用户名: 密码: 验证码:
四株不同来源海洋微生物胞外多糖的结构及抗氧化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物多糖由于其独特的理化性质和丰富的生物功能,培养条件可控等优势得到广泛的应用和规模化生产。海洋蕴含丰富的微生物资源,其种类多样,性质特异。从海洋微生物中寻找结构新颖,活性独特的胞外多糖具有重要理论意义和潜在的应用价值。本文以14种不同海洋来源微生物的发酵液为研究对象,从中提取胞外多糖,对其进行组成分析,从中筛选出4株海洋微生物,包括南海红树林内生真菌(Aspergillus sp. Y16),南海珊瑚共附生真菌(Aspergillus versicolor LCJ-5-4),太平洋深海底质来源真菌(Penicillium griseofulvum)以及南海海绵内生真菌(Alternaria sp.SP32),对其胞外多糖进行分离纯化、结构研究和抗氧化活性评价。研究结果如下:
     1.从南海红树林植物厚藤内生真菌Aspergillus sp. Y16发酵液中提取得到胞外多糖,通过Q Sepharose Fast Flow离子交换柱层析及Sephadex G150,Superdex75凝胶渗透柱层析对其分离纯化,得到两个多糖组分As1-1和As2-1,分子量分别为15kDa和6kDa,As1-1是由Man和Gal组成,比例为9:1;As2-1全部由Man组成。经甲基化及1D,2D NMR分析表明,As1-1是以(1→2)-α-D-Manp为主链的半乳甘露聚糖,其O-6约每3个糖基存在一个分支,支链由β-Manp、β-Galf和少量(1→6)-α-D-Manp组成。As2-1是近似直链的(1→6)-α-D-Manp连接的甘露聚糖,在O-3位存在一定的分支,分支由α-D-Manp及(1→3)-α-D-Manp组成。通过体外DPPH自由基、羟基自由基、超氧阴离子自由基清除能力及抗脂质过氧化作用评价表明,As1-1和As2-1具有良好的体外DPPH自由基和超氧阴离子自由基的清除能力,特别是As1-1,其清除DPPH自由基的EC50值为1.45mg/mL。该研究首次从厚藤内生真菌Aspergillus sp. Y16胞外多糖中获得了结构新颖的以(1→2)-α-D-Manp为主链的具有抗氧化活性的半乳甘露聚糖,其具有潜在开发应用价值。
     2.从南海珊瑚共附生真菌Aspergillus versicolor LCJ-5-4发酵液中提取胞外多糖,通过Q Sepharose Fast Flow离子交换柱层析及Sephacryal S400,Superdex75凝胶渗透柱层析对其分离纯化,得到两个多糖组分AV-1和AVP。经GC、HPLC、HPGPC、IR、甲基化及1D,2D–NMR分析表明,AV-1是以葡萄糖为主的中性杂多糖,分子量为500kDa,其结构以(1→6)-α-D-Glcp为主要连接方式,平均9个糖基存在一个以单个非还原末端α-D-Manp形式的分支连接在主链(1→6)-α-D-Glcp的O-3位上。AVP是分子量为7kDa,结构新颖的甘露葡聚糖,其主链以(1→6)-α-D-Glcp为主,还含有(1→2)-α-D-Manp,也存在一定的分支,平均每8个糖基存在一个分支,而且支链比AV-1的支链要长,除了非还原末端α-D-Manp以外,还含有(1→2)-α-D-Manp,连在主链(1→2)-α-D-Manp的O-6位上。通过体外抗氧化指标评价表明,AVP具有良好的清除自由基的能力,对DPPH自由基和超氧阴离子自由基的清除EC50值分别为2.0mg/mL和1.5mg/mL。本研究从珊瑚共附生真菌A. versicolor LCJ-5-4得到两种胞外多糖,AV-1为具有Man分支的类似右旋糖酐结构,AVP是结构新颖具有抗氧化活性的甘露葡聚糖,表明海洋共附生真菌是结构新颖的活性胞外多糖的重要来源。
     3.从太平洋深海底质来源的真菌灰黄青霉Penicillium griseofulvum发酵液中获得的胞外多糖,通过Q Sepharose Fast Flow阴离子交换柱层析及Superdex75凝胶渗透柱层析分离纯化得到多糖组分Ps1-1。 HPGPC及HPLC研究表明,Ps1-1是分子量为20kDa,Gal与Man的比例约为1:1的半乳甘露聚糖。通过部分酸水解、甲基化、1D,2D NMR、乙酰解和ESI MS分析表明,Ps1-1是以(1→6)-α-Manp为主链的磷酸化半乳甘露聚糖。其存在Man核心,核心结构是以(1→6)-α-Manp为主链的多分支结构,分支发生在主链的O-2位上,由单个非还原末端的α-Manp及(1→2)-α-Manp连接的二糖和三糖组成。由Gal组成的支链结构连接于Man的核心结构上,Gal支链由β-(1→5)-Galf组成,存在15%的分支,分支由单个非还原末端的β-Galf连接在主链β-(1→5)-Galf的O-6上,并且存在10%左右的磷酸基取代,取代同样在β-(1→5)-Galf的O-6位上。采用部分酸水解的方法制备寡糖,并结合Bio GelP4凝胶柱层析分离纯化,得到了4个由β-(1→5)-Galf组成的聚合度为2–5的半乳寡糖,以及聚合度为3–5的磷酸化半乳寡糖。并对β-(1→5)-Galf寡糖的二级质谱碎裂模式进行了探讨和验证,为通过质谱微量分析呋喃型半乳寡糖的结构提供了依据。本研究从深海底质来源的真菌P. griseofulvum得到了一种含有特异β-(1→5)-Galf直链的半乳甘露聚糖,并获得了不同聚合度的呋喃半乳寡糖及磷酸化呋喃半乳寡糖,为我国“海洋糖库”的建设提供了新型特征寡糖。
     4.从一株南海海绵内生真菌(Alternaria sp. SP32)中提取其胞外多糖,通过QSepharose Fast Flow离子交换柱层析及Superdex75凝胶渗透柱层析分离纯化得到多糖组分SP-S。HPGPC和GC分析表明,SP-S的分子量为27kDa,主要由Man、Glc和Gal组成,其比例约为3:2:1。通过连续酸水解、甲基化、1D,2D NMR及部分酸水解后寡糖的GC–MS和ESI–CID MS/MS分析表明,SP-S是以甘露糖为核心的半乳葡萄甘露聚糖。核心甘露糖主链由(1→6)-α-Manp组成,其O-2上存在大量由(1→2)-α-Manp组成的分支。其半乳糖以→2)-β-Galf-(1→,→2,6)-β-Galf-(1→及β-Galf-(1→的连接方式,与(1→2)-α-Glcp和(1→6)-α-Glcp构成了胞外多糖SP-S的分支结构。经过体外抗氧化活性研究表明,SP-S存在一定的清除自由基的活性,对DPPH自由基的清除EC50值约为5mg/mL。这是首次从Alternaria属真菌所产胞外多糖中获得结构新颖的半乳葡萄甘露聚糖,为研究半乳葡萄甘露聚糖的生物活性提供了物质基础。
     本论文的研究成果为我国“海洋糖库”的建设提供了结构新颖的海洋多糖和特征寡糖,为抗氧化多糖的研究提供了物质基础,对进一步开发海洋微生物胞外多糖和寡糖产品具有重要的参考价值。
Microbial polysaccharides are of growing interest in application and large-scaleproduction for the advantages of novel functions, constant chemical, physical propertiesand possibility to easily control the growth conditions in a bioreactor. It contains richmicrobial resources widely distributed in the oceans which are important sources ofvarious exopolysaccharides (EPSs). For the demonstrated biochemical and physiologicaldiversity, it is of great significance to find new EPSs with unique bioactivities frommarine microorganisms.
     In this paper, the exopolysaccharides were derived from the fermented liquid of14ocean microorganisms with different sources. Through contents analysis,4species of themarine microorganisms, including the mangrove endophytic fungus in the south Chinasea (Aspergillus sp. Y16), coral symbiotic fungus in the south China sea (Aspergillusversicolor LCJ-5-4), fungus from the sediment of deep sea (Penicillium griseofulvum)and sponge endogenous fungus in the south China sea (Alternaria sp. SP32) werechoosed to futherly separate and purify their exopolysaccharides, study the structures andevaluate their antioxidant activities. The research results were as follows:
     1. Two exopolysaccharides As1-1and As2-1were isolated from the broth ofmangrove endophytic fungus strain Aspergillus sp.Y16and purified by Q–Sepharose FastFlow anion-exchange chromatography and Sephadex G150, Superdex75gel-permeationchromatography.The structures of the exopolysaccharides were investigated by GC,HPLC, methylation and1D,2D–NMR analysis. The results showed that As1-1was agalactomannan composed of mainly mannose(88.9%) and galactose(11.1%) with themolecular weight of15kDa. The backbone consisted of (1→2)-linked α-Manp units,substituted mainly at O-6by units of β-Manp, β-Galf and small amounts of (1→6)-linkedα-Manp. As2-1was mostly composed of mannose with the molecular weight of about6kDa. It was nearly a linear polysaccharide with the main chain of (1→6)-linked α-Manp and small quantity of side chains composed of α-Manp and (1→3)-linked α-Manp whichwere linked to O-3of the main chain. The antioxidant properties in vitro were evaluatedby DPPH, hydroxyl and superoxide radicals scavenging abilities, lipid peroxidateinhibition assays. From the results, the two polysaccharides possessed good antioxidantproperties, especially on superoxide radicals and DPPH radicals. As1-1showed strongDPPH and superoxide radicals scavenging ability as evidenced by its low EC50value(1.45mg/mL for DPPH radicals and3.4mg/mL for superoxide radicals). In this study, anew galactomannan with a backbone of (1→2)-α-D-Manp was gained from theexopolysaccharides produced by mangrove endophytic fungus Aspergillus sp.Y16, whichpossess good antioxidant properties and have the value to further study.
     2. Two exopolysaccharides AV-1and AVP were isolated and purfied from thefermented broth of coral-associated fungus Aspergillus versicolor LCJ-5-4byQ–Sepharose Fast Flow anion-exchange chromatography and Sephacryal S400, Superdex75gel-permeation chromatography. AV-1was mainly composed of glucose with smallamounts of mannose in the molar ratio of8.6:1.0with molecular weight of about500kDa. AV-1was a slightly branched polysaccharide, and its backbone was composed of(1→6)-α-D-glucopyranose residues (90%), branching of single non-reducingα-D-mannopyranose (10%) occurred at O-3position of (1→6)-α-D-glucopyranoseresidues. AVP was a mannoglucan with molecular weight of about7kDa, and the molarratio of glucose and mannose was1.7:1.0. The backbone of AVP was characterized to becomposed of (1→6)-linked α-D-glucopyranose and (1→2)-linked α-D-mannopyranoseunits. The mannopyranose residues in the backbone were substituted mainly at C-6by theside chain of (1→2)-linked α-D-mannopyranose trisaccharides units. The antioxidantactivity of AVP was evaluated with the scavenging abilities on DPPH, superoxide andhydroxyl radicals in vitro, and the results indicated that AVP had good antioxidantactivity, especially scavenging ability on superoxide radicals with EC50value about1.5mg/mL. AVP was a novel mannoglucan with antioxidant activity produced bycoral-associated fungus Aspergillus versicolor, indicating that symbiotic fungi of marineorganisms were important sources of novel active exopolysaccharides.
     3. A galactofuranomannans Ps1-1, was isolated from the Deep-Ocean sedimentderived fungus Penicillium griseofulvum, using ethanol precipitation and anion-exchange and size-exclusion chromatography. The average molecular weight of Ps1-1wasestimated to be20kDa. Ps1-1consisted of Man and Gal in a molar ratio of1.1:1.0.According to the data obtained, Ps1-1was a galactomannan composed of5-O-linkedgalactofuranosyl chains linked to a mannan core. The mannan core consists of a mainchain of α-(1→6)-linked mannopyranosyl residues, substituted at O-2with either a singlea-mannopyranosyl unit or (1→2)-linked di-, trisaccharides. The galactofuranosyl chainhas a few additional branching at6-O-position of the chain by a terminal galactofuranoseand phosphate esters. Through the partial acid hydrolysis and purification by Bio-GelP4, oligosaccharides composed of β-(1→5)-Galf with the DP2-5and phosphorylatedoligosaccharides with DP3-5were obtained. MS/MS was used to analyse the structuresof the oligosaccharides. The ion fragmentation of the ring and the mass losses of theβ-(1→5)-Galf was observed and could be evidence for the diagnose of theoligosaccharides with the similar glycoside linkage. This study supplied novelgalacto-oligosaccharides with β-(1→5)-Galf linkage for the “marine specialoligosaccharides database”.
     4. A galactoglucomannan, SP-S was isolated from sponge endogeneous fungiAlternaria sp. SP32in south China sea. The average molecular weight of SP-S was about27kDa. The monosaccharide composition of SP-S was Mannose, Glucose and Galactosein the ratio of3:2:1. Through the gradual acid hydrolysis, methylation,1D,2D–NMR andoligosaccharides analysis derived from partial acid hydrolysis, the structure of SP-S waselucidated. The results showed that, SP-S was a galactoglucomannan with core mannosestructure. The core of the main chain was composed of (1→6)-α-Manp linkage with lotsof branches occured at O-2with (1→2)-α-Manp. The galactose residues of SP-S at thelinkages of→2)-β-Galf-(1→,→2,6)-β-Galf-(1→and β-Galf-(1→together with(1→2)-α-Glcp and (1→6)-α-Glcp also constituted the branch part of SP-S. Thisexopolysaccharide was novel in fungus genus Alternaria. From preliminary antioxidantand antitumor activity screening in vitro, it was found that SP-S had certain free radicalsscavenging abilities. The EC50value of scavenging DPPH radicals was about5mg/mL.This study provided a novel source for the bioactivites research of galactoglucomannan.
     The data in this paper supplied novel polysacharides and special oligosaccharides to“marine polysaccharides database”, provided promising sources of novel polysaccharides with good antioxidant activity, had potential value and important reference meanings forfurther research and development of marine microbe exocellular polysaccharideresources. And this study clearly indicated that marine microorganisms were exciting andpromising sources of novel polysaccharides with good bioactivity.
引文
[1] Varki A., Cummings R.D., Esko J.D., et al. Essentials of Glycobiology. Cold Spring HarborLaboratory Press(NY),2009.142~147
    [2] Liu C., Lu J., Lu L., et al. Isolation, structural characterizationand immunological activity of anexopolysaccharide produced by Bacillus licheniformis8-37-0-1. Bioresource Technology,2010.101(14):5528~5533
    [3]刘清泉.几种极具商业价值的新型微生物多糖的功能及应用.中国食品添加剂,2004.6:7-13
    [4] Laurienzo P. Marine Polysaccharides in Pharmaceutical Applications: An Overview. Marine Drugs,2010.2435~2465
    [5] Nicolaus B., Schiano Moriello V., Lama L., et al. Polysaccharides From Extremophilicmicroorganisms. Origins of Life and Evolution of the Biosphere,2004.34:159~169
    [6] Vandamme, E. J., De Baets, S.,&Steinbüchel, E. Biopolymers. Polysaccharides I Polysaccharides fromprokaryotes. Wiley-VCH,2002.
    [7] Donot F., Fontanaa A., Baccoua J.C., et al. Microbial exopolysaccharides: Main examples ofsynthesis, excretion, genetics and extraction. Carbohydrate Polymers,2012.87:951~962
    [8] Otero A., Vincenzini M. Extracellular polysaccharide synthesis by Nostoc strains as affected by Nsource and light intensity. Journal of Biotechnology,2003.102(2):143~152.
    [9] Cerning J., Renard C.M.G.C., Thibault J.F., et al. Carbon source requirements for exopolysaccharideproduction by Lactobacillus casei CG11and partial structure analysis of the polymer. Applied inEnvironnemental Microbiology,1994.60:3914~3919
    [10] Beech I.B., Tapper R.C. Exoploymers of sulfate-reducing bacteria. Berlin:Springer-Verlag,1999.
    [11] Zinkevich V., Bogdarina I., Kang H., et al. Characterization of exopolymers produced by differentisolates of marine sulphate-reducing bacteria. International Biodeterioration&Biodegradation,1996.37:163~172
    [12] O’Toole G.A., Kaplan H.B., Kolter R. Biofilm formation as microbial development. Annual Reviewof Microbiology,2000.54,49~79
    [13] Yegorenkova I.V., Tregubova K.V., Matora L.Y., et al. Biofilm formation by Paenibacillus polymyxastrains differing in the production and rheological properties of their exopolysaccharides. CurrentMicrobiology,2011.62(5):1554~1559
    [14] Monsan P., Bozonnet S., Albenne C., et al. Homopolysaccharides from lactic acid bacteria.International DairyJournal,2001.11(9):675~685.
    [15] Shih I.L., Chen L.D., Wu J.Y. Levan production using Bacillus subtilis natto cells immobilized onalginate. Carbohydrate Polymers,2010.82(1):111~117.
    [16] Meng G.Y., Futterer K. Structural framework of fructosyl transfer in Bacillus subtilis levansucrase.Nature Structural Biology,2003.10(11):935~941
    [17] Castillo E., Lopez-Munguia A. Synthesis of levan in water-miscible organicsolvents. Journal of Biotechnology,2004.114(1-2):209~217
    [18] Ben Ammar Y., Matsubara T., Ito K., et al. Characterization of a thermostable levansucrase fromBacillus sp. TH4-2capable of producing high molecular weight levan at high temperature. Journal ofBiotechnology,2002.99(2):111~119
    [19] Han Y. Microbial levan.Advance in Applied Microbiology,1990.35:171~194.
    [20]李兴军.果聚糖的合成与利用.中国食物与营养,2010.2:23~26
    [21] Jiang L. Optimization of fermentation conditions for pullulan production by Aureobasidium pullulanusing response surface methodology. Carbohydrate Polymers,2010.79(2):414~417
    [22] Singh R.S, Saini G.K., Kennedy J.F. Pullulan: Microbial sources, production and applications.Carbohydrate Polymers,2008.73(4):515~531
    [23] Shingel K.I. Current knowledge on biosynthesis, biological activity, and chemical modification of theexopolysaccharide, pullulan. Carbohydrate Research,2004.339(3):447~460
    [24] Catley B.J., McDowell W. Lipid-linked saccharides formed during pullulan biosynthesis inAureobasidium pullulans. Carbohydrate Research,1982.103(1):65~75
    [25] Jiang L. Optimization of fermentation conditions for pullulan production by Aureobasidium pullulanusing response surface methodology. Carbohydrate Polymers,2010.79(2):414~417
    [26] West T.P., Reesd-Hamer B.. Influence of vitamins and mineral salts upon pullulan synthesis ofAureobasidium pullulans. Microbios,1992.71:115~123
    [27] West T.P., Strohfus B. Effect of manganese on polysaccharides production and cellular pigmentationin the fungus Aureobasidium pullulans. World Journal of Microbiology&Biotechnologie,1997.13:233~235
    [28]杨西江,徐田华,徐玲,等.普鲁兰多糖的应用及研究生产现状.发酵科技通讯,2010.39(4):25~28
    [29] Mishra B., Vuppu S., Rath K. The role of microbial pullulan, a biopolymer inpharmaceuticalapproaches: A review. Journal of Applied Pharmaceutical Science,2011.1(6):45~50
    [30] Rekha M.R., Chandra P.S. Pullulan as a Promising Biomaterial for Biomedical Applications: APerspective. Trends in Biomaterials&Artificial Organs,2007.20(2):116~121
    [31] Shih I.L., Yu J.Y., Hsieh C., et al. Production and characterization of curdlan by Agrobacteriumsp. Biochemical Engineering Journal,2009.43(1):33~40.
    [32] Laws A., Gu Y., Marshall V. Biosynthesis, characterisation, and design of bacterialexopolysaccharides from lactic acid bacteria. Biotechnology Advances,2001.19(8):597~625
    [33] Ruffing A., Mao Z., Chen, R. Metabolic engineering of Agrobacterium sp. for UDP-galactoseregeneration and oligosaccharide synthesis. Metabolic Engineering,2006.8(5):465~473
    [34] Mcintosh M., Stone B.A., Stanisich V.A. Curdlan and other bacterial (1→3)-beta-d-glucans.Applied Microbiology and Biotechnology,2005.68:163~173
    [35]张洪涛,詹晓北,郑志永,等.热凝胶的高产策略及功能研究进展.生物加工过程,2009.7(5):8~12
    [36]朱思明,于淑娟,杨连生,等.热凝胶多糖及其衍生物的研究现状.中国甜菜糖业,2005.1:27~30
    [37]吴剑勇,詹晓北,郑志永,等.聚唾液酸与唾液酸的研究进展.生物加工过程,2007.5(1):20~26
    [38] Leinonen F.J., Makela M. Antigenic similarities between brain components and bacteria causingmeningitis. Implications for vacine development and pathogenesis,1983. Lancet13:355~357
    [39] Vimr E.R., Kalivoda K.A., Deszo E.L., et al. Diversity of microbial sialic acid metabolism.Microbiology And Molecular Biology Reviews,2004.68:132~153
    [40] Ferrero M.A., Aparicio L.R. Biosynthesis and production of polysialic acids in bacteria. AppliedMicrobiology and Biotechnology,2010.86:1621~1635
    [41] Simpson D.A., Hammarton T.C., Roberts I.S. Transcriptional organization and regulation ofexpression of region1of the Escherichia coli K5capsule gene cluster. Journal of Bacteriology,1996.178:6466~6474
    [42] Meredith T.C., Woodard R.W. Escherichia coli YrbH is a Darabinose5-phosphate isomerase.The Journal of Biological Chemistry,2003.278:32771~32777
    [43] Tzeng Y.L., Datta A.K., Strole C.A., et al. Translocation and surface expression of lipidatedserogroup B capsular polysaccharide in Neisseria meningitidis. Infection and Immunity,2005.73:1491~1505
    [44] Corbett D., Roberts I.S. Capsular polysaccarides in Escherichia coli. Advances in AppliedMicrobiology,2008.65:1~26
    [45] Davidson A.L., Chen J. ATP-binding cassette transporters in bacteria. Annual Review ofMicrobiology,2004.73:241~268
    [46] Xue P., Corbett D., Goldrick M., et al. Regulation of expression of the region3promoter of theEscherichia coli K5capsule gene cluster involves H-NS, SlyA, and a large5′untranslated region.Journal of Bacteriology,2009.191:1838~1846
    [47] Vann W.F., Daines D.A., Murkin A.S., et al. The NeuC protein of Escherichia coli K1is a UDPN-acetylglucosamine2-epimerase. Journal of Bacteriology,2004.186:706~712
    [48] Vimr E.R. Selective synthesis and labeling of the polysialic acid capsule in Escherichia coli K1strains with mutations in nanA and neuB. Journal of Bacteriology,1992.174:6191~6197
    [49] Vann W.F., Silver R.P., Abeijon C., et al. Purification, properties, and genetic location ofEscherichia coli cytidine5′-monophosphate N-acetylneuraminic acid synthetase. The Journal ofBiological Chemistry,1987.262:17556~17562
    [50] Devi S.J., Schneerson R., Egan W., et al. Identity between polysaccharide antigens ofMoraxellanonliquefaciens, group B Neisseria meningitidis, and Escherichia coli K1(non-O-acetylated). Infection and Immunnity,1991.59:732~736
    [51] Steenbergen S.M., Vimr E.R. Functional relationships of the sialyltransferases involved inexpression of the polysialic acid capsules of Escherichia coli K1and K92and Neisseriameningitidis groups B or C. The Journal of Biological Chemistry,2003.278:15349~15359
    [52] Willis L.M., Gilbert M., Karwaski M.F., et al. Characterization of the α-2,8-polysialyltransferasefrom Neisseria meningitidis with synthetic acceptors, and the development of a self-primingpolysialyltransferase fusion enzyme. Glycobiology,2008.18:177~186
    [53] Pelkonen S., H yrinen J., Finne J. Polyacrylamide gel electrophoresis of the capsularpolysaccharides of Escherichia coli K1and other bacteria. Journal of Bacteriology,1988.170:2646~2653
    [54] Bergfeld A.K., Claus H., Vogel U., Biochemical characterization of the polysialic acid-specificO-acetyltransferase NeuO of Escherichia coli K1. The Journal of Biological Chemistry,2007.282:22217~22227
    [55] Rodriguez-Aparicio L., Reglero A., Ortiz A., et al. Effect of physical and chemical conditions onthe production of colominic acid by Escherichia coli in a defined medium. Applied Microbiologyand Biotechnology1988a.27:474~483
    [56] Rodriguez-Aparicio L., Reglero A., Ortiz A., et al. A protein-sialyl polymer complex involved incolominic acid biosynthesis: effect of tunicamycin. Biochemistry Journal,1988b.252:589~596
    [57]李连生,刘克刚,姚祝军,等.唾液酸类化合物的合成研究进展.有机化学,2002.22(10):718~734
    [58]金城,张树政.糖生物学与糖工程的兴起与前景.生物工程进展,1995.15(3):12~17
    [59] McNicholl I.R., McNicholl J.J. Neuraminidase inhibitors: zanamivir and oseltamivir. AnnPharmacother,2001Jan.35(1):57~70
    [60] Liu J.L., Wu J.R, Shen F.D., et al. A new strategy to enhance polysialic acid production bycontrolling sorbitol concentration in cultivation of Escherichia coli K235. African Journal ofBiotechnology,2010.9(16):2422~2426
    [61] Rosalam S., England R. Review of xanthan gum production from unmodified starches byXanthomonas comprestris sp. Enzyme and Microbial Technology,2006.39(2):197~207
    [62] Becker A., Katzen F., Puhler A., et al. Xanthan gum biosynthesis and application: Abiochemical/genetic. Applied Microbiology and Biotechnology,1998.50:145~152.
    [63] Ielpi L., Couso R., Dankert M. Lipid-linked intermediates in the biosynthesisof xanthan gum. FEBS Letters,1981.130(2):253~256
    [64] Ielpi L., Couso R.O., Dankert M.A. Xanthan cum biosynthesis pyruvic acid acetal residues aretransferred from phosphoenolpyruvate to the pentasaccharide-P-P-lipid. Biochemical andBiophysical Research Communications,1981.102(4):1400~1408
    [65] Casas J.A., Santos, V.E., Garcia-Ochoa. Xanthan gum production under several operationalconditions: Molecular structure and rheological properties. Enzyme and Microbial Technology,2000.26(2–4):282~291
    [66] Chantaro P., Pongsawatmanit R. Influence of sucrose on thermal and pasting properties of tapiocastarch and xanthan gum mixtures. Journal of Food Engineering,2010.98(1):44~50
    [67]胡德亮,李柏林,陈有容.黄原胶生物合成的研究进展.上海水产大学学报,2000.9(1):59~64
    [68]崔孟忠,李竹云,徐世艾.生物高分子黄原胶的性能、应用与功能化.高分子通报,2003.3:23~28
    [69] Gorin P.A.J., Spencer J.F.T. Exocellular alginic acid from Azotobacter vinelandii. CanadianJournal of Chemistry,1966.44:993~998
    [70] Pindar D.F., Bucke C. The Biosynthesis of Alginiic Acid by Azotobacter vinelandii.Biochemistry Journal,1975.152:617~622
    [71] Chitnis C.E., Ohman D.E. Genetic analysis of the alginate biosynthetic gene cluster ofPseudomonas aeruginosa shows evidence of an operonic structure. Molecular Microbiology,1993.8(3):583~593
    [72] Gacesa P., Russell N.J. The structure and property of alginate. In: Pseudomonas infection andalginates. London, Chapman&Hall,1990.29~49
    [73] Moe S.T., Draget K.I., Skj k-Br k G. et al. Alginates. Food polysaccharides and theirapplications, Marcel Dekker,New York,1995.245~286
    [74] Sherbrock-Cox V., Russell N.J., Gacesa P. The purification and chemical characterisation of thealginate present in the extracellular material produced by mucoid strains of Pseudomonasaeruginosa. Carbohydrate Research,1984.135:147~154
    [75] Sadoffh L. Encystment and germination in Azotobacter vinelandii. Bacteriological Reviews,1975.39:516~538
    [76] Schwarzmann S., Boring J.R. Antiphagocytic Effect of Slime from a Mucoid Strain ofPseudomonas aeruginosa. Infection and Immunity,1971Jun.3(6):762~770
    [77] Franklin M.J., Ohman D.E. Identification of algF in the alginate biosynthetic gene cluster ofPseudomonas aeruginosa which is required for alginate acetylation. Journal of Bacteriology,1993.175(16):5057~5065
    [78] Schmitt-Andrieu L, Hulen C. Alginates of Pseudomonas aeruginosa: a complex regulation of thepathway of biosynthesis. C R Acad Sci III,1996.319(3):153~160
    [79] May T.B., Shinabarger D., Boyd A., et al. Identification of amino acid residues involved in theactivity of phosphomannose isomerase-guanosine5-diphospho-D-mannose pyrophosphorylase.A bifunctional enzyme in the alginate biosynthetic pathway of Pseudomonas aeruginosa. Journalof Biologocal Chemistry,1994.269(7):4872~4877
    [80] Olvera C., Goldberg J.B., Sanchez R., et al. The Pseudomonas aeruginosa algC gene productparticipates in rhamnolipid biosynthesis. FEMS Microbiology Letters,1999.179(1):85~90
    [81] Vazquez A., Moreno S., Guzman J., et al. Transcriptional organization of the Azotobactervinelandii algGXLVIFA genes: characterization of algF mutants. Gene,1999.232(2):217~222
    [82] Rehm B.H.A., Ertesva°g H., Valla S. A new Azotobacter vinelandii mannuronan C-5-epimerasegene (algG) is part of an alg gene cluster physically organized in a manner similar to that inPseudomonas aeruginosa. Journal of Bacteriology,1996.178(20):5884~5889
    [83] Remminghorst U., Rehm B.H.A. Alg44, a unique protein required for alginate biosynthesis inPseudomonas aeruginosa. FEBS Letters,2006a.580(16):3883~3888
    [84] Remminghorst U., Rehm B.H.A. In vitro alginate polymerization and the functional role of Alg8in alginate production by Pseudomonas aeruginosa. Applied Environmental Microbiology,2006b.72(1):298~305
    [85] Gimmestad M., Sletta H., Ertesva°g H., et al. The Pseudomonas fluorescens AlgG protein, but notits mannuronan C-5-epimerase activity, is needed for alginate polymer formation. Journal ofBacteriology,2003.185:3515~352
    [86] Franklin M.J., Ohman D.E. Identification of algI and algJ in the Pseudomonas aeruginosaalginate biosynthetic gene cluster which are required for alginate O acetylation. Journal ofBacteriology,1996.178(8):2186~2195
    [87] Nivens D.E., Ohman D.E., Williams J., et al. Role of alginate and its O acetylation in formationof Pseudomonas aeruginosa microcolonies and biofilms. Journal of Bacteriology,2001.183(3):1047~1057
    [88] Grabert E., Wingender J., Winkler U.K. An outer membrane protein characteristic of mucoidstrains of Pseudomonas aeruginosa. FEMS Microbiology Letters,1990.56(1–2):83~87
    [89] Rehm B.H.A. The Azotobacter vinelandii gene algJ encodes an outer membrane proteinpresumably involved in export of alginate. Microbiology,1996.142:873~880
    [90] Thomas S.(2000) Alginate dressings in surgery and wound management-Part1. Journal ofWound Care,2000.9(2):56~60
    [91] Remminghorst U., Rehm B.H.A. Bacterial alginates: from biosynthesis to applications.Biotechnology Letters,2006.28:1701~1712
    [92] Weigel P.H., Hascall V.C., Tammi M. Hyaluronan synthases. Journal of Biochemistry,1997.272(22):13997~14000
    [93] DeAngelis P.L., Hyaluronan synthases: fascinating glycisyltransferase from vertebrates, bacterialpathogens, and algal viruses. Cellular and Molecular Life Sciences,1999.56(78):670~682
    [94]丁霞,张建法,蒋鹏举.玻璃酸的生物合成及应用.中国生化药物,2004.25(3):189-191
    [95] Kumari K., Weigel P.H. Molecular cloning, expression and charact erization of the authent ichyaluronan synthase from group C Streptococcus equisimilis. Journal of Biological Chemistry,1997.272:32539~32546
    [96]田平芳,曲凯,谭天伟.链球菌生物合成透明质酸的分子机理与基因工程菌构建进展.中国生物工程杂志,2008.28(4):98~102
    [97] Fenichel R. L. Immune Modulation Agents and Their Mechanism. New York: Marcel DekkerInc,1984.400~409
    [98] Wasser S. P. Medicinal Mushrooms as a source of antitumor and immuonmodulatingpolysaccharides.Applied Microbiology and Biotechnology,2002.60(3):258~274
    [99] Williams D.L., Sherwood E.R., Browder I.W. Effect of glucan on neutrophil dynamics andimmune function in Escherichia coli peritonitis. Journal of Surgical Research,1988.44~54
    [100] Cleary J.A.,Kelly G.E., Husband A.J. The effect of molecular weight and beta-1,6-linkages onpriming of macrophage function in mice by (1,3)-beta-D-glucan. Immunology and Cell Biology,1999.77:395~401
    [101] Soltys J., Quinn M.T. Modulation of endotoxin-and enterotoxin-induced cytokine release by invivo treatment with beta-(1,6)-branched beta-(1,3)-glucan.Infection and Immunity,1999.67:244~250
    [102] Wakshull E., Brunke-Reese D., Lindermuth J., et al. PGG-glucan, a soluble beta-(1,3)-glucan.enhances the oxidative burst response, microbicidal activity, and activates an NF-kappaB-like factor in human PMN: evidence for a glycosphingolipid beta-(1,3)-glucan recepter.Immunopharmacology,1999.41:89~93
    [103] Wang Y.Y., Li S.P., Moser,S.A. et al. Cytokine Involvement in Immunomodulatory ActivityAffected by Candida albicans Mannan. Infection and Immunity,1998.66(4):1384~1391
    [104] Lin X, Cai Y.J., Li Z.X., et al. Structure determination, apoptosis induction, and telomeraseinhibition of CFP-2, a novel lichenin from Cladonia furcata. Biochimica et Biophysica Acta,2003.1662(2):99~108
    [105] Miyake K., Yamamoto S., Iijima S. Blocking adhesion of cancer cells to endothelial cell typesby S. agalactiae type-specific polysaccharides. Cytotechnology,1996.22(1-3):205~209
    [106]贺晓波,司书毅.微生物来源活性多糖的研究进展.中国抗生素杂志,2006.31(2):127~131
    [107] Asker M.M.S., Ahmed Y.M., Ramadan M.F. Chemical characteristics and antioxidant activity ofexopolysaccharide fractions from Microbacterium terregens. Carbohydrate Polymers,2009.77(3):563~567
    [108] Sun C, Wang J.W., Fang L., et al. Free radical scavenging and antioxidant activities ofEPS2, an exopolysaccharide produced by a marine filamentous fungus Keisslerella sp.4108.Life Sciences,2004.75:1063~1073
    [109]魏文树,谭建权.云芝多糖对活性氧清除机制的增强作用.中国药学杂志,1997.32(4):199~121
    [110] Kariya K., Nakamura K., Nomoto K., et al.. Mimicking of superoxide dismutase activity byprotein-bound polysaccharide of Coriolus versicolor QUEL, and oxidative stress relief forcancer patients. Molecular Biotherapy,1992.4(1):40~6
    [111]王超英,吕金顺,邓芹英.菌类多糖的生物活性与结构关系.天水师范学院学报,2001.21(5):18~21
    [112]周靓,蒙义文.多糖及其衍生物抗病毒作用研究进展.应用与环境生物学报,1997.3(1):82~90
    [113]何峰,杨英,周蓬蓬,等。链霉菌H03发酵液中具有抗菌活性多糖的分离纯化及其单糖组成分析.生命科学研究,2007.(3):28~33
    [114] Kiho T., Ookubo K., Usui S., Ukai S., et al. Structural features and hypoglycemic activity of apolysaccharide from the cultured mycelium of Cordyceps sinensis. Biological andPharmaceutical Bulletin,1999.22(9):66~70
    [115] Umezawa H., Okami Y., Kurasawa S. Marinactan, antitumor polysaccharide produced by marinebacteria. The Journal of Antibiotics,1983.36(5):471~477
    [116]李艳华,张利平.海洋微生物资源的开发与利用.微生物学通报,2003.30(3):113~114
    [117] Das S., Lyla P.S., Ajmal Khan S. Marine microbial diversity and ecology: importance and futureperspectives. Current Science,2006.90(10):1325~1335
    [118] Microbes in the Marine Environment. Garland Science, US,2011.1~23
    [119] Poli A., Anzelmo G., Nicolaus B. Bacterial Exopolysaccharides from Extreme Marine Habitats:Production, Characterization and Biological Activities. Marine Drugs,2010.8:1779~1802
    [120]张姗姗,王长云,魏晓蕾,等.海洋微生物胞外多糖结构与生物活性研究进展.微生物学通报,2007.34(1):153~156
    [121] Boyle C.D., Reade A.E. Characterization of two extracellular polysaccharides from marinebacteria. Applied Environmental Microbiology,1983.46(2):392~399
    [122]黄耀坚,黄益丽,刘三震,等.具有免疫活性多糖海洋细菌菌株的筛选.海峡两岸,2004.23(1):38~42
    [123]苏文金,黄益丽,黄耀坚,等.产免疫调节活性多糖海洋放线菌的筛选.海洋学报,2001.23(6):114~119
    [124]陈真,郭青龙,钱之玉,等.海洋真菌多糖YCP对荷瘤小鼠的抗肿瘤作用.食品与生物技术学报,2005.24(5):1~5
    [125] Li Z.Y. Advances in Marine Microbial Symbionts in the China Sea and Related PharmaceuticalMetabolites. Marine Drugs,2009.7:113~129
    [126]胡谷平,余志刚,吴耀文,等.南海海洋红树林内生真菌胞外多糖的研究.中山大学学报(自然科学版),2002.41(1):121~122
    [127] Abu G.O., Weiner, R.M., Rice J. et al. Properties of an extracellular adhesive polymer from themarine bacterium, Shewanella Colwelliana. The Journal of Bioadhesion and Biofilm Research,1991.3(1):69~84
    [128]徐健,陶洪文,陈荫,等.厚藤共生真菌(Fusarium oxysporum Y24-2)胞外多糖的化学组成和结构研究.中国海洋大学学报(自然科学版),2011.10:87~92
    [129]曹欢,王培培,吴建东,等.裂壶藻(Schizochytrium limacinum)多糖的提取分离及其结构特性.中国海洋药物,2011.6:1~5
    [130] Guo S.D., Wenjun Mao W.J., Han Y., et al. Structural characteristics and antioxidant activities ofthe extracellular polysaccharides produced by marine bacterium Edwardsiella tarda.Bioresource Technology,2010.101(12):4729~4732
    [131] Sun H.H., Mao W.J., Jiao J.Y., et al. Structural Characterization of Extracellular PolysaccharidesProduced by the Marine Fungus Epicoccum nigrum JJY-40and Their Antioxidant Activities.Marine Biotechnology,2011.13(5):1048~1055
    [132] Mancuso Nichols C.A., Guezennec J., Bowman J.P. Bacterial Exopolysaccharides fromExtreme Marine Environments with Special Consideration of the Southern Ocean, Sea Ice, andDeep-Sea Hydrothermal Vents: A Review. Marine Biotechnology,2005.7:253~271
    [133] Nicolaus B., Kambourova M. Oner E.T. Exopolysaccharides from extremophiles: fromfundamentals to biotechnology. Environmental Technology,2010.31(10):1145~1158
    [134] Guezennec J (2002) Deep-sea hydrothermal vents: A new source of innovative bacterialexopolysaccharides of biotechnological interest. Journal of Industrial Microbiology andBiotechnology.29:204~208
    [135] Poli A., Anzelmo G., Nicolaus B. Bacterial Exopolysaccharides from Extreme Marine Habitats:Production, Characterization and Biological Activities. Marine Drugs,2010.8:1779~1802
    [136] Mancuso Nichols, C.A.; Garon, S.; Bowman, J.P.; Raguénès, G.; Guézennec, J. Production ofexopolysaccharides by Antarctic marine bacterial isolates. Journal of Applied Microbiology,2004.96(5):1057~1066
    [137]李江,宋国强,陈靠山,等.南极适冷菌Pseudoalteromonas sp. S-15-13胞外多糖的分离、纯化和结构分析.高等学校化学学报,2008.29(6):1149~1152
    [138] Sheng G.P., Yu, H.Q., Li, X.Y. Extracellular polymeric substances (EPS) of microbialaggregates in biological wastewater treatment systems: A review. Biotechnology Advances,2010.28(6),882~894
    [139]方积年,丁侃.天然药物—多糖的主要生物活性及分离纯化方法.中国天然药物,2007.5(5):338~349
    [140]张惟杰.糖复合物生化研究技术.杭州:浙江大学出版社,1999.
    [141]林雪,王仲孚,黄琳娟,等.改进的PMP柱前衍生方法用于单糖的组成分析.高等学校化学学报,2006.27(8):1456~1458
    [142]夏朝红,戴奇,房韦,等.几种多糖的红外光谱研究。武汉理工大学学报,2007.29(1):45~47
    [143] Hakomori, S. A rapid permethylation of glycolipid, and polysaccharide catalyzed bymethylsulfinyl carbanion in dimethyl sulfoxide. Journal of Biochemistry,1964.55:205~208
    [144]卢穹宇,姬胜利.核磁共振技术在糖类结构解析中的应用.中国生化药物杂志,2008.29(3):207~209
    [145]王展,方积年.高场共振核磁波谱在多糖结构研究中的应用.分析化学,2007.28(2):240~247
    [146] Wu Jia., Deng X., Zhang Y., et al. Application of Atomic Force Microscopy in the Study ofPolysaccharide. Agricultural Sciences in China,2009.8(12):1458~1465
    [147] Delzenne N.M. Oligosaccharides: state of the art. Proceedings of the Nutrition Society,2003.62:177~182
    [148] Grandpierre C., Janssen H.G., Laroche C., et al. Enzymatic and chemical degradation of curdlantargeting the production of β-(1→3) oligoglucans. Carbohydrate Polymers,2008.71:277~286
    [149] Usui T., Ogata M., Murata T., et al. Sequential Analysis of α-Glucooligosaccharides with α-(1→4) and α-(1→6) Linkages by Negative Ion Q-TOF MS/MS Spectrometry. Journal ofCarbohydrate Chemistry,2011.28(7):421~430
    [1] Shearer C.A., Descals E., Kohlmeyer B., et al. Fungal biodiversity in aquatic habitats. Biodiversityand Conservation,2007.16:49~67
    [2] Sridhar K.R. Mangrove fungi in India. Current Science,2004.86:1586~1587
    [3] Cheng Z.S., Pan J.H., Tang W.C, et al. Biodiversity and biotechnological potential ofmangrove-associated fungi. Journal of Forestry Research,2009.20(1):63~72
    [4] Kobayashi J., Tsuda M. Bioactive products from Okinawan marine micro-and macroorganisms.Phytochemistry Reviews,2004.3:267~274
    [5] Zhang M., Wang W.L., Fang, Y.C., et al.2008. Cytotoxic alkaloids and antibiotic nordammaranetriterpenoids from the marine-derived fungus Aspergillus sydowi. Journal ofNature Product,2008.71:985~989
    [6]郭守东,陈荫,陈艳丽,等.南极树粉孢属真菌胞外多糖的分离纯化及结构表征.中国海洋大学学报,2010.4(5):5~10
    [7] Sun H.H., Mao W.J., Chen Y., et al. Isolation, chemical characteristics and antioxidant propertiesof the polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydrate Polymers,2009.78:117~124
    [8] Mao W.J., Li H.Y., Li Y., et al. Chemical characteristic and anticoagulant activity of the sulfatedpolysaccharide isolated from Monostroma latissimum (Chlorophyta). International Journal ofBiological Macromolecules,2009.44:70~74
    [9]赵峡,苗辉,范慧红,等.用GPC法测定硫酸多糖911的分子量及分子量分布.青岛海洋大学学报,2000.30(4):623~626
    [10] Dubois M., Gilles K.A., Hamilton J.K., et al. Colorimetric method for determination of sugarsand related substances. Analytical Chemistry,1956.28:350~356
    [11] Bradford M.M., A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein–dye binding. Analytical Chemistry,1976.72:248~254
    [12] Bitter T., Muir H.M. A modified uronic acid carbazole reaction. Analytical Chemistry,1962.4:330~334
    [13]张惟杰.糖复合物生化研究技术.第二版.杭州:浙江大学出版社,1999.128
    [14] Therho T.T., Hartiala K. Method for determination of the sulfate content of glycosamino glycans.Analytical Biochemistry,1971.41:471~476
    [15] Bartlett G.R. Phosphorus assay in column chromatography. The Journal of Biological Chemistry,1959Mar.234(3):466~468
    [16]张难,吴远根,莫莉萍,等.香菇多糖磷酸化修饰工艺条件的研究.食品与发酵工业,2007.33(12):63~67
    [17] Magnelli P., Cipollo J.F., Abeijon C.. A refined method for the determination of Saccharomycescerevisiae Cell Wall Composition and β-1,6-glucan fine structure. Analytical biochemistry,2002.301(1):136~150
    [18]戴军,朱松,汤坚,等.PMP柱前衍生高效液相色谱法分析杜氏盐藻多糖的单糖组成.分析测试学报,2007,26(2):206~210
    [19] Hakomori S. A rapid permethylation of glycolipid, and polysaccharide catalyzed bymethylsulfinyl carbanion in dimethyl sulfoxide. The Journal of Biological Chemistry,1964.55:205~208
    [20] Shimada K., Fujikawa K., Yahara K., et al. Antioxidative properties of xanthan on theautoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and FoodChemistry,1992.40:945~948
    [21] Kimuya Y., Kubo M., Tani T., et al. Studies on scutellariae radix. IV. Effects on lipidperoxidation in rat liver. Chemical and Pharmaceutical Bulletin,1981.29:2610~2617
    [22] Marklund, S., Marklund, G. Involvement of superoxide anion radicals in the autoxidation ofpyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry,1974.47:469~471
    [23] Yuan J.F., Zhang Z.Q., Fan Z.C., et al. Antioxidant effects and cytotoxicity of three purifiedpolysaccharides from Ligusticum chuanxiong Hort. Carbohydrate Polymers,2008.74(4):822~827
    [24]张惟杰.糖复合物生化研究技术.第二版.杭州:浙江大学出版社,1999.205~207
    [25] Kobayashi H., Suzuki J., Tanaka S., et al. Structure of a cell wall mannan from the pathogenicyeast, Candida catenulata: assignment of1H nuclear magnetic resonance chemical shifts of theinner α-1,6-linked mannose residues substituted by a side chain. Archives of Biochemistry andBiophysics,1997.341:70~74
    [26] Joo J.H., Yun J.W. Structural and molecular characterization of extracellular polysaccharidesproduced by a new fungal strain, Trichoderma erinaceum DG-312. Journal of Microbiology andBiotechnology,2005.15:1250~1257
    [27] Shibata N., Suzuki A., Kobayashi H., et al. Chemical structure of the cell-wall mannan ofCandida albicans serotype A and its difference in yeast and hyphal forms. Biochemical Journal,2007.404:365~372
    [28] Carbonero E.R., Cordeiro L.M.C., Mellinger C.G., et al. Galactomannans with novel structuresfrom the lichen Roccella decipiens Darb. Carbohydrate Research,2005.340:1699~1705
    [29] Braca A., Tommasi N.D., Di B.L.D., et al. Antioxidant principles from Bauhinia terapotensis.Journal of Nature Product,2001.64:892~895.
    [30] MacDonald J., Galley H.F., Webster, N.R. Oxidative stress and gene expression in sepsis. BritishJournal of Anaesthesia,2003.90(2):221~232
    [31] Guo S.D., Mao W.J., Han Y., et al. Structural characteristics and antioxidant activities of theextracellular polysaccharides produced by marine bacterium Edwardsiella tarda.BioresourceTechnology,2010.101:4729~4732
    [32] Ding X., Tang J., Cao M., et al. Structure elucidation and antioxidant activity of a novelpolysaccharide isolated from Tricholoma matsutake. International Journal of BiologicalMacromolecules,2010.47:271~275
    [1] Olson J.B., Kellogg C.A. Microbial ecology of corals, sponges, and algae inmesophotic coralenvironments. FEMS microbiology ecology,2010.73:17~30
    [2] Rohwer F., Breitbart M., Jara J., et al. Diversity and distribution of coral-associated bacteria.Marine ecology progress series,2002.243:1~10
    [3] Shashar, N., Cohen, Y., Loya, Y., et al. Nitrogen fixation (acetylene reduction) in stony corals:evidencefor coral-bacteria interactions. Marine Ecology-Progress Series,1994.111:25~264
    [4] Harder, T., Lau, C.K.S., Dobretsov, S., et al. A distinctive epibiotic bacterial community on thesoft coral Dendronephthya sp. and antibacterial activity of coral tissue extracts suggest chemicalmechanism against bacterial epibiosis. FEMS microbiology ecology,2003.43:337~347
    [5] Li Z.Y. Advances in Marine Microbial Symbionts in the China Sea and Related PharmaceuticalMetabolites. Marine Drugs,2009.7:113~129
    [6] Penesyan A., Marshall-Jones Z., Holmstrom C., et al. Antimicrobial activity observed amongcultured marine epiphytic bacteria reflects their potential as a source of new drugs. FEMSmicrobiology ecology,2009.69(1):113~124
    [7] Konig G.M., Kehraus S., Seibert S.F., et al. Natural products from marine organisms and theirassociated microbes. Chembiochem,2006.7(2):229~238
    [8] Sun H.H., Mao W.J., Chen,Y., et al. Isolation, chemical characteristics and antioxidant propertiesof the polysaccharidesfrom marine fugus Penicillium sp. F23-2. Carbohydrate Polymers,2009.78,117~124
    [9] Zhuang, Y.B., Teng, X.C., Wang, Y., et al. New quinazolinone alkaloids within rare amino acidresidue from coralassociated fungus, Aspergillus versicolor LCJ-5-4. Organic Letters,2011.13:1130~1133
    [10] Halliwell B., Gutteridge J.M.C., Aruoma O.I. The deoxyribose method: A simpl“etest-tube”assayfor determination of rate constants for reaction of hydroxyl radicals. Analytical Chemistry,1987.165:215~219
    [11] Mao W.J., Fang F., Li H.Y., et al. Heparinoid-active two sulfated polysaccharides isolated frommarine green algae Monostroma nitidum. Carbohydrate Polymers,2008.74,834~839
    [12] Barker S.A., Bourne E.J., Stacey M, et al. Infra-Red Spectra of Carbohydrates.1. Somederivatives of D-glucopyranose. Journal of the Chemical Society,1954. JAN:171~176
    [13] Shingel K.I. Determination of structural peculiarities of dexran, pullulan and gamma-irradiatedpullulan by Fourier-transform IR spectroscopy. Carbohydrate Research,2002.337(16):1445~1451
    [14] Mathlouthi M., Koenig J. Vibrational spectra of carbohydrate. Advances in carbohydrate.Chemistry and Biochemistry,1986.44:7~89
    [15] Seymour, F.R. Correlation of the structure of dextran to their1H NMR spectra. CarbohydrateResearch,1979.74:77~92
    [16] Maina N.H., Tenkanen M., Maaheimo H., et al. NMR spectroscopic analysis ofexopolysaccharides produced by Leuconostoc citreum and Weissella confusa. CarbohydrateResearch,2008.343:1446~1455
    [17] Purama R.K., Goswami P., Khan A.T., et al. Structural analysis and properties of dextranproduced by Leuconostoc mesenteroides NRRL B-640. Carbohydrate Polymers,2009.76:30~35
    [18] Yan J.K., Li L., Wang Z.M., et al. Structural elucidation of an exopolysaccharide from mycelialfermentation of a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis. CarbohydratePolymers,2010.79:125~130
    [19] Bhaskar P.V., Bhosle N.B. Microbial extracellular polymeric substances in marinebiogeochemical processes. Current Science,2005.88(1):45~53
    [20] Nicolaus B., Kambourova M., Oner E.T. Exopolysaccharides from extremophiles: fromfundamentals to biotechnology. Environmental Technology,2010.31(10):1145~1158
    [21] Luo X., Xu X.Y., Yu M.Y., et al. Characterisation and immunostimulatory activity of anα-(1→6)-D-glucan from the cultured Armillariella tabescens mycelia. Food Chemistry,2008.111:357~363
    [22] Zhao G.H., Kan J.Q., Li, Z.X. Characterization and immunostimulatory activity of an(1→6)-α-D-glucan from the root of Ipomoea batatas. International Immunopharmacology,2005.5:1436~1445
    [23] Kobayash H., Watanabe M., Komido M., et al. Assignment of1H and13C NMR chemical shiftsof a D-mannan composed of α-(1→2) and α-(1→6) linkages obtained from Candida kefyr IFO0586strain. Carbohydrate Research,1995.267:299~306
    [24] Shibata N., Suzuki A., Kobayashi H., et al. Chemical structure of the cell-wall mannan ofCandida albicans serotype A and its difference in yeast and hyphal forms. Biochemical Journal,2007.404:365~372
    [25] Dave V., McCarthy S.P. Review of Konjac glucomannan. Journal of EnvironmentalPolymer Degradation,1997.5:237~241
    [26] Inoue K., Kawamoto K., Kadoya, S. Structural studies on an antitumor polysaccharide fromMicroellobosporia grisea. Carbohydrate Research,1983.114,245~256
    [27] Wu Y.L., Hu N., Pan Y.J., et al. Isolation and characterization of a mannoglucan from edibleCordyceps sinensis mycelium. Carbohydrate Research,2007.342:870~875
    [28] Wu, X.M., Tu, P.F. Chemical properties of a mannoglucan from Cistanche deserticola.Pharmazie,2004.59:815~816
    [29] MacDonald J., Galley H.F., Webster, N.R. Oxidative stress and gene expression in sepsis. BritishJournal of Anaesthesia,2003.90(2):221~232
    [30] Aruoma, O.I. Free radicals, oxidative stress, and antioxidants in human healthand disease. Journal of the American Oil Chemists Society,1998.75:199~212
    [31] Braca A., De Tommasi N., Di Bari L., et al. Antioxidant principles from Bauhinia terapotensis.Journal of Natural Products,2001.64:892~895
    [1] Das S., Lyla P.S., Khan S.A. Marine microbial diversity and ecology:importance and futureperspectives. Current Science,2006.90(10):1325~1335
    [2] Raghukumar, C., Raghukumar, S. Barotolerance of fungi isolated from deep-sea sediments of theIndian Ocean. aquatic microbial ecology,1998.15:153~163
    [3] Kohlmeyer, J. The first Ascomycete from the deep sea. Journal of the Elisha Mitchell ScientificSociety1968.84:239~241
    [4] Singh P.C., Raghukumar P.V., Shouche Y. Phylogenetic diversity of culturable fungi from thedeep-sea sediments of the Central Indian Basin and their growth characteristics. Fungal Diversity,2010.40:89~102
    [5] Kirk P.W.1980. The mycostatic effect of seawater on spores of terrestrial and marine higher fungi.Bot. Mar.,1980.23:233~238
    [6] Damare S., Nagarajan M., Raghukumar C. Spore germination of fungi belonging to Aspergillusspecies under deep-sea conditions. Deep-Sea Research I,2008.55:670~678
    [7] Raghukumar C., Damare S.R. Deep-Sea fungi. In:(C. Michiels, D.H. Bartlett and A. Aertsen,eds)High-pressure microbiology. ASM Press,2008. Washington, DC, USA.265~292
    [8] Damare S., Raghukumar C., Muraleedharan U.D., et al. Deep-sea fungi as a source of alkaline andcold-tolerant proteases. Enzyme and Microbial Technology,2006b.39:172~181
    [9] Pettit R.K. Culturability and Secondary Metabolite Diversity of Extreme Microbes: ExpandingContribution of Deep Sea and Deep-Sea Vent Microbes to Natural Product Discovery. MarineBiotechnology,2011.13:1~11
    [10] Raguénès G., Pignet P., Gauthier G., et al. Description of a new polymersecreting bacterium froma deep-sea hydrothermal vent, Alteromonas macleodii subsp. fijiensis, and preliminarycharacterization of the polymer. Applied and Environmental Microbiology,1996.62:67~73
    [11] Raguénès G., Christen R., Guezennec J., et al. Vibrio diabolicus sp. nov., a newpolysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaeteannelid, Alvinella pompejana. International Journal of Systematic and EvolutionaryMicrobiology,1997a.47:989~995
    [12] Raguénès G.H.C., Peres A., Ruimy R., et al. Alteromonas infernus sp. nov., a newpolysaccharide-producing bacterium isolated from a deep-sea hydrothermal vent. Journal ofApplied Microbiology,1997b.82:422~430
    [13] Matou S., Colliec-Jouault S., Galy-Fauroux I., et al. Effect of an oversulfated exopolysaccharideon angiogenesis induced by fibroblast growth factor-2or vascular endothelial growth factor invitro. Biochemical Pharmacology,2005.69:751~759
    [14] Zhou L.N., Zhu T.J, Cai S.X, et al. Three New Indole-Containing Diketopiperazine Alkaloidsfrom a Deep-Ocean Sediment Derived Fungus Penicillium griseofulvum. Helvetica Chimica Acta,2010.93:1758~1763
    [15] Stewart T.S., Ballou C.E. A Comparison of Yeast Mannans and Phosphomannans by Acetolysis.Biochemistry,1968.7(5):1855~1863
    [16] Stewart T.S., Mendershausen P.B., Ballou C.E. Preparation of a Mannopentaose, Mannohexaose,and Mannoheptaose from Saccharomyces cerevisiae Mannan.1968.7(5):1843~1854
    [17] Kogelberg H., Piskarev V.E., Zhang Y.B., et al. Determination by electrospray massspectrometry and1H-NMR spectroscopy of primary structures of variously fucosylated neutraloligosaccharides based on the iso-lacto-N-octaose core. European Journal of Biochemistry,2004.271:1172~1186
    [18] Huang Q.L., Zhang L.N. Preparation, chain conformation and anti-tumor activities ofwater-soluble phosphated (1→3)-α-d-glucan from Poria cocos mycelia. Carbohydrate Polymers,2011.83:1363~1369
    [19] Tischer C.A., Gorin P.A.J., de Souza M.B., et al. Structures of phosphonogalactomannansisolated from mycelia of Aspergillus versicolor. Carbohydrate polymers,2002.49:225~230
    [20] Ahrazem O., Prieto A., Leal J.A., et al. Fungal cell wall polysaccharides isolated from Disculadestructiva spp. Carbohydrate Research,1997.342:1138~1143
    [21] Giménez-Abián M.I., Bernabé M., Leal J.A., et al. Structure of a galactomannan isolated from thecell wall of the fungus Lineolata rhizophorae. Carbohydrate Research,2007.342:2599~2603
    [22] Chen Y., Mao W.J., Tao H.W., et al. Structural characterization and antioxidant properties of anexopolysaccharide produced by the mangrove endophytic fungus Aspergillus sp. Y16.Bioresource Technology,2011.102:8179~8184
    [23]张惟杰.糖复合物生化研究技术.第二版.杭州,浙江大学出版社,1999.
    [24] Shibata, N., Saitoh, T., Tadokoro, Y., et al. The cell wall galactomannan antigen from Malasseziafurfur and Malassezia pachydermatis contains β-1,6-linked linear galactofuranosyl residues andits detection has diagnostic potential. Microbiology,2009.155:3420~3429
    [25] Prieto, A., Ahrazem, O., Bernabé, M., et al. Polysaccharides F1SS: taxonomic and evolutionarycharacters for ascomycetes. In: San-Blas, G., Calderone, R.A.(Eds.), Pathogenic Fungi:Structural Biology and Taxonomy. Caister Academic Press,2004. England, pp.319~360
    [26] Leal J.A., Gómez-Miranda B., Prieto A., et al. Possible chemotypes from cell wallpolysaccharides, as an aid in the systematics of Penicillium and its teleomorphic statesEupenicillium and Talaromyces. Mycology Research,1997.101(10):1259~1264
    [27] Levery S.B., Toledo M.S., Suzuki E. Structural Characterization of a New Galactofuranose-Containing Glycolipid Antigen of Paracoccidioides brasiliensis. Biochemical and BiophysicalResearch Communications,1996.222:639~645
    [28] Domon B., Costello C.E. Structure elucidation of glycosphingolipides and gangliosides usinghigh-performance tandem mass spectrometry. Biochemistry,1988.27(5):1534~1543
    [29]王红敏,张萍,黄琳娟,等.基质辅助激光解吸电离质谱分析糖类物质.化学进展,2009.21(6):1335~1343
    [30]杨波,于广利,王玉峰,等. κ-卡拉胶寡糖脂的合成及其结构鉴定.化学学报,2009.67(11):1217~1222
    [31]郭守东.微生物胞外多糖的结构及其抗氧化活性研究.[博士论文].青岛,中国海洋大学,2010年6月.
    [1] Faulkner D.J. Marine natural products. Natural Product Reports,2000.17:7~55
    [2] Osinga R., Armstrong E., Burgess J.G., et al. Sponge–microbe associations and their importancefor sponge bioprocess engineering. J.D. McKenzie (ed.), Microbial Aquatic Symbioses: fromPhylogeny to Biotechnology. Hydrobiologia,2001.461:55~62
    [3] Unson M.D., Holland N.D., Faulkner D.J. A brominated secondary metabolite synthesized by thecyanobacterialsymbiont of a marine sponge and accumulation of the crystallinemetabolite in thesponge tissue. Marine Biology,1994.119:1~11
    [4] Brantley S.E., Molinski T.F., Preston C.M., et al. Brominated acetylenic fatty acids fromXestospongia sp., a marine sponge-bacteria association. Tetrahedron,1995.51:7667~7672
    [5] Boyd K.G., Mearns-Spragg A., Brindley G., K. et al. Antifouling potential of epiphytic marinebacteria from the surfaces of marine algae. In LeGal Y., Muller-Feuga A.(eds), MarineMicro-organisms for Industry. Actes de colloques21, Ifremer,1998. Plouzané:128~136
    [6] Abdelmohsen U.R., Pimentel-Elardo S.M., Hanora A., et al. Isolation, Phylogenetic Analysis andAnti-infective Activity Screening of Marine Sponge-Associated Actinomycetes. Marine Drugs,2010.8:399~412
    [7] Hinde R., Pironet F., Borowitzka M.A. Isolation of Oscillatoria spongeliae, the filamentouscyanobacterial symbiont of the marine sponge Dysidea herbacea. Marine Biology,1994.119:99~104
    [8] Sun H.H., Mao W.J., Jiao J.Y., et al. Structural Characterization of Extracellular PolysaccharidesProduced by the Marine Fungus Epicoccum nigrum JJY-40and Their Antioxidant Activities.Marine Biotechnology,2011.13(5):1048~1055
    [9] Al-Nahas M.O., Darwish M.M., Ali A.E., et al. Characterization of an exopolysaccharide-producing marine bacterium, isolate Pseudoalteromonas sp. AM. African Journal ofMicrobiology Research,2011.5(22):3823~3831
    [10] Abu Sayem S.M., Manzo E., Ciavatta L., et al. Anti-biofilm activity of an exopolysaccharidefrom a sponge-associated strain of Bacillus licheniformis. Microbial Cell Factories,2011.10:74~85
    [11]王兵,张丽娟,杨锐,等.一种海洋真菌多糖及其提取和用途.中国专利,1657542A,2005-08-24
    [12]李德海,顾谦群,张国建,等.倍半萜混对苯二酚类化合物及其制备方法和用途.中国专利,102921001A,2011-04-06
    [13]张惟杰.糖复合物生化研究技术.第二版,浙江大学出版社,1999.
    [14] Asker M.M.S., Shawky B.T. Structural characterization and antioxidant activity of anextracellular polysaccharide isolated from Brevibacterium otitidis BTS44. Food chemistry,2010.123(2):315~320
    [15]郭玉娜.气相色谱质谱法用于糖类物质结构分析的新方法研究.[硕士论文].西北大学,2008年5月.
    [16] Leal J.A., Gómez-Miranda B., Prieto A., et al. Possible chemotypes from cell wallpolysaccharides, as an aid in the systematics of Penicillium and its teleomorphicstatesEupenicillium and Talaromyces. Mycological Research,1997.101(10):1259~1264
    [17] Shibata N., Okawa Y. Chemical structure of β-galactofuranose-containing polysaccharide andO-linked oligosaccharides obtained from the cell wall of pathogenic dematiaceous fungusFonsecaea pedrosoi. Glycobiology,2011.21(1):69~81
    [18] Gómez-Miranda B., Prieto A., Leal J.A., et al. Differences among the cell wall galacto-mannansfrom Aspergillus wentii and Chaetosartorya chrysella and that of Aspergillus fumigatus.Glycoconjugate Journal,2004.20:239~246
    [19] Prieto A., Leal J.A., Gómez-Miranda B., et al. Isolation and structural determination of a uniquepolysaccharide containing mannofuranose from the cell wall of the fungus Acrospermumcompressum. Glycoconjugate Journal,2004.24:421~428
    [20] Prieto A., Leal J.A., Bernabé M., et al. A polysaccharide from Lichina pygmaea and L. confinissupports the recognition of Lichinomycetes. Mycological Research,2008.112:381~388
    [21] Garozzo D., Giuffrida M., Impallomeni G. Determination of Linkage Position and Identificationof the Reducing End in Linear Oligosaccharides by Negative Ion FastAtom Bombardment Mass Spectrometry. Analytical. Chemistry,1990.62:279~286
    [22] Carbonero E.R., Montai A.V., Woranovicz-Barreira S.M., et al. Polysaccharides of lichenizedfungi of three Cladina spp.:significance as chemotypes. Phytochemistry,2002.61:681~686
    [23] Carbonero E.R., Mellinger C.G., Eliasaro S.,et al. Chemotypes significance of lichenized fungiby structural characterization of heteropolysaccharides from the genera Parmotrema and Rimelia.FEMS Microbiology Letters,2005.246(2):273~278
    [24] Woranovicz S.M., Pinto B.M., Gorin P.A.J., et al. Novel structures in galactoglucomannans of thelichens Cladonia substellata and Cladonia ibitipocae: significance as chemotypes.Phytochemistry,1999.51(3):395~402
    [25] Leal J. A., Giménez-Abián M.I., Canales á., Cell wall polysaccharides isolated from the fungusNeotestudina rosatii, one of the etiologic agents of mycetoma in man. Glycoconjugate Journal,2009.26(8):1047~1054
    [26] El-shamy A.R., Nehad E.A. Optimization of polysaccharide production by Alternaria alternata.Gate2Biotech,2010.1(9):1~6
    [27] Martinichen-Herrero J.C., Carbonero E.R., Sassaki G.L., et al. Anticoagulant and antithromboticactivities of a chemically sulfated galactoglucomannan obtained from the lichen Cladoniaibitipocae. International Journal of Biological Macromolecules,2005.35:97~102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700