mol Ther 2002;5:340-4.
    2. Petters RM, Sommer JR. Transgenic animals as models for human disease. Transgenic Res 2000;9:347-51; discussion 5-6.
    3. Pilichou K, Bezzina CR, Thiene G, Basso C. Arrhythmogenic cardiomyopathy: transgenic animal models provide novel insights into disease pathobiology. Circulation Cardiovascular genetics 2011;4:318-26.
    4. McCauley MD, Wehrens XH. Animal models of arrhythmogenic cardiomyopathy. Dis Model Mech 2009;2:563-70.
    5. Mahoney MG, Simpson A, Aho S, Uitto J, Pulkkinen L. Interspecies conservation and differential expression of mouse desmoglein gene family. Experimental dermatology 2002; 11:115-25.
    6. Eshkind L, Tian Q, Schmidt A, Franke WW, Windoffer R, Leube RE. Loss of desmoglein 2 suggests essential functions for early embryonic development and proliferation of embryonal stem cells. European journal of cell biology 2002;81:592-8.
    7. Brennan D, Hu Y, Joubeh S, et al. Suprabasal Dsg2 expression in transgenic mouse skin confers a hyperproliferative and apoptosis-resistant phenotype to keratinocytes. Journal of cell science 2007;120:758-71.
    8. Amagai M, Stanley JR. Desmoglein as a target in skin disease and beyond. The Journal of investigative dermatology 2012;132:776-84.
    9. Gornowicz-Porowska J, Bowszyc-Dmochowska M, Seraszek-Jaros A, Kaczmarek E, Dmochowski M. Loss of correlation between intensities of desmoglein 2 and desmoglein 3 expression in basal cell carcinomas. Acta Dermatovenerol Croat 2011;19:150-5.
    10. Schlegel N, Meir M, Heupel WM, Holthofer B, Leube RE, Waschke J. Desmoglein 2-mediated adhesion is required for intestinal epithelial barrier integrity. American journal of physiology Gastrointestinal and liver physiology 2010;298:G774-83.
    11. Schafer S, Koch PJ, Franke WW. Identification of the ubiquitous human desmoglein, Dsg2, and the expression catalogue of the desmoglein subfamily of desmosomal cadherins. Experimental cell research 1994;211:391-9.
    12. Ishii K. Identification of desmoglein as a cadherin and analysis of desmoglein domain structure. The Journal of investigative dermatology 2007;127:E6-7.
    13. Pilichou K, Remme CA, Basso C, et al. Myocyte necrosis underlies progressive myocardial dystrophy in mouse dsg2-related arrhythmogenic right ventricular cardiomyopathy. The Journal of experimental medicine 2009;206:1787-802.
    14. Krusche CA, Holthofer B, Hofe V, et al. Desmoglein 2 mutant mice develop cardiac fibrosis and dilation. Basic research in cardiology 2011;106:617-33.
    15. Kant S, Krull P, Eisner S, Leube RE, Krusche CA. Histological and ultrastructural abnormalities in murine desmoglein 2-mutant hearts. Cell and tissue research 2012.
    16. Ozawa M, Terada H, Pedraza C. The fourth armadillo repeat of plakoglobin (gamma-catenin) is required for its high affinity binding to the cytoplasmic domains of E-cadherin and desmosomal cadherin Dsg2, and the tumor suppressor APC protein. Journal of biochemistry 1995;118:1077-82.
    17. Kami K, Chidgey M, Dafforn T, Overduin M. The desmoglein-specific cytoplasmic region is intrinsically disordered in solution and interacts with multiple desmosomal protein partners. Journal of molecular biology 2009;386:531-43.
    18. Klessner JL, Desai BV, Amargo EV, Getsios S, Green KJ. EGFR and ADAMs cooperate to regulate shedding and endocytic trafficking of the desmosomal cadherin desmoglein 2. Molecular biology of the cell 2009;20:328-37.
    19. Lipozencic J, Marinovic B. Desmoglein story from Masayuki Amagai teach us how to discover the beauty of nature. Acta Dermatovenerol Croat 2007;15:274-5.
    20. Garcia-Gras E, Lombardi R, Giocondo MJ, et al. Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. The Journal of clinical investigation 2006; 116:2012-21.
    21. Fukunaga Y, Tominaga J, Nagafuchi A. The roles of beta-catenin/plakoglobin in cadherin-mediated cell-cell adhesion. Tanpakushitsu Kakusan Koso 2006;51:642-7.
    22. Miravet S, Piedra J, Miro F, Itarte E, Garcia de Herreros A, Dunach M. The transcriptional factor Tcf-4 contains different binding sites for beta-catenin and plakoglobin. The Journal of biological chemistry 2002;277:1884-91.
    23. Williams BO, Barish GD, Klymkowsky MW, Varmus HE. A comparative evaluation of beta-catenin and plakoglobin signaling activity. Oncogene 2000;19:5720-8.
    24. Rosenthal E. Identification of homologues to beta-catenin/plakoglobin/armadillo in two invertebrates, Urechis caupo and Tripneustes gratilla. Biochimica et biophysica acta 1993;1173:337-41.
    25. Asimaki A, Tandri H, Huang H, et al. A new diagnostic test for arrhythmogenic right ventricular cardiomyopathy. N Engl J Med 2009;360:1075-84.
    26. Kumar NM, Gilula NB. The gap junction communication channel. Cell 1996;84:381-8.
    27. Lo CW, Waldo KL, Kirby ML. Gap junction communication and the modulation of cardiac neural crest cells. Trends Cardiovasc Med 1999;9:63-9.
    28. Rivedal E, Leithe E. Connexin43 synthesis, phosphorylation, and degradation in regulation of transient inhibition of gap junction intercellular communication by the phorbol ester TPA in rat liver epithelial cells. Experimental cell research 2005;302:143-52.
    29. Swope D, Cheng L, Gao E, Li J, Radice GL. Loss of Cadherin-Binding Proteins beta-Catenin and Plakoglobin in the Heart Leads to Gap Junction Remodeling and Arrhythmogenesis. Molecular and cellular biology 2012;32:1056-67.
    30. Ai Z, Fischer A, Spray DC, Brown AM, Fishman GI. Wnt-1 regulation of connexin43 in cardiac myocytes. The Journal of clinical investigation 2000;105:161-71.
    31. Zhou J, Qu J, Yi XP, et al. Upregulation of gamma-catenin compensates for the loss of beta-catenin in adult cardiomyocytes. American journal of physiology Heart and circulatory physiology 2007;292:H270-6.
    32. Li J, Swope D, Raess N, Cheng L, Muller EJ, Radice GL. Cardiac tissue-restricted deletion of plakoglobin results in progressive cardiomyopathy and activation of {beta}-catenin signaling. Molecular and cellular biology 2011;31:1134-44.
    33. Li D, Liu Y, Maruyama M, et al. Restrictive loss of plakoglobin in cardiomyocytes leads to arrhythmogenic cardiomyopathy. Human molecular genetics 2011;20:4582-96.
    1. GM L. De Motu Cordis et Aneurysmatibus Opus Posthumum In Duas Partes Divisum. Naples 1736.
    2. Marcus FI, Fontaine GH, Guiraudon G, et al. Right ventricular dysplasia: a report of 24 adult cases. Circulation 1982;65:384-98.
    3. Fontaine G, Frank R, Guiraudon G, et al. Significance of intraventricular conduction disorders observed in arrhythmogenic right ventricular dysplasia. Arch Mal Coeur Vaiss 1984;77:872-9.
    4. Basso C, Corrado D, Thiene G. Cardiovascular causes of sudden death in young individuals including athletes. Cardiol Rev 1999;7:127-35.
    5. Tabib A, Loire R, Chalabreysse L, et al. Circumstances of death and gross and microscopic observations in a series of 200 cases of sudden death associated with arrhythmogenic right ventricular cardiomyopathy and/or dysplasia. Circulation 2003;108:3000-5.
    6. Sen-Chowdhry S, Morgan RD, Chambers JC, McKenna WJ. Arrhythmogenic cardiomyopathy:etiology, diagnosis, and treatment. Annu Rev Med 2010;61:233-53.
    7. Nava A, Bauce B, Basso C, et al. Clinical profile and long-term follow-up of 37 families with arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol 2000;36:2226-33.
    8. Corrado D, Basso C, Pavei A, Michieli P, Schiavon M, Thiene G. Trends in sudden cardiovascular death in young competitive athletes after implementation of a preparticipation screening program. JAMA 2006;296:1593-601.
    9. Fontaine G. Arrhythmogenic right ventricular dysplasia. Curr Opin Cardiol 1995; 10:16-20.
    10. Gerlis LM, Schmidt-Ott SC, Ho SY, Anderson RH. Dysplastic conditions of the right ventricular myocardium:Uhl's anomaly vs arrhythmogenic right ventricular dysplasia. Br Heart J 1993;69:142-50.
    11. HS U. A previously undescribed congenital malformation of the heart: almost total absence of the myocardium of the right ventricle. Bull Johns Hopkins Hosp 1952;91:983-91.
    12. Basso C, Wichter T, Danieli GA, et al. Arrhythmogenic right ventricular cardiomyopathy:clinical registry and database, evaluation of therapies, pathology registry, DNA banking. Eur Heart J 2004;25:531-4.
    13. Marcus F, Towbin JA, Zareba W, et al. Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C):a multidisciplinary study:design and protocol. Circulation 2003; 107:2975-8.
    14. Marcus FI NA, Thiene G. Arrhythmogenic right ventricular cardiomyopathy/dysplasia: recent advances. Milan: Springer Verlag 2007.
    15. Basso C, Thiene G, Corrado D, Angelini A, Nava A, Valente M. Arrhythmogenic right ventricular cardiomyopathy. Dysplasia, dystrophy, or myocarditis? Circulation 1996;94:983-91.
    16. Basso C, Corrado D, Marcus FI, Nava A, Thiene G Arrhythmogenic right ventricular cardiomyopathy. Lancet 2009;373:1289-300.
    17. Saffitz JE. The pathobiology of arrhythmogenic cardiomyopathy. Annu Rev Pathol 2011;6:299-321.
    18. Mallat Z, Tedgui A, Fontaliran F, Frank R, Durigon M, Fontaine G Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. N Engl J Med 1996;335:1190-6.
    19. Valente M, Calabrese F, Thiene G, et al. In vivo evidence of apoptosis in arrhythmogenic right ventricular cardiomyopathy. Am J Pathol 1998; 152:479-84.
    20. Protonotarios N, Tsatsopoulou A, Patsourakos. P, et al. Cardiac abnormalities in familial palmoplantar keratosis. Br Heart J 1986;56:321-6.
    21. Huber O. Structure and function of desmosomal proteins and their role in development and disease. Cell Mol Life Sci 2003;60:1872-90.
    22. Franke WW, Borrmann CM, Grund C, Pieperhoff S. The area composita of adhering junctions connecting heart muscle cells of vertebrates. I. Molecular definition in intercalated disks of cardiomyocytes by immunoelectron microscopy of desmosomal proteins. Eur J Cell Biol 2006;85:69-82.
    23. McKoy G, Protonotarios N, Crosby A, et al. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet 2000;355:2119-24.
    24. Rampazzo A, Nava A, Malacrida S, et al. Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet 2002;71:1200-6.
    25. Gerull B, Heuser A, Wichter T, et al. Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat Genet 2004;36:1162-4.
    26. Pilichou K, Nava A, Basso C, et al. Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation 2006;113:1171-9.
    27. Syrris P, Ward D, Evans A, et al. Arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in the desmosomal gene desmocollin-2. Am J Hum Genet 2006;79:978-84.
    28. Beffagna G, De Bortoli M, Nava A, et al. Missense mutations in desmocollin-2 N-terminus, associated with arrhythmogenic right ventricular cardiomyopathy, affect intracellular localization of desmocollin-2 in vitro. BMC Med Genet 2007;8:65.
    29. Sen-Chowdhry S, Syrris P, Ward D, Asimaki A, Sevdalis E, McKenna WJ. Clinical and genetic characterization of families with arrhythmogenic right ventricular dysplasia/cardiomyopathy provides novel insights into patterns of disease expression. Circulation 2007;115:1710-20.
    30. Syrris P, Ward D, Asimaki A, et al. Clinical expression of plakophilin-2 mutations in familial arrhythmogenic right ventricular cardiomyopathy. Circulation 2006; 113:356-64.
    31. van Tintelen JP, Entius MM, Bhuiyan ZA, et al. Plakophilin-2 mutations are the major determinant of familial arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation 2006;113:1650-8.
    32. Antoniades L, Tsatsopoulou A, Anastasakis A, et al. Arrhythmogenic right ventricular cardiomyopathy caused by deletions in plakophilin-2 and plakoglobin (Naxos disease) in families from Greece and Cyprus: genotype-phenotype relations, diagnostic features and prognosis. Eur Heart J 2006;27:2208-16.
    33. Dalal D, James C, Devanagondi R, et al. Penetrance of mutations in plakophilin-2 among families with arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Coll Cardiol 2006;48:1416-24.
    34. Corrado D, Thiene G. Arrhythmogenic right ventricular cardiomyopathy/dysplasia: clinical impact of molecular genetic studies. Circulation 2006; 113:1634-7.
    35. van der Zwaag PA, Jongbloed JD, van den Berg MP, et al. A genetic variants database for arrhythmogenic right ventricular dysplasia/cardiomyopathy. Hum Mutat 2009;30:1278-83.
    36. Bauce B, Nava A, Beffagna G, et al. Multiple mutations in desmosomal proteins encoding genes in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Heart Rhythm 2010;7:22-9.
    37. Protonotarios N, Tsatsopoulou A. Naxos disease and Carvajal syndrome: cardiocutaneous disorders that highlight the pathogenesis and broaden the spectrum of arrhythmogenic right ventricular cardiomyopathy. Cardiovasc Pathol 2004; 13:185-94.
    38. Basso C, Czarnowska E, Della Barbera M, et al. Ultrastructural evidence of intercalated disc remodelling in arrhythmogenic right ventricular cardiomyopathy:an electron microscopy investigation on endomyocardial biopsies. Eur Heart J 2006;27:1847-54.
    39. Saffitz JE. Dependence of electrical coupling on mechanical coupling in cardiac myocytes:insights gained from cardiomyopathies caused by defects in cell-cell connections. Ann N Y Acad Sci 2005; 1047:336-44.
    40. Fang KM, Lee AS, Su MJ, Lin CL, Chien CL, Wu ML. Free fatty acids act as endogenous ionophores, resulting in Na+ and Ca2+ influx and myocyte apoptosis. Cardiovasc Res 2008;78:533-45.
    41. Pilichou K, Remme CA, Basso C, et al. Myocyte necrosis underlies progressive myocardial dystrophy in mouse dsg2-related arrhythmogenic right ventricular cardiomyopathy. J Exp Med 2009;206:1787-802.
    42. Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, Anversa P. Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci U S A 1998;95:8801-5.
    43. Quaini F, Urbanek K, Beltrami AP, et al. Chimerism of the transplanted heart. N Engl J Med 2002;346:5-15.
    44. Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 2005;6:826-35.
    45. Cai CL, Liang X, Shi Y, et al. Isll identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 2003;5:877-89.
    46. Lombardi R, Dong J, Rodriguez G, et al. Genetic fate mapping identifies second heart field progenitor cells as a source of adipocytes in arrhythmogenic right ventricular cardiomyopathy. Circ Res 2009; 104:1076-84.
    47. Garcia-Gras E, Lombardi R, Giocondo MJ, et al. Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J Clin Invest 2006; 116:2012-21.
    48. Zhurinsky J, Shtutman M, Ben-Ze'ev A. Plakoglobin and beta-catenin:protein interactions, regulation and biological roles. J Cell Sci 2000;113 (Pt 18):3127-39.
    49. Shimizu M, Fukunaga Y, Ikenouchi J, Nagafuchi A. Defining the roles of beta-catenin and plakoglobin in LEF/T-cell factor-dependent transcription using beta-catenin/plakoglobin-null F9 cells. Mol Cell Biol 2008;28:825-35.
    50. Kwon C, Cordes KR, Srivastava D. Wnt/beta-catenin signaling acts at multiple developmental stages to promote mammalian cardiogenesis. Cell Cycle 2008;7:3815-8.
    51. Martin ED, Moriarty MA, Byrnes L, Grealy M. Plakoglobin has both structural and signalling roles in zebrafish development. Dev Biol 2009;327:83-96.
    52. Asimaki A, Tandri H, Huang H, et al. A new diagnostic test for arrhythmogenic right ventricular cardiomyopathy. N Engl J Med 2009;360:1075-84.
    53. Basso C, Fox PR, Meurs KM, et al. Arrhythmogenic right ventricular cardiomyopathy causing sudden cardiac death in boxer dogs:a new animal model of human disease. Circulation 2004;109:1180-5.
    54. Meurs KM, Lacombe VA, Dryburgh K, Fox PR, Reiser PR, Kittleson MD. Differential expression of the cardiac ryanodine receptor in normal and arrhythmogenic right ventricular cardiomyopathy canine hearts. Hum Genet 2006;120:111-8.
    55. Kannankeril PJ, Mitchell BM, Goonasekera SA, et al. Mice with the R176Q cardiac ryanodine receptor mutation exhibit catecholamine-induced ventricular tachycardia and cardiomyopathy. Proc Natl Acad Sci U S A 2006; 103:12179-84.
    56. Asano Y, Takashima S, Asakura M, et al. Lamrl functional retroposon causes right ventricular dysplasia in mice. Nat Genet 2004;36:123-30.
    57. Zhou Q, Chu PH, Huang C, et al. Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy. J Cell Biol 2001;155:605-12.
    58. Zheng M, Cheng H, Li X, et al. Cardiac-specific ablation of Cypher leads to a severe form of dilated cardiomyopathy with premature death. Hum Mol Genet 2009;18:701-13.
    59. Yang Z, Bowles NE, Scherer SE, et al. Desmosomal dysfunction due to mutations in desmoplakin causes arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Res 2006;99:646-55.
    60. Grossman A, Barenboim E, Azaria B, Sherer Y, Goldstein L. Arrhythmogenic right ventricular dysplasia: a possible cause of sudden incapacitation. Aviat Space Environ Med 2004;75:697-9.
    61. Heuser A, Plovie ER, Ellinor PT, et al. Mutant desmocollin-2 causes arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet 2006;79:1081-8.
    62. Bierkamp C, McLaughlin KJ, Schwarz H, Huber O, Kemler R. Embryonic heart and skin defects in mice lacking plakoglobin. Dev Biol 1996;180:780-5.
    63. Kirchhof P, Fabritz L, Zwiener M, et al. Age- and training-dependent development of arrhythmogenic right ventricular cardiomyopathy in heterozygous plakoglobin-deficient mice. Circulation 2006;114:1799-806.
    64. Li J, Swope D, Raess N, Cheng L, Muller EJ, Radice GL. Cardiac tissue-restricted deletion of plakoglobin results in progressive cardiomyopathy and activation of {beta}-catenin signaling. Mol Cell Biol 2011;31:1134-44.
    65. Eshkind L, Tian Q, Schmidt A, Franke WW, Windoffer R, Leube RE. Loss of desmoglein 2 suggests essential functions for early embryonic development and proliferation of embryonal stem cells. Eur J Cell Biol 2002;81:592-8.
    66. Krusche CA, Holthofer B, Hofe V, et al. Desmoglein 2 mutant mice develop cardiac fibrosis and dilation. Basic Res Cardiol 2011;106:617-33.
    67. McKenna WJ, Thiene G, Nava A, et al. Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology. Br Heart J 1994;71:215-8.
    68. Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation 2010;121:1533-41.
    69. Turrini P, Corrado D, Basso C, Nava A, Bauce B, Thiene G. Dispersion of ventricular depolarization-repolarization:a noninvasive marker for risk stratification in arrhythmogenic right ventricular cardiomyopathy. Circulation 2001;103:3075-80.
    70. Corrado D, Leoni L, Link MS, et al. Implantable cardioverter-defibrillator therapy for prevention of sudden death in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation 2003;108:3084-91.
    71. Sen-Chowdhry S, Syrris P, McKenna WJ. Role of genetic analysis in the management of patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Coll Cardiol 2007;50:1813-21.
    72. Corrado D, Basso C, Rizzoli G, Schiavon M, Thiene G. Does sports activity enhance the risk of sudden death in adolescents and young adults? J Am Coll Cardiol 2003;42:1959-63.
    73. Bauce B, Daliento L, Frigo G, Russo G, Nava A. Pregnancy in women with arrhythmogenic right ventricular cardiomyopathy/dysplasia. Eur J Obstet Gynecol Reprod Biol 2006; 127:186-9.
    74. Wichter T, Borggrefe M, Haverkamp W, Chen X, Breithardt G. Efficacy of antiarrhythmic drugs in patients with arrhythmogenic right ventricular disease. Results in patients with inducible and noninducible ventricular tachycardia. Circulation 1992;86:29-37.
    75. Wichter T, Paul TM, Eckardt L, et al. Arrhythmogenic right ventricular cardiomyopathy. Antiarrhythmic drugs, catheter ablation, or ICD? Herz 2005;30:91-101.
    76. Dalal D, Jain R, Tandri H, et al. Long-term efficacy of catheter ablation of ventricular tachycardia in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Coll Cardiol 2007;50:432-40.
    77. Verma A, Kilicaslan F, Schweikert RA, et al. Short- and long-term success of substrate-based mapping and ablation of ventricular tachycardia in arrhythmogenic right ventricular dysplasia. Circulation 2005; 111:3209-16.
    78. Epstein AE, DiMarco JP, Ellenbogen KA, et al. ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities:a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices):developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. Circulation 2008;117:e350-408.
    79. Wichter T, Paul M, Wollmann C, et al. Implantable cardioverter/defibrillator therapy in arrhythmogenic right ventricular cardiomyopathy:single-center experience of long-term follow-up and complications in 60 patients. Circulation 2004;109:1503-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700