用户名: 密码: 验证码:
五环三萜环磷酸酯缓释前药和2-吲哚基环戊烷并吲哚衍生物的设计、合成与活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、五环三萜类天然产物在自然界中分布广泛,具有保肝抗炎、抗肿瘤、抗病毒、抗溃疡及抗过敏等多种药理活性,是当前药物研发的热点。但是五环三萜普遍存在体内代谢过快,半衰期过短的缺陷。对五环三萜进行结构改造以维持稳定的血药浓度、延长体内保留时间,是目前学界研究的重点课题之一。而环磷酸酯肝靶向基团有潜在的缓释活性,有制成缓释前药的可能。
     本论文首次将五环三萜类化合物与环磷酸酯基团连接,设计并合成了一类新型五环三萜环磷酸酯缓释前药。首先以取代苯乙酮为起始原料,经酮酯缩合、还原、硅醚化、缩酮化及手性拆分、酸水解、磷酯化、酯交换等7步反应,得到了甘草次酸、齐墩果酸、熊果酸三类共39个立体专一的五环三萜环磷酸酯衍生物,均为未见文献报道的新化合物;并对关键的酯交换反应进行了研究,确定了最优的碱性试剂为N,N-二异丙基氨基锂,用量为5倍当量,建立了一种有效的合成方法。随后对P16R、P16S、P17R和P17S四个化合物进行了体外释药和体内缓释实验,结果显示前药能够在36h或更长时间内持续释放原药,延长甘草次酸的半衰期和体内保留时间,具有良好的缓释活性,具有进一步研究的价值和较高的成药潜力。
     二、月橘碱是一种具有抗着床活性和抗肿瘤活性的双吲哚生物碱,其结构改造和药理活性研究是当前研究较多的课题。月橘碱的基本骨架2-吲哚基环戊烷并吲哚是抗肿瘤活性的必需结构,也是合成双吲哚生物碱类化合物的重要中间体,可以通过3-烯基吲哚的立体选择性环二聚反应合成。3-烯基吲哚环二聚反应是一种较新颖的[3+2]环加成反应,目前研究较少,可能成为立体专一的双吲哚生物碱的有效合成方法,具有较高的研究价值。
     本论文以一系列不同取代基取代的3-烯基吲哚衍生物为原料,通过酸介导的立体选择性环二聚反应,设计并合成了11个含有2-吲哚基环戊烷并吲哚骨架的月橘碱类似物,除Y01外均为未见文献报道的新化合物;并通过测试酸试剂、取代基电性、空间位阻、时间、温度等因素对反应的影响,对3-烯基吲哚的立体选择性环二聚反应进行了深入研究,首先确定了TFA为最优的酸试剂,CH2Cl2为适合的反应溶剂,并确定了较优的反应条件,随后对反应的影响因素和机理进行了研究,提出了一种分步反应机理,为此类双吲哚生物碱的立体选择性合成提供了一种有效的合成策略;最后对部分化合物进行了体外抗肿瘤活性测试,初步结果显示,Y03、Y06和Y08三个化合物表现出较好的肿瘤细胞增殖抑制活性,具有进一步研究和改造的价值,目前正在进行更深入的活性测试。
1. Pentacyclic triterpenes, which have a wide distribution in nature, have variouspharmacological activities, such as hepatoprotective, anti-inflammatory, anti-tumor,anti-virus, anti-ulcer and anti-allergy activity. This kind of natural product is one of the drugresearch hotspots. However, the quick metabolism in vivo limits its clinical applicationas drugs. The structural modification of pentacyclic triterpenes is an effective methodto prolong the mean retention time (MRT) and maintain a stable blood concentration.1,3-cyclic propanyl phosphate ester, a liver-targeted group, has been found havingpotential sustained-release activity. This group may be an appropriate method to alterthe metabolism of pentacyclic triterpenes.
     In this thesis, a new class of potential prodrugs,1,3-cyclic propanyl phosphateesters of pentacyclic triterpenes, has been designed and synthesized. First,39stereospecific derivatives of18β-glycyrrhetic acid (GA), oleanolic acid (OA) andursolic acid (UA) has been synthesized using substituted acetophenone as startingmaterial via condensation, reduction, trimethyl silylation, ketalization, chiralseparation, hydrolysis, esterification and transesterification. All synthesizedcompounds are new compounds and their structure have been confirmed by NMR,HRMS and polarimetry techniques. Meanwhile, the key step of synthesis,transesterification reaction, has been studied to establish an efficient synthetic method ofthis prodrug. Lithium diisopropylamide (LDA) has been found best alkaline catalystand the optimal ratio is5times of pentacyclic triterpene. has been established. Then,4compouds (P16R, P16S, P17R and P17S) have been chosen to investigate the drugrelease properties in vitro and the sustained-release properties in vivo. The resultsshow that the pentacyclic triterpenes can be released from the prodrugs at a steady rate in rats and the plasma concentrations of GA were nearly stable in36h or even longer.This result indicated that1,3-cyclic propanyl phosphate esters of pentacyclictriterpenes have good sustained-release properties to avoid the quick metabolism ofGA. This kind of prodrugs is highlighted as a hopeful new strategy to improvepentacyclic triterpenes metabolism.
     2. Bisindole alkaloids form an important family of alkaloids and show importantbioactivities. Yuehchukene is a tetrahydrocyclopenta[b]indole-type bisindole alkaloidwith anti-implantation activity and antitumor activity. The total synthesis, structuralmodification and bioactivity study of this kind of alkaloids have become activeresearch topics. As the core skeleton of yuehchukene,3-indolyl cyclopent[b]indolewhich has potential antitumor activity is a useful bisindole intermediate in thesynthesis of a number of biologically active bisindole alkaloids.[3+2]cyclodimerization reaction is a noval [3+2] cycloaddition reaction, and graduallybecome an efficient method to synthesize many heterocyclic compounds. So thederivatives of3-indolyl cyclopent[b]indole may also be synthesized bycyclodimerization reaction of3-vinylindoles.
     In this thesis, a new class of2-indolyl cyclopent[b]indoles was designed andsynthesized, and acid mediated cyclodimerization of3-vinylindoles to2-indolylcyclopent[b]indoles was investigated. First, the catalysts and conditions of reactionhave been tested. Trifluoroacetic acid (TFA) carries out to be the best acid reagent, CH2Cl2is an appropriate solvent, and the optimum reaction condition is confirmed. And11stereospecific derivatives of2-indolyl cyclopent[b]indole have been synthesized usingsubstituted3-vinylindoles as starting material via TFA mediated cyclodimerizationreaction. The reaction showed moderate to good yields and high stereoselectivity. Allsynthesized compounds are new compounds except Y01, and their structures havebeen confirmed by NMR, HRMS. Then, the electronic effect of substituent groups,steric hindrance, time, temperature and other influences has been investigated, and astepwise mechanism are given. This reaction provides an efficient synthetic strategy forthe stereoselective synthesis of this kind of bisindole alkaloids. Finally, the inhibition activity of3-indolyl cyclopent[b]indoles on the growth of HL-60cells has been testedand compound Y03, Y06and Y08show moderate activity. The derivates of2-indolylcyclopent[b]indoles is worth further research.
引文
[1]程晓华,熊玉卿.五环三萜皂苷的药理作用研究进展.中草药.2007,38(5):792~795.
    [2] Ploeger B A, Meulenbelt J, Dejongh J. Physiologically based pharmacokinetic modelingof glycyrrhizic acid, a compound subject to presystemic metabolism and enterohepaticcycling. Toxicol Appl Pharm.2000,162(3):177~188.
    [3] Shibata S. A drug over the millennia: pharmacognosy, chemistry, and pharmacology oflicorice. Yakugaku Zasshi.2000,120(10):849~862.
    [4] Gao Q T, Chen X H, Bi K S. Comparative pharmacokinetic behavior of glycyrrhetic acidafter oral administration of glycyrrhizic acid and Gancao-Fuzi-Tang. Biol Pharm Bull.2004,27(2):226~228.
    [5]惠寿年,董阿玲.国内对甘草化学成分的研究进展.中草药.1999(04):313~315.
    [6] Baltina L A. Chemical Modification of Glycyrrhizic Acid As A Route to New BioactiveCompounds for Medicine. Curr Med Chem.2003,10(2):155~171.
    [7] Nakagawa-Goto K, Nakamura S, Bastow K F, et al. Antitumor agents.256. Conjugationof paclitaxel with other antitumor agents: Evaluation of novel conjugates as cytotoxicagents. Bioorganic& Medicinal Chemistry Letters.2007,17(10):2894~2898.
    [8] Cinatl J, Morgenstern B, Bauer G, et al. Glycyrrhizin, an active component of liquoriceroots, and replication of SARS-associated coronavirus. Lancet.2003,361(9374):2045~2046.
    [9]胡志厚.甘草酸类药物的研制及应用.药学学报.1988(07):553~560.
    [10] Yano S, Harada M, Watanabe K, et al. Antiulcer activities of glycyrrhetinic acidderivatives in experimental gastric lesion models. Chem Pharm Bull (Tokyo).1989,37(9):2500~2504.
    [11] Van Rossum T G J, Vulto, De Man R A, et al. glycyrrhizin as a potential treatment forchronic hepatitis C. Aliment Pharm Therap.1998,12(3):199~205.
    [12] Fujisawa Y, Sakamoto M, Matsushita M, et al. Glycyrrhizin inhibits the lytic pathway ofcomplement--possible mechanism of its anti-inflammatory effect on liver cells in viralhepatitis. Microbiol Immunol.2000,44(9):799~804.
    [13] Sato H, Goto W, Yamamura J, et al. Therapeutic basis of glycyrrhizin on chronic hepatitisB. Antiviral Res.1996,30(2-3):171~177.
    [14] Taira Z, Yabe K, Hamaguchi Y, et al. Effects of Sho-saiko-to extract and its components,Baicalin, baicalein, glycyrrhizin and glycyrrhetic acid, on pharmacokinetic behavior ofsalicylamide in carbon tetrachloride intoxicated rats. Food Chem Toxicol.2004,42(5):803~807.
    [15] Jeong H G, You H J, Park S J, et al. Hepatoprotective effects of18beta-glycyrrhetinic acidon carbon tetrachloride-induced liver injury: inhibition of cytochrome P4502E1expression. Pharmacol Res.2002,46(3):221~227.
    [16] Kimura M, Inoue H, Hirabayashi K, et al. Glycyrrhizin and some analogues induce growthof primary cultured adult rat hepatocytes via epidermal growth factor receptors. Eur JPharmacol.2001,431(2):151~161.
    [17] Amagaya S, Sugishita E, Ogihara Y, et al. Comparative studies of the stereoisomers ofglycyrrhetinic acid on anti-inflammatory activities. J Pharmacobiodyn.1984,7(12):923~928.
    [18]李新芳,孟富敏,潘福生,等.18β—甘草次酸钠对炎症和免疫功能的影响.中国药理学通报.1990(02):105~108.
    [19] Ohtsuki K, Abe Y, Shimoyama Y, et al. Separation of phospholipase A2in Habu snakevenom by glycyrrhizin (GL)-affinity column chromatography and identification of aGL-sensitive enzyme. Biol Pharm Bull.1998,21(6):574~578.
    [20] Matsui S, Matsumoto H, Sonoda Y, et al. Glycyrrhizin and related compoundsdown-regulate production of inflammatory chemokines IL-8and eotaxin1in a human lungfibroblast cell line. Int Immunopharmacol.2004,4(13):1633~1644.
    [21] Sakamoto R, Okano M, Takena H, et al. Inhibitory effect of glycyrrhizin on thephosphorylation and DNA-binding abilities of high mobility group proteins1and2in vitro.Biol Pharm Bull.2001,24(8):906~911.
    [22] Wang Z Y, Agarwal R, Zhou Z C, et al. Inhibition of mutagenicity in Salmonellatyphimurium and skin tumor initiating and tumor promoting activities in SENCAR miceby glycyrrhetinic acid: comparison of18alpha-and18beta-stereoisomers. Carcinogenesis.1991,12(2):187~192.
    [23]黄炜,黄济群,张东方,等.18β-甘草次酸和甘草酸对人肝癌细胞增殖的抑制和诱导分化作用.中国中医药科技.2002(02):92~93.
    [24] Rossi T, Castelli M, Zandomeneghi G, et al. Selectivity of action of glycyrrhizinderivatives on the growth of MCF-7and HEP-2cells. Anticancer Res.2003,23(5A):3813~3818.
    [25]黄炜,黄济群,张东方,等.甘草酸、18β-甘草次酸、熊果酸和齐墩果酸抗人肺癌细胞侵袭作用及其机理的研究.中国中医药科技.2003(06):349~350.
    [26] Sato H, Goto W, Yamamura J, et al. Therapeutic basis of glycyrrhizin on chronic hepatitisB. Antivir Res.1996,30(2–3):171~177.
    [27] Romero M R, Efferth T, Serrano M A, et al. Effect of artemisinin/artesunate as inhibitorsof hepatitis B virus production in an "in vitro" replicative system. Antiviral Res.2005,68(2):75~83.
    [28] Sasaki H, Takei M, Kobayashi M, et al. Effect of glycyrrhizin, an active component oflicorice roots, on HIV replication in cultures of peripheral blood mononuclear cells fromHIV-seropositive patients. Pathobiology.2002,70(4):229~236.
    [29] Chen F, Chan K H, Jiang Y, et al. In vitro susceptibility of10clinical isolates of SARScoronavirus to selected antiviral compounds. J Clin Virol.2004,31(1):69~75.
    [30] Cinatl J, Morgenstern B, Bauer G, et al. Glycyrrhizin, an active component of liquoriceroots, and replication of SARS-associated coronavirus. Lancet.2003,361(9374):2045~2046.
    [31]谢辉.18β-甘草次酸的研究进展.中成药.2002(09):62~63.
    [32] Kyoichi K, Tsuneo N, Yukio H. Preparation of3-epi-glycyrrhetic acid. JP59014799.1984-01-25.
    [33] Yamada Y, Nakamura A, Yamamoto K, et al. Transformation of glycyrchizic acid byAspergillus Spp. Biosci. Biotech, Biochem.1994,58:436~437.
    [34] Akao T, Akao T, Hattori M, et al. Inhibitory effects of glycyrrhetic acid and its relatedcompounds on3alpha-hydroxysteroid dehydrogenase of rat liver cytosol. Chem PharmBull (Tokyo).1992,40(5):1208~1210.
    [35] Gotffried S, Lily B. Glycyrrhetinic acid derivatives. GB843133.1964-10-20.
    [36] Cameron T J. New derivatives of glycyrrhetinic acid. US3873599.1975-03-25.
    [37] Takiura K, Honda S, Yamamoto M, et al. Studies of oligosaccharides. XII.Hydrophilization of glycyrrhetinic acid by coupling to gentio oligosaccharides. ChemPharm Bull (Tokyo).1974,22(7):1618~1623.
    [38]金健民,刘秀芳,徐汉生.甘草次酸衍生物的合成及其抗癌活性.应用化学.2001(11):869~872.
    [39] Attilio B. Salts of3-acetyl-18beta-glycyrrhetinic acid and pharmaceutical compositionscontaining them. GB1285453.1972-08-16.
    [40] Rozen S, Shahak I, Bergmann E D. Derivatives of glycyrrhetic acid. Israel J Chem.1971,9(2):185~189.
    [41] Takiura K, Honda S, Yamamoto M, et al. Studies of oligosaccharides. XII.Hydrophilization of glycyrrhetinic acid by coupling to gentio oligosaccharides. ChemPharm Bull (Tokyo).1974,22(7):1618~1623.
    [42] Su X, Lawrence H, Ganeshapillai D, et al. Novel18beta-glycyrrhetinic acid analogues aspotent and selective inhibitors of11beta-hydroxysteroid dehydrogenases. Bioorg MedChem.2004,12(16):4439~4457.
    [43] Ignatov D V, Prokof Ev I I, Ipatova O M, et al. A simple method for preparation of18alpha-glycyrretinic acid ant its derivatives. Bioorg Khim.2003,29(4):429~433.
    [44] Askam V, Baines C M, Smith H J. Transformations in glycyrrhetinic acid: rearrangementof ring A. J Pharm Pharmacol.1966,18(3):168~174.
    [45] Hasler F, Krapf R, Brenneisen R, et al. Determination of18β-glycyrrhetinic acid inbiological fluids from humans and rats by solid-phase extraction and high-performanceliquid chromatography. Journal of Chromatography B: Biomedical Sciences andApplications.1993,620(1):73~82.
    [46] Lu Y, Li J, Wang G. In vitro and in vivo evaluation of mPEG-PLA modified liposomesloaded glycyrrhetinic acid. Int J Pharm.2008,356(1–2):274~281.
    [47] Jie L. Pharmacology of oleanolic acid and ursolic acid. J Ethnopharmacol.1995,49(2):57~68.
    [48]马学惠,赵元昌,尹镭,等.齐墩果酸防治实验性肝损伤作用的研究.药学学报.1982(02):93~97.
    [49]韩德五,马学惠,赵元昌,等.齐墩果酸防止实验性肝硬变发生的研究.中医杂志.1981(03):57~60.
    [50]葛近峰.齐墩果酸预防抗结核药物肝损害88例临床观察.重庆医学.2002(05):426.
    [51]梁绍林,李文志,李业明.齐墩果酸预防抗结核药物肝损害的临床观察.中国防痨杂志.1998(01):34.
    [52]李丽庆,李淑芬,张爱莲,等.齐墩果酸免疫治疗恶性肿瘤病人的临床Ⅱ期研究.中国肿瘤临床.1992(06):412~414.
    [53]史东方.齐墩果酸的抗炎作用.中国药科大学学报.1989(03):192.
    [54] Giner-Larza E M, Má ez S, Recio M C, et al. Oleanonic acid, a3-oxotriterpene fromPistacia, inhibits leukotriene synthesis and has anti-inflammatory activity. Eur J Pharmacol.2001,428(1):137~143.
    [55] Singh G B, Singh S, Bani S, et al. Anti-inflammatory activity of oleanolic acid in rats andmice. J Pharm Pharmacol.1992,44(5):456~458.
    [56]戴岳,杭秉茜,谭立武.齐墩果酸的抗炎作用.中国药理学与毒理学杂志.1989(02):96~99.
    [57] Matsuda H, Li Y, Murakami T, et al. Protective effects of oleanolic acid oligoglycosideson ethanol-or indomethacin-induced gastric mucosal lesions in rats. Life Sci.1998,63(17):245~250.
    [58] Matsuda H, Li Y, Yoshikawa M. Roles of capsaicin-sensitive sensory nerves, endogenousnitric oxide, sulfhydryls, and prostaglandins in gastroprotection by momordin Ic, anoleanolic acid oligoglycoside, on ethanol-induced gastric mucosal lesions in rats. Life Sci.1999,65(2):27~32.
    [59] Rodríguez J A, Bustamante C, Astudillo L, et al. Gastroprotective activity of solidagenoneon experimentally-induced gastric lesions in rats. J Pharm Pharmacol.2002,54(3):399~404.
    [60]王忠壮,苏中武,胡晋红,等.太白楤木对实验性糖尿病大鼠血糖及血脂的影响.中国中药杂志.1996(10):52~54.
    [61] Yoshikawa M, Matsuda H. Antidiabetogenic activity of oleanolic acid glycosides frommedicinal foodstuffs. Biofactors.2000,13(1-4):231~237.
    [62]殷峻,胡仁明,陈名道,等.小檗碱、齐墩果酸和大蒜新素对糖代谢作用的体外研究.北京中医药大学学报.2003(02):36~38.
    [63] Hsu H Y, Yang J J, Lin C C. Effects of oleanolic acid and ursolic acid on inhibiting tumorgrowth and enhancing the recovery of hematopoietic system postirradiation in mice.Cancer Lett.1997,111(1-2):7~13.
    [64] Oguro T, Liu J, Klaassen C D, et al. Inhibitory effect of oleanolic acid on12-O-tetradecanoylphorbol-13-acetate-induced gene expression in mouse skin. Toxicol Sci.1998,45(1):88~93.
    [65] Tan G T, Lee S, Lee I S, et al. Natural-product inhibitors of human DNA ligase I.Biochem J.1996,314(Pt3):993~1000.
    [66] Li J, Guo W J, Yang Q Y. Effects of ursolic acid and oleanolic acid on human coloncarcinoma cell line HCT15. World J Gastroenterol.2002,8(3):493~495.
    [67] Ma C, Nakamura N, Hattori M, et al. Inhibitory effects on HIV-1protease of constituentsfrom the wood of Xanthoceras sorbifolia. J Nat Prod.2000,63(2):238~242.
    [68] Chaomei M A, Norio N, Hirotsugu M, et al. Inhibitory effects of constituents fromcynomorium songaricum and related triterpene derivatives on HIV-1protease. ChemPharm Bull.1999,47(2):141~145.
    [69]赵骏,蓝茹.从齐墩果酸结构分析抗肝细胞损伤的作用机制.中草药.1998(12):844.
    [70] Balanehru S, Nagarajan B. Protective effect of oleanolic acid and ursolic acid against lipidperoxidation. Biochem Int.1991,24(5):981~990.
    [71] Ovesna Z, Kozics K, Slamenova D. Protective effects of ursolic acid and oleanolic acid inleukemic cells. Mutat Res.2006,600(1-2):131~137.
    [72]任骏,王振纲.齐墩果酸对前列腺素及环核苷酸的影响.中国药理学通报.1991(03):179~181.
    [73] Assefa H, Nimrod A, Walker L, et al. Synthesis and evaluation of potential complementinhibitory semisynthetic analogs of oleanolic acid. Bioorg Med Chem Lett.1999,9(14):1889~1894.
    [74] Assefa H, Nimrod A, Walker L, et al. Enantioselective synthesis and complementinhibitory assay of A/B-ring partial analogues of oleanolic acid. Bioorg Med Chem Lett.2001,11(13):1619~1623.
    [75] Chen J, Liu J, Zhang L, et al. Pentacyclic triterpenes. Part3: Synthesis and biologicalevaluation of oleanolic acid derivatives as novel inhibitors of glycogen phosphorylase.Bioorg Med Chem Lett.2006,16(11):2915~2919.
    [76] Cheng M S, Yan M C, Liu Y, et al. Synthesis of beta-hederin and Hederacolchiside A1:triterpenoid saponins bearing a unique cytotoxicity-inducing disaccharide moiety.Carbohydr Res.2006,341(1):60~67.
    [77] Zhang Y, Li J X, Zhao J, et al. Synthesis and activity of oleanolic acid derivatives, a novelclass of inhibitors of osteoclast formation. Bioorg Med Chem Lett.2005,15(6):1629~1632.
    [78] Umehara K, Takagi R, Kuroyanagi M, et al. Studies on differentiation-inducing activitiesof triterpenes. Chem Pharm Bull (Tokyo).1992,40(2):401~405.
    [79] Finlay H J, Honda T, Gribble G W, et al. Novel A-ring cleaved analogs of oleanolic andursolic acids which affect growth regulation in NRP.152prostate cells. Bioorg Med ChemLett.1997,7(13):1769~1772.
    [80] Chao-Ma, Nakamura N, Hattori M. Chemical modification of oleanene type triterpenesand their inhibitory activity against HIV-1protease dimerization. Chem Pharm Bull(Tokyo).2000,48(11):1681~1688.
    [81] Zhu Y, Shen J, Wang H, et al. Synthesis and anti-HIV activity of oleanolic acidderivatives. Bioorganic& Medicinal Chemistry Letters.2001,11(24):3115~3118.
    [82] Honda T, Finlay H J, Gribble G W, et al. New enone derivatives of oleanolic acid andursolic acid as inhibitors of nitric oxide production in mouse macrophages. Bioorg MedChem Lett.1997,7(13):1623~1628.
    [83]于敏,石晓滢,霍继明,等.扶正口服液在家兔体内的代谢动力学研究.中国微生态学杂志.2000(05):36~37.
    [84]于明明,周富强,刘军海.熊果酸提取工艺的研究进展.氨基酸和生物资源.2009(01):33~36.
    [85]孟艳秋,陈瑜,王趱,等.熊果酸的研究进展.中国新药杂志.2007(01):25~28.
    [86]王鹏,张忠义,吴忠.熊果酸在药用植物中的分布及药理作用.中药材.2000(11):717~722.
    [87]熊斌,雷志勇,陈虹.熊果酸药理学的研究进展.国外医学(药学分册).2004(03):133~136.
    [88] Muto Y, Ninomiya M, Fujiki H. Present status of research on cancer chemoprevention inJapan. Jpn J Clin Oncol.1990,20(3):219~224.
    [89] Miura N, Matsumoto Y, Miyairi S, et al. Protective effects of triterpene compoundsagainst the cytotoxicity of cadmium in HepG2cells. Molecular Pharmacology.1999,56(6):1324~1328.
    [90] Saraswat B, Visen P K S, Agarwal D P. Ursolic acid isolated from Eucalyptus tereticornisprotects against ethanol toxicity in isolated rat hepatocytes. Phytother Res.2000,14(3):163~166.
    [91] Saraswat B, Visen P K S, Dayal R, et al. Protective action of ursolic acid against chemicalinduced hepato-toxicity in rats. Indian Journal of Pharmacology.1996,28(4):232~239.
    [92] Martin-Aragon S, De Las H B, Sanchez-Reus M I, et al. Pharmacological modification ofendogenous antioxidant enzymes by ursolic acid on tetrachloride-induced liver damage inrats and primary cultures of rat hepatocytes. Exp Toxicol Pathol.2001,53(2-3):199~206.
    [93]熊筱娟,陈武,肖小华,等.乌索酸与齐墩果酸对小鼠实验性肝损伤保护作用的比较.江西师范大学学报(自然科学版).2004(06):540~543.
    [94] Tapondjou L, Lontsi D, Sondengam B L, et al. In Vivo anti-nociceptive andanti-inflammatory effect of the two triterpenes, ursolic acid and23-hydroxyursolic acid,from cussonia bancoensis. Arch Pharm Res.2003,26(2):143~146.
    [95] Chen G, Lu H, Wang C, et al. Effect of five triterpenoid compounds isolated from leavesof Diospyros kaki on stimulus-induced superoxide generation and tyrosyl phosphorylationin human polymorphonuclear leukocytes. Clin Chim Acta.2002,320(1-2):11~16.
    [96]张明发,沈雅琴.齐墩果酸和熊果酸的抗炎及其抗变态反应.抗感染药学.2011(04):235~240.
    [97] Traore-Keita F, Gasquet M, Di Giorgio C, et al. Antimalarial activity of four plants usedin traditional medicine in Mali. Phytother Res.2000,14(1):45~47.
    [98] Subbaramaiah K, Michaluart P, Sporn M B, et al. Ursolic acid inhibits cyclooxygenase-2transcription in human mammary epithelial cells. Cancer Res.2000,60(9):2399~2404.
    [99] Lee I, Lee J, Lee Y H, et al. Ursolic acid-induced changes in tumor growth, O2consumption, and tumor interstitial fluid pressure. Anticancer Res.2001,21(4A):2827~2833.
    [100] Es-Saady D, Simon A, Ollier M, et al. Inhibitory effect of ursolic acid on B16proliferation through cell cycle arrest. Cancer Lett.1996,106(2):193~197.
    [101]黄镜,孙燕,陆士新,等.芦笋有效成分熊果酸诱导HL-60细胞凋亡的实验研究.中国中西医结合杂志.1999,19(05):41~43.
    [102] Lee K H, Lin Y M, Wu T S, et al. The cytotoxic principles of Prunella vulgaris, Psychotriaserpens, and Hyptis capitata: ursolic acid and related derivatives. Planta Med.1988,54(4):308~311.
    [103]张秋萍,谢珞琨,邓涛,等.熊果酸促进K562细胞凋亡.基础医学与临床.2004,24(04):414~417.
    [104]樊明文,王茜,边专,等.熊果酸对人舌鳞癌细胞株TSCCa的抑制作用及其机制探讨.武汉大学学报(医学版).2004,25(01):1~3.
    [105] Young H S, Chung H Y, Lee C K, et al. Ursolic acid inhibits aflatoxin B1-inducedmutagenicity in a Salmonella assay system. Biol Pharm Bull.1994,17(7):990~992.
    [106] Huang M T, Ho C T, Wang Z Y, et al. Inhibition of skin tumorigenesis by rosemary andits constituents carnosol and ursolic acid. Cancer Res.1994,54(3):701~708.
    [107]王兵,王杰军,徐钧,等.熊果酸对体外血管形成的抑制作用.肿瘤防治杂志.2001,8(04):351~352.
    [108] Quéré L, Wenger T, Schramm H J. Triterpenes as potential dimerization inhibitors ofHIV-1protease. Biochem Bioph Res Co.1996,227(2):484~488.
    [109]白育军,杨小生,康文艺,等.熊果酸的结构修饰物及其抗肿瘤活性.华西药学杂志.2003(02):87~90.
    [110] Liao Q, Yang W, Jia Y, et al. LC-MS determination and pharmacokinetic studies ofursolic acid in rat plasma after administration of the traditional chinese medicinalpreparation Lu-Ying extract. Yakugaku Zasshi.2005,125(6):509~515.
    [111]奚念珠,顾学裘.药剂学.第二版.北京:人民卫生出版社,1989:159~162.
    [112] Albert A. Chemical aspects of selective toxicity. Nature.1958,182(4633):421~422.
    [113]袁继民,丁连生.现代药物制剂技术.济南:济南出版社,1992:336~352.
    [114]阿基业,王广基.药物代谢研究与药物设计及结构修饰.药学进展.2002(02):80~86.
    [115]刘皋林,周自永.前体药物研究进展.华西药学杂志.1990(01):49~53.
    [116] Baltzer B, Binderup E, Von Daehne W, et al. Mutual pro-drugs of beta-lactam antibioticsand beta-lactamase inhibitors. J Antibiot (Tokyo).1980,33(10):1183~1192.
    [117] Bundgaard H, Falch E, Larsen G, et al. Pilocarpine prodrugs I. Synthesis, physicochemicalproperties and kinetics of lactonization of pilocarpic acid esters. J Pharm Sci-Us.1986,75(1):36~43.
    [118] Stella V J, Charman W N, Naringrekar V H. Prodrugs. Do they have advantages in clinicalpractice?. Drugs.1985,29(5):455~473.
    [119] Yamakawa H, Ishii H, Goto S. Experimental evaluation of a new penicillin, lenampicillin(KBT-1585). Chemotherapy (Tokyo).1984,32(Suppl8):14~19.
    [120] Saito A, Nakashima M. Pharmacokinetic study of lenampicillin (KBT-1585) in healthyvolunteers. Antimicrob Agents Ch.1986,29(5):948.
    [121] Derendorf H, M llmann H, Rohdewald P, et al. Kinetics of methylprednisolone and itshemisuccinate ester. Clin Pharmacol Ther.1985,37(5):502~507.
    [122] Buur A, Bundgaard H. Prodrugs of5-fluorouracil V.1-Alkoxycarbonyl derivatives aspotential prodrug forms for improved rectal or oral delivery of5-fluorouracil. J PharmSci-Us.1986,75(5):522~527.
    [123]华维一,徐希银.双前药的概念和应用.中国药科大学学报.1991(02):121~128.
    [124]李天锡.前体药物的设计途径及其研究进展.甘肃医药.1994(01):32~35.
    [125] Bundgaard H, Falch E, Larsen C, et al. Pilocarpine prodrugs II. Synthesis, stability,bioconversion, and physicochemical properties of sequentially labile pilocarpine aciddiesters. J Pharm Sci-Us.1986,75(8):775~783.
    [126] Stella V J, Himmelstein K J. Prodrugs and site-specific drug delivery. J Med Chem.1980,23(12):1275~1282.
    [127] Bodor N, Visor G. Formation of adrenaline in the iris-ciliary body from adrenalonediesters. Exp Eye Res.1984,38(6):621~626.
    [128]李安良,李正香.前药和药物靶向作用.中国药学杂志.2003(04):3~6.
    [129]张玉,王凯平,谭红艾,等.肝靶向药物的研究进展.医药导报.2002(04):230~231.
    [130] Hashida M, Akamatsu K, Nishikawa M, et al. Design of polymeric prodrugs of PGE1forcell-specific hepatic targeting. Pharmazie.2000,55(3):202~205.
    [131] Yuzawa H, Fujioka H, Mizoe A, et al. Inhibitory effects of safe and novel SODderivatives, galactosylated-SOD, on hepatic warm ischemia/reperfusion injury in pigs.Hepatogastroenterology.2005,52(63):839~843.
    [132] Mandal A K, Sinha J, Mandal S, et al. Targeting of liposomal flavonoid to liver incombating hepatocellular oxidative damage. Drug Deliv.2002,9(3):181~185.
    [133] Kramer W, Wess G, Schubert G, et al. Liver-specific drug targeting by coupling to bileacids. J Biol Chem.1992,267(26):18598~18604.
    [134] Lehmann T J, Engels J W. Synthesis and properties of bile acid phosphoramidites5'-tethered to antisense oligodeoxynucleotides against HCV. Bioorg Med Chem.2001,9(7):1827~1835.
    [135] Lehmann T J, Serwe M, Caselmann W H, et al. Design and properties of hepatitis C virusantisense oligonucleotides for liver specific drug targeting. Nucleosides NucleotidesNucleic Acids.2001,20(4-7):1343~1346.
    [136] Romero M R, Martinez-Diez M C, Larena M G, et al. Evidence for dual effects ofDNA-reactive bile acid derivatives (Bamets) on hepatitis B virus life cycle in an in vitroreplicative system. Antivir Chem Chemother.2002,13(6):371~380.
    [137] Ballatore C, Mcguigan C, De Clercq E, et al. Synthesis and evaluation of novel amidateprodrugs of PMEA and PMPA. Bioorg Med Chem Lett.2001,11(8):1053~1056.
    [138] Erion M D, Van Poelje P D, Mackenna D A, et al. Liver-targeted drug delivery usingHepDirect prodrugs. J Pharmacol Exp Ther.2005,312(2):554~560.
    [139] Erion M D, Reddy K R, Boyer S H, et al. Design, synthesis, and characterization of aseries of cytochrome P(450)3A-activated prodrugs (HepDirect prodrugs) useful fortargeting phosph(on)ate-based drugs to the liver. J Am Chem Soc.2004,126(16):5154~5163.
    [140] Hecker S J, Reddy K R, Van Poelje P D, et al. Liver-targeted prodrugs of2'-C-methyladenosine for therapy of hepatitis C virus infection. J Med Chem.2007,50(16):3891~3896.
    [141] Noble S, Goa K L. Adefovir dipivoxil. Drugs.1999,58(3):479~487,488~489.
    [142] Fisher E J, Chaloner K, Cohn D L, et al. The safety and efficacy of adefovir dipivoxil inpatients with advanced HIV disease: a randomized, placebo-controlled trial. Aids.2001,15(13):1695~1700.
    [143] Delmas J, Schorr O, Jamard C, et al. Inhibitory effect of adefovir on viral DNA synthesisand covalently closed circular DNA formation in duck hepatitis B virus-infectedhepatocytes in vivo and in vitro. Antimicrob Agents Ch.2002,46(2):425~433.
    [144] Huttunen K M, Mahonen N, Leppanen J, et al. Novel cyclic phosphate prodrug approachfor cytochrome P450-activated drugs containing an alcohol functionality. Pharm Res.2007,24(4):679~687.
    [145] Holub J M, O'Toole-Colin K, Getzel A, et al. Lipid-lowering effects of ethyl2-phenacyl-3-aryl-1H-pyrrole-4-carboxylates in rodents. Molecules.2004,9(3):134~157.
    [146] Chu D T, Fernandes P B, Claiborne A K, et al. Synthesis and structure-activityrelationships of novel arylfluoroquinolone antibacterial agents. J Med Chem.1985,28(11):1558~1564.
    [147] Boyer S H, Sun Z, Jiang H, et al. Synthesis and characterization of a novel liver-targetedprodrug of cytosine-1-beta-D-arabinofuranoside monophosphate for the treatment ofhepatocellular carcinoma. J Med Chem.2006,49(26):7711~7720.
    [148] De Castro K A, Ko J, Park D, et al. Reduction of ethyl benzoylacetate and selectiveprotection of2-(3-hydroxy-1-phenylpropyl)-4-methylphenol: A new and facile synthesis oftolterodine. Org Process Res Dev.2007,11(5):918~921.
    [149] Harada T, Kurokawa H, Kagamihara Y, et al. Stereoselective acetalization of1,3-alkanediols by l-menthone: application to the resolution of racemic1,3-alkanediols andto the determination of the absolute configuration of enantiomeric1,3-alkanediols. J OrgChem.1992,57(5):1412~1421.
    [150] Mcguigan C, Thiery J C, Daverio F, et al. Anti-cancer ProTides: tuning the activity ofBVDU phosphoramidates related to thymectacin. Bioorg Med Chem.2005,13(9):3219~3227.
    [151] Su X, Lawrence H, Ganeshapillai D, et al. Novel18beta-glycyrrhetinic acid analogues aspotent and selective inhibitors of11beta-hydroxysteroid dehydrogenases. Bioorg MedChem.2004,12(16):4439~4457.
    [152] Kobayashi J, Murayama T, Ishibashi M, et al. Hyrtiosins A and B, new indole alkaloidsfrom the Okinawan marine sponge Hyrtios erecta. Tetrahedron.1990,46(23):7699~7702.
    [153] Saxton J E. The Indoles: the monoterpenoid indole alkaloids. New York:Wiley-Interscience,1983:1~822.
    [154]肖崇厚.中药化学.上海:上海科学技术出版社,1997:73~76.
    [155] Deveau A M, Labroli M A, Dieckhaus C M, et al. The synthesis of amino-acidfunctionalized beta-carbolines as topoisomerase II inhibitors. Bioorg Med Chem Lett.2001,11(10):1251~1255.
    [156] Funayama Y, Nishio K, Wakabayashi K, et al. Effects of beta-and gamma-carbolinederivatives of DNA topoisomerase activities. Mutat Res.1996,349(2):183~191.
    [157] Song Y, Wang J, Teng S F, et al. Beta-carbolines as specific inhibitors ofcyclin-dependent kinases. Bioorg Med Chem Lett.2002,12(7):1129~1132.
    [158] Song Y, Kesuma D, Wang J, et al. Specific inhibition of cyclin-dependent kinases and cellproliferation by harmine. Biochem Biophys Res Commun.2004,317(1):128~132.
    [159] Castro A C, Dang L C, Soucy F, et al. Novel IKK inhibitors: beta-carbolines. Bioorg MedChem Lett.2003,13(14):2419~2422.
    [160] Beljanski M, Beljanski M S. Selective inhibition of in vitro synthesis of cancer DNA byalkaloids of beta-carboline class. Exp Cell Biol.1982,50(2):79~87.
    [161] Xiao S, Lin W, Wang C, et al. Synthesis and biological evaluation of DNA targetingflexible side-chain substituted beta-carboline derivatives. Bioorg Med Chem Lett.2001,11(4):437~441.
    [162]郑虎.天然产物化学.北京:科学出版社,1993:201~209.
    [163]丁亚芳,包永明,安利佳.长春碱类抗肿瘤药物的研究进展.中国医药工业杂志.2005(07):424~428.
    [164]李智敏,张慧颖,尹华琳,等.利血平(Reserpine)药物资源研究与开发现状.云南中医学院学报.2008(02):65~67.
    [165]孙广智,刘一民,刘启华.吲哚美辛的临床应用进展.医药导报.1995(01):44~45.
    [166]王泽民.当代结构药物全集.北京:北京科学技术出版社,1993:1091~1092.
    [167] Barraja P, Diana P, Lauria A, et al. Indolo[3,2-c]cinnolines with antiproliferative,antifungal, and antibacterial activity. Bioorg Med Chem.1999,7(8):1591~1596.
    [168]甘钟墀,杨鹊,何园.相思子中相思豆碱的药理研究.中药材.1994(09):34~37.
    [169]吕纹,徐珺,陈开盛,等.昂丹司琼临床应用的药物利用评价.药物流行病学杂志.1995(04):230~232.
    [170]郑虎.药物化学.第四版.北京:人民卫生出版社,2000:162~163.
    [171]花文廷.杂环化学.北京:北京大学出版社,1991:231~285.
    [172] Bartik K, Braekman J C, Daloze D, et al. Topsentins, new toxic bis-indole alkaloids fromthe marine sponge Topsentia genitrix. Canadian Journal of Chemistry.1987,65(9):2118~2121.
    [173] Sato H, Tsuda M, Watanabe K, et al. Rhopaladins AD, new indole alkaloids from marinetunicate Rhopalaea sp. Tetrahedron.1998,54(30):8687~8690.
    [174] Wright A E, Pomponi S A, Cross S S, et al. A new bis-(indole) alkaloid from a deep-watermarine sponge of the genus Spongosorites. J Org Chem.1992,57(17):4772~4775.
    [175] Steglich W. Slime moulds (Myxomycetes) as a source of new biologically activemetabolites. Pure Appl Chem.1989,61:281~288.
    [176] Hernandez L M, Blanco J A, Baz J P, et al.4'-N-methyl-5'-hydroxystaurosporine and5'-hydroxystaurosporine, new indolocarbazole alkaloids from a marine Micromonospora sp.strain. J Antibiot (Tokyo).2000,53(9):895~902.
    [177] Hibino S, Choshi T. Simple indole alkaloids and those with a nonrearrangedmonoterpenoid unit. Nat Prod Rep.2002,19(2):148~180.
    [178] Ishikura M, Yamada K, Abe T. Simple indole alkaloids and those with a nonrearrangedmonoterpenoid unit. Nat Prod Rep.2010,27(11):1630~1680.
    [179] Bao B, Sun Q, Yao X, et al. Bisindole alkaloids of the topsentin and hamacanthin classesfrom a marine sponge Spongosorites sp. J Nat Prod.2007,70(1):2~8.
    [180] Gan C Y, Etoh T, Hayashi M, et al. Leucoridines A-D, cytotoxic Strychnos-Strychnosbisindole alkaloids from Leuconotis. J Nat Prod.2010,73(6):1107~1111.
    [181] Kong Y C, Ng K H, Wat K H, et al. Yuehchukene, a Novel Anti-implantation IndoleAlkaloid from Murraya paniculata. Planta Med.1985,51(4):304~307.
    [182] Cheng K F, Kong Y C, Chan T Y. Biomimetic synthesis of yeuhchukene. J. Chem. Soc.,Chem. Commun.1985(2):48~49.
    [183] Schollmeyer D, Fischer G, Pindur U. Dimeric3-Vinylindoles as Potential AntitumorActive Compounds. Acta Crystallographica Section C.1995,51(12):2572~2575.
    [184] Gothelf K V, J rgensen K A. Asymmetric1,3-dipolar cycloaddition reactions. Chem Rev.1998,98(2):863~910.
    [185]黄宪,陈振初.有机合成化学.北京:化学工业出版社,1985:67~69.
    [186] Heusgen R. Mechanism of1,3-dipolar cycloadditions. Reply. J Org Chem.1968,33(6):2291~2297.
    [187] Huisgen R.1,3-Dipolar cycloadditions.76. Concerted nature of1,3-dipolar cycloadditionsand the question of diradical intermediates. J Org Chem.1976,41(3):403~419.
    [188] Confalone P N, Lollar E D, Pizzolato G, et al. Use of intramolecular [3+2] cycloadditionreactions in the synthesis of natural products. A stereospecific synthesis of (.+-.)-biotinfrom cycloheptene. J Am Chem Soc.1978,100(19):6291~6292.
    [189] Inhoffen H H, Nordsiek K H, Schacfer H. Structure determination of an indole dye fromN-[3-(3-indolyl)acryloyl]glycine. Justus Liebigs Annalen der Chemie.1963,668:104~121.
    [190] Bergman J, Janosik T, Koch E, et al. Acid-induced dimerization of3-(1H-indol-3-yl)maleimides. Formation of cyclopentindole derivatives. Journal of the Chemical Society,Perkin Transactions1.2000(16):2615~2621.
    [191] Kawasaki I, Terano M, Kurume A, et al. A novel TFA-mediated cyclo-dimerization of1-substituted3-alkenylindole derivatives to cyclopent indoles. Tetrahedron Lett.2005,46(38):6549~6553.
    [192] Mcnab H, Tyas R G. A thermal cascade route to pyrroloisoindolone andpyrroloimidazolones. J Org Chem.2007,72(23):8760~8769.
    [193] Grimster N P, Gauntlett C, Godfrey C R, et al. Palladium-catalyzed intermolecularalkenylation of indoles by solvent-controlled regioselective C-H functionalization. AngewChem Int Ed Engl.2005,44(20):3125~3129.
    [194] Mcnulty J, Steere J A, Wolf S. The ultrasound promoted Knoevenagel condensation ofaromatic aldehydes. Tetrahedron Lett.1998,39(44):8013~8016.
    [195] Mcnulty J, Mcleod D. Discovery of an acid-promoted [3+2] cyclodimerization of3-vinylindoles and the development of a general lewis acid catalyzed process. Synlett.2011(5):717~721.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700