用户名: 密码: 验证码:
四株南海肉芝软珊瑚共附生真菌次级代谢产物及其化学生态作用与药理活性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
珊瑚礁生态系统是热带海洋中最大的生态系统,种类繁多,数量庞大的海底生物充分利用珊瑚礁生态系统有限的生存资源,且高压、高盐、缺氧、避光等较特殊的海洋生态环境,也使得各种生物对食物、空间的竞争异常激烈。软珊瑚等许多海洋低等无脊椎动物,固着生长,体质柔软,缺乏有效的物理防御手段,却能够在残酷的海洋环境中安然生存,正是依靠其化学防御机制。目前已经从软珊瑚中发现了一批具有拒捕食、防附着、克生、抗微生物等化学防御作用的化合物,有些具有药物开发潜力。值得关注的是,软珊瑚中的化学防御物质不仅具有重要的化学生态学意义,而且部分化合物在药理学方面也表现了较好的活性。因此探讨化学生态作用与药理活性之间的关系,对海洋的新药发现具有一定的启迪作用。研究发现,海洋无脊椎动物中的共附生微生物可能参与了宿主的化学生态学活性化合物的生物合成如海葵毒素,芋螺毒素等。因此,通过比较共附生微生物与宿主次级代谢产物之间的关系,来探讨共附生微生物在宿主化学防御中的作用,已成为海洋化学生态学研究的兴奋点。
     本研究对一种中国南海肉芝软珊瑚Sarcophyton sp.(GX-WZ-20080011)中分离获得的15株共附生真菌,在化学防御活性模型指导下,选择4株共附生真菌,链格孢属真菌(Alternaria sp.),曲霉属真菌(Aspergillus elegans和Aspergillus versicolor)和扁孔腔菌属真菌(Lophiostoma sp.),进行发酵培养。采用化学防御活性追踪分离的方法,对真菌发酵产物综合运用硅胶柱层析、凝胶柱层析与半制备HPLC等分离手段,利用理化性质和NMR, MS, IR, UV, X-ray和CD等波谱学技术,并结合化学方法,从中分离鉴定了79个化合物(1–79)的结构,其中18个为新化合物。涉及8种结构类型,包括蒽醌类化合物(24个),苯醌类化合物(5个),含氮化合物(20个),萜类化合物(5个),内酯类化合物(5个),甾体(7个),芳香族化合物(11个)和脂肪族化合物(2个)。对显示多种生物活性的蒽醌类化合物10,12和蒽醌二聚体类化合物21,22和24进行了化学修饰,通过乙酰基、甲基、苯甲酰基、苄基及脂肪链取代获得系列衍生物20个(10a–c,12a–g,20a–c,21a–d,24a–b)。通过化学方法Mosher法确定了氢化蒽醌类化合物的绝对构型;通过X-ray单晶衍射确定了化合物8和9的相对构型;发现了蒽醌二聚体类化合物新的连接方式,确定了蒽醌二聚体化合物新的连接方式;同时初步探讨了共附生真菌与宿主软珊瑚代谢产物结构及活性之间的关系。
     运用化学生态学活性模型(抗藤壶幼虫附着、抑藻活性、斑马鱼胚胎毒性等)对化合物进行了活性筛选,发现具有生态活性活性化合物12个,如苯醌类化合物25显示较强的抗藤壶附着活性,EC50为0.27μg/mL。并对活性化合物进行了初步构效关系的探讨。在评价化学生态活性同时进行药理活性(细胞毒、抗菌、抗病毒等)评价,并初步探讨化合物的构效关系。在活性测试中,发现化合物10,12和39等化合物不仅显示较好的化学生态学活性,而且还具有较强的药理活性。其中,蒽醌类化合物10对斑马鱼胚胎的48h尾部致畸EC50值达到2.40μg/mL,对斑马鱼72h致死IC50值达到2.91μg/mL;对米氏凯伦藻K.mikimotoi的生长抑制活性达到1.16μg/mL;同时,对5种肿瘤细胞肝癌细胞(HepG2和Hep3B),乳腺癌阿霉素耐药细胞(MCF-7/ADR),前列腺癌细胞(PC-3)和结肠癌细胞(HT-116)均显示较强的细胞毒性,IC50值达到0.70–2.85μg/mL,其中对HCT-116的IC50值达到0.70μg/mL,接近阳性对照药表阿霉素0.48μg/mL。
     本研究在化学生态学作用的指导下,从一种肉芝软珊瑚来源的4株共附生真菌中追踪分离获得多种结构类型的活性天然产物,并对活性蒽醌类化合物进行结构修饰获得系列衍生物;用化学方法确定氢化蒽醌类化合物绝对构型;初步探讨了共附生微生物在宿主肉芝软珊瑚化学防御中的作用,对海洋药物先导化合物的筛选和发现具有启示作用。
The coral reef ecosystem is the largest ecosystem in the tropical ocean, a widerange and a huge number of marine life make full use of limited resources for survivalin the coral reef ecosystems, and the marine ecology have a high pressure, high salt,hypoxia, protected from light and other special environmental characteristics, whichmake the fierce competition between the various marine organisms such as fightingfor biological food and space. Soft corals and many other marine invertebrates havesoft, fleshy and fragile tissues without physical defense capability against theirpotential predators. However, they can survive in the competitive environmentsbecause of their chemical defensive system. In the last few years, many new chemicaldefensive compounds such as antifeeding, antifouling, allelopathy and anti-microbialwere obtained from soft coral, and some of them have shown potentials to beexploited as marine drugs. It is noted that the chemical defense compounds in the softcoral is not only important chemical and ecological significance, and somecompounds also showed potent pharmacological activity. Therefore, to explore therelationship between the chemical ecology activity and pharmacological activity, havea certain enlightening to find new marine drugs. The microorganisms isolated frommarine ivertebrates may be involved in the biosynthesis of active chemical ecologycompounds in the host, such as sea anemone toxins, conotoxins. Consequently,according to comparison the secondary metabolites to research the relationshipbetween microorganisms and the host, and to explore the effect of the microorganismsin the host chemical defense has become the excitement of marine chemical ecology.
     In this study,15epiphytic fungi was isolated from the soft coral Sarcophyton sp.(GX-WZ-20080011), which was collected from the South China Sea, under theguidance of the chemical defense activity model, four epiphytic fungi includingAlternaria sp., Aspergillus elegans, Aspergillus versicolor and Lophiostoma sp. wereselect for fermentation. The secondary metabolites were isolated by column chromatography on silica gel, Sephadex LH-20and preparative HPLC, and identifiedby spectroscopy of NMR, MS, IR, UV, X-ray, CD and chemical methods. From theseorganisms,79compounds (1–79) were respectively determined, including18newcompounds. More than8structural types were found, including24anthraquinones,5benzoquinones,20nitrogen compounds,5terpenoids,7steroids,11aromaticcompounds, and2lipids.20derivatives of anthraquinones (10a–b,12a–g,20a–c,21a–c,24a–b) have been prepared by acetylation, methylation, propionyl, benzyl forfurther research on structure and activity relationships.
     The chemical ecology effects including antifouling activity against the larvaesettlement of barnacle, growth-inhibition of microalgae and toxicity against zebrafishwere used to find active compounds.13compound were found to have ecologicalactivity, such as benzoquinones25shows strong anti-barnacle adhesion activity, withEC50value of0.27μg/mL.Pharmacological activity were also evluated and to explorethe structure-activity relationship.
     Compounds10,12and39were found to have not only significance in chemicalecology but also various pharmacological activities. Such as compound10displayed48h tail teratogenicity of zebrafish at the concentrate of2.4μg/mL,72h death ofzebrafish at the concentrate of2.91μg/mL; and potent growth-inhibition activitytowards microalgae with EC50of1.16μg/mL. In addition to the chemical ecologyactivity, this compound showed strong cytotoxicity toward five tumor cells, ashepatoma cells (HepG2and Hep3B), breast cancer adriamycin-resistant cells(MCF-7/ADR) and prostate cancer (PC-3) and colon cancer cells (HT-116), with theIC50values of0.70–2.85μg/mL, and the IC50value of HCT-116to0.70μg/mL isclose to the positive control drug epirubicin to0.48μg/mL. The structure and activityrelationships of these compound were discussed.
     In this study, under the guidance of the chemical ecological models, a variety ofstructural types of bioactive natural products were isolated from four softcoral-derived epiphytic fungi, and the anthraquinones which had potent activity wereprepared to to obtain series of derivatives.
     The absolute configuration of the hydrogenated anthraquinones were determinedby chemical methods. The relationship between chemical ecology activity andpharmacological activity of the active compounds was preliminary discussed. It is thefirst time to investigate the the role of microorganisms in the chemical defense ofthe soft coral Sarcophyton sp. All these results provide basis for finding the lead compounds of marine drugs, the further studies on chemical ecology and exploring forfinding new medicinal bioresources.
引文
[1] Wang C Y, Geng M Y, Guan H S. Current and future trends in the investigation of marinedrugs. Chin. J. New. Drugs,2005,14(3):278~282.
    [2] Zhang W, Guo Y W, Gu Y. Secondary metabolites from the South China Sea invertebrates:chemistry and biological activity. Current. Medi. Chem.,2006,13(17):2041~2090
    [3]张文,郭跃伟。后鳃亚纲软体动物化学防御物质研究进展.生态学报,2007,27(3):1192~1205.
    [4] Blunt J, Copp W B R, Keyzers R A, Munro M H G, Prinsep M R. Nat. Prod. Rep.,2012,29,144~222, and early series.
    [5] Faulkner D J. Marine natural products. Nat. Prod. Rep.,2002,19:1~48.
    [6] Anjaneyulu A S R; Rao G. Venkateswara. Chemical constituents of the soft coral species ofSarcophyton genus: a review. J. Indian Chem. Soc.1997,74(4),272~278.
    [7] Wang C Y, Chen A N, Shao C L, Li L, Xu Y, Qian P Y. Chemical constituents of soft coralSarcophyton infundibuliforme from the South China Sea. Biochem. Sys. Ecol.,2011,39(4–6),853~856.
    [8] Iwagava T, Nakamura S, Masuda T, et al. Irregular cembranoids containing a13-memberedcarbocyclic skeleton isolated from a soft coral, Sarcophyton species. Tetrahedron,1995,51(18):5291~5298.
    [9] Yamada K, Ryu K, Miyamoto T, et al. Bioactive terpenoids from octocorallia4. Three newcembrane-type diterpenoids from the soft coral Lobophytum schoedei. J. Nat. Prod.,1997,60(8):798~801.
    [10] Tomono Y, Hirota H, Fusetani N. Isogosterones A-D, antifouling13,17-Secosteroids froman Octocoral Dendronephthya sp. J. Org. Chem.,1999,64(7):2272~2275.
    [11] Li G Q, Zhang Y L, Lin W H. Research progress on the cembranoid diterpenes from oceanicorganisms. Periocical of Ocean University of China,2006,36(3):370~376.
    [12] Aceret T L, Coll J C, Uchio Y, et al. Antimicrobial activity of the diterpenes flexibilide andsinulariolide derived from Sinularia flexibilis Quoy and Gaimard1833(Coelenterata:Alcyonacea, Octocorallia). Comp. Biochem. Physiol., Pt C,1998,120(1):121~126.
    [13]杨若林,曾陇梅,苏镜娱等。新三羟基-西松烷二萜内酯。化学学报,2000,58(10):1186~1187.
    [14] Tan R X, Zou W X. Endophytes: a rich source of funct ional metabolites. Nat. Prod. Rep.,2001,18:448~459.
    [15] Solis P N, Wright C W, Anderson M M, et al. A mocrowell cytotoxicity assay using Artmiasalina (brine shrimp). Planta Med.,1993,59(3):250~252.
    [16] Meyer B N, Ferrigni N R, Putnam J E, et al. Brine shrimp: a convenient general bioassay foractive plant constituents. Planta Med.,1982,45:31~34.
    [17] Guillard R R, Ryther J H. Studies on marine planktonic diatoms. I. Cyclotella nana Hustedtand Detonula confervacaea (Cleve) Gran. Can. J. Microbiol.,1962,8:229~239.
    [18] Scudiero D A, Shoemaker R H, Paull K D, et al. Evaluation of a solubletetrazolium/formazan assay for cell growth and drug sensitivity in culture using human andother tumor cell lines. Cancer Res.,1988,48:4827~4833.
    [19] Zhang Y J, Stein D A, Fan S M, et al. Suppression of porcine reproductive and respiratorysyndrome virus replication by morpholino antisense oligomers. Vet. Microbiol.2006,117(2–4),117~129.
    [20] Zaika L L Spices and herbs: their antimicrobial activity and its determination. J. FoodSafety.1988,9:97~118.
    [21] Appendio G, Gibbons S, Giana A, et al. Antibacterial Cannabinoids from Cannabis sativa: AStructure Activity Study. J. Nat. Prod.,2008,71:1427~1430
    [1] Newman D J, Cragg G M. Marine natural products and related compounds in clinical andadvanced preclinical trials. J. Nat. Prod.,2004,67(8):1216~1238.
    [2] Blunt J W, Copp B R, Hu W P, et al. Marine natural products. Nat. Prod. Rep.,2009,26:170~244.
    [3]周世宁,林永成,姜广策.海洋微生物的生物活性物质研究.海洋科学,1997,3:27~29.
    [4]许静,徐俊.海洋共附生微生物天然产物生物合成基因研究进展.微生物学报,2008,48(7):975.
    [5]魏景超.真菌鉴定手册.上海:科学技术出版社,1979.
    [1] Barkai-Golan R, Paster N. Mycotoxins in Fruits and Vegetables. Oxford; Elsevier Inc.2008:185~203.
    [2] Gao S S, Li X M, Wang B G. Perylene derivatives produced by Alternaria alternata, anendophytic fungus isolated from Laurencia species. Nat. Prod. Commun.,2009,4(11):1477~1480.
    [3] Huang C H, Pan J H, Chen B, et al. Three bianthraquinone derivatives from the mangroveendophytic fungus Alternaria sp. ZJ9-6B from the South China Sea. Mar. Drugs,2011,9(5):832~843.
    [4] Huang Y F, Li L H, Tian L, et al. Sg17-1-4, a novel isocoumarin from a marine fungusAlternaria tenuis Sg17-1. J. Antibiot.(Tokyo),2006,59(6):355~357.
    [5] Kim M Y, Sohn J H, Ahn J S, et al. Alternaramide, a cyclic depsipeptide from themarine-derived fungus Alternaria sp. SF-5016. J. Nat. Prod.,2009,72(11):2065~2068.
    [6] Xu X, Zhao S, Wei J, et al. Porric acid D from marine-derived fungus Alternaria sp. isolatedfrom Bohai Sea. Chem. Nat. Compd.,2012,47(6):893~895.
    [7] Okamura N, Haraguchi H, Hashimoto K, et al. Altersolanol-related antimicrobial compoundsfrom a strain of Alternaria solani. Phytochemistry,1993,34(4):1005~1009.
    [8] Yagi A, Okamura N, Haraguchi H, et al. Antimicrobial tetrahydroanthraquinones from astrain of Alternaria solani. Phytochemistry,1993,33(1):87-91.
    [9] Okamura N, Mimura K, Haraguchi H, et al. Altersolanol-related compounds from the cultureliquid of Alternaria solani. Phytochemistry,1996,42(1):77~80.
    [10] Stoessl A, Stothers J B. Tetrahydroaltersolanol B, a hexahydroanthronol from Alternariasolani. Can. J. Chem.,1983,61(2):378~382.
    [11] Debbab A, Aly A H, Edrada-Ebel R, et al. Bioactive metabolites from the endophytic fungusStemphylium globuliferum isolated from Mentha pulegium. J. Nat. Prod.,2009,72(4):626~631.
    [12] Alvi K A, Rabenstein J. Auxarthrol A and auxarthrol B: two new tetrahydoanthraquinonesfrom Auxarthron umbrinum. J. Ind. Microbiol. Biotechnol.,2004,31(1):11~15.
    [13] Becker A M, Rickards R W, Schmalzl K J, et al. Metabolites of Dactylaria lutea. Thestructures of dactylariol and the antiprotozoal antibiotic dactylarin. J. Antibiot.(Tokyo),1978,31(4):324~329.
    [14] Ogihara Y, Kobayashi N M, Shibata S. Further studies on the bianthraquinones of Penicilliumislandicum. Tetrahedron Lett.,1968,9(15):1881~1886.
    [15] Suemitsu R, Yamamoto T, Miyai T, et al. Alterporriol A: a modified bianthraquinone fromAlternaria porri. Phytochemistry,1987,26(12):3221~3224.
    [16] Suemitsu R, Ueshima T, Yamamoto T, et al. Alterporriol C: A modified bianthraquinone fromAlternaria porri. Phytochemistry,1988,27(10):3251~3254.
    [17] Aly A H, Edrada-Ebel R, Wray V, et al. Bioactive metabolites from the endophytic fungusAmpelomyces sp. isolated from the medicinal plant Urospermum picroides. Phytochemistry,2008,69(8):1716~1725.
    [18]敏德,徐丽萍,张治针, et al.天山大黄的化学成分研究.中国中药杂志,1998,23(7):416~418.
    [19]顾觉奋,王永中.基因克隆产生杂合蒽环类抗生素研究进展.国外医药(抗生素分册),2002,23(5):225~229.
    [20] Phuwapraisirisan P, Rangsan J, Siripong P, et al. New antitumour fungal metabolites fromAlternaria porri. Nat. Prod. Res.,2009,23(12):1063~1071.
    [21] Su B N, Park E J, Mbwambo Z H, et al. New chemical constituents of Euphorbiaquinquecostata and absolute configuration assignment by a convenient Mosher esterprocedure carried out in NMR tubes. J. Nat. Prod.,2002,65(9):1278~1282.
    [22] Kanamaru S, Honma M, Murakami T, et al. Absolute stereochemistry of altersolanol a andalterporriols. Chirality,2012,24(2):137~146.
    [23] Ohnishi K, Suemitsu R, Kubota M, et al. Biosyntheses of alterporriol D and E by Alternariaporri. Phytochemistry,1991,30(8):2593~2595.
    [24] Suemitsu R, Horiuchi K, Ohnishi K, et al. High-performance liquid chromatographicdetermination of alterporriol D and E in fermentation of Alternaria porri (Ellis) Ciferri. J.Chromatogr.,1990,503(1):282~287.
    [25] Suemitsu R, Ohnishi K, Yanagawase S, et al. Biosynthesis of macrosporin by Alternariaporri. Phytochemistry,1989,28(6):1621-1622.
    [26] Suemitsu R, Sano T, Yamamoto M, et al. Structural elucidation of alterporriol B, a novelmetabolic pigment produced by Alternaria porri (Ellis) Ciferri. Agr. Biol. Chem.,1984,48(10):2611~2613.
    [27] Elsworth C, Gill M, Saubern S. Biosynthesis of tetrahydroanthraquinones in fungi.Phytochemistry,2000,55(1):23~27.
    [28] Stack M E, Mazzola E P, Page S W, et al. Mutagenic perylenequinone metabolites ofAlternaria alternata: altertoxins I, II, and III. J. Nat. Prod.,1986,49(5):866~871.
    [29] Stierle A C, Caddlina J H, Strobel G A. Phytotoxins from Alternaria alternata, A Pathogen ofSpotted Knapweed. J. Nat. Prod.,1989,52(1):42~47.
    [30] Hradil C M, Hallock Y F, Clardy J, et al. Phytotoxins from Alternaria cassiae.Phytochemistry,1989,28(1):73~75.
    [31]Choi J, Jung J, Lee H, et al. The NMR assignments of anthraquinones from Cassia tora. Arch.Pharm. Research.,1996,19(4):302~306.
    [32] Mutanyatta J, Matapa B G, Shushu D D, et al. Homoisoflavonoids and xanthones from thetubers of wild and in vitro regenerated Ledebouria graminifolia and cytotoxic activities ofsome of the homoisoflavonoids. Phytochemistry,2003,62(5):797~804.
    [33] Altem ller M, Podlech J, Fenske D. Total Synthesis of Altenuene and Isoaltenuene. Eur. J.Org. Chem.,2006,2006(7):1678~1684.
    [34] Bradburn N, Coker R D, Blunden G, et al.5′-epialtenuene and neoaltenuene,dibenzo--pyrones from Alternaria alternata cultured on rice. Phytochemistry,1994,35(3):665~669.
    [35] Kashiwada Y, Nonaka G, Nishioka I. Studies on rhubarb (rhei rhizoma). V. Isolation andcharacterization of chromone and chromanone derivatives. Chem. pharm. bull.,1984,32(9):3493~3500.
    [36] Jiménez C, Marcos M, Villaverde M C, et al. A chromone from Zanthoxylum species.Phytochemistry,1989,28(7):1992~1993.
    [37] Pettit G R, Zhang Q, Pinilla V, et al. Isolation and structure of gustastatin from the Braziliannut tree Gustavia hexapetala. J. Nat. Prod.,2004,67(6):983~985.
    [38] McMaster W J, Scott A I, Trippett S.894. Metabolic products of Penicillium patulum. J.Chem. Soc.(Resumed),1960,4628~4631.
    [39] Singh S B, Jayasuriya H, Dewey R, et al. Isolation, structure, and HIV-1-integrase inhibitoryactivity of structurally diverse fungal metabolites. J. Ind. Microbiol. Biotechnol.,2003,30(12):721~731.
    [40] An Y, Zhao T, Miao J, et al. Isolation, identification, and mutagenicity of alternariolmonomethyl ether. J. Agr. Food. Chem.,1989,37(5):1341~1343.
    [41]麻兵继,申进文,余海尤, et al.粗糙肉齿菌子实体化学成分研究[J].西北植物学报,2010,30(3):601~603.
    [42] He J, Wijeratne E M, Bashyal B P, et al. Cytotoxic and other metabolites of Aspergillusinhabiting the rhizosphere of Sonoran desert plants. J. Nat. Prod.,2004,67(12):1985-1991.
    [43] Binder M, Tamm C. The cytochalasans: a new class of biologically active microbialmetabolites. Angew. Chem. Int. Ed. Engl.,1973,12(5):370~380.
    [44] Hertweck C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. Engl.,2009,48(26):4688~4716.
    [45] Zhang Y, Tian R, Liu S, et al. Alachalasins A-G, new cytochalasins from the fungusStachybotrys Podospora vesticola [corrected]. Bioorg. Med. Chem.,2008,16(5):2627~2634.
    [46] Catalan C A, de Heluani C S, Kotowicz C, et al. A linear sesterterpene, two squalenederivatives and two peptide derivatives from Croton hieronymi. Phytochemistry,2003,64(2):625~629.
    [47] Balunas M J, Su B, Riswan S, et al. Isolation and Characterization of Aromatase Inhibitorsfrom Brassaiopsis glomerulata (Araliaceae). Phytochem. Lett.,2009,2(1):29~33.
    [48]Keller-Schierlein W, Kupfer E. Stoffwechselprodukte von Mikroorganismen.186. Mitteilung.über die Aspochalasine A, B, C und D. Helv. Chim. Acta,1979,62(5):1501~1524.
    [49]Lin Z, Zhu T, Wei H, et al. Spicochalasin A and New Aspochalasins from the Marine-DerivedFungus Spicaria elegans. Euro. J. Org. Chem.,2009(18):3045~3051.
    [50]Zhou G X, Wijeratne E M, Bigelow D, et al. Aspochalasins I, J, and K: three new cytotoxiccytochalasans of Aspergillus flavipes from the rhizosphere of Ericameria laricifolia of theSonoran Desert. J. Nat. Prod.,2004,67(3):328~332.
    [51]Clark A M, Hufford C D, Robertson L W. Two metabolites from Aspergillus flavipes. Lloydia,1977,40(2):146~151.
    [52]Nozawa K, Udagawad S-I, Nakajima S, et al. A dioxopiperazine derivative from Penicilliummegasporum. Phytochemistry,1989,28(3):929~931.
    [53] Bird B A, Campbell I M. Occurrence and biosynthesis of asperphenamate in solid cultures ofPenicillium brevicompactum. Phytochemistry,1982,21(9):2405~2406.
    [54] McCorkindale N J, Baxter R L, Roy T P, et al. Synthesis and chemistry of N-benzoyl-O-
    [N'-benzoyl-l-phenylalanyl]-l-phenylalaninol, the major mycelial metabolite of penicilliumcanadense. Tetrahedron,1978,34(18):2791~2795.
    [55] Singh P, Jain S. Auranamide-A phenylalanine derivative from Grangea maderaspatana Poir..J. Indian. Chem. Soc.,1990,67(7):596~597.
    [56] Poi R, Adityachoudhury N. Occurrence of two rare amides in Medicago polymorpha. Indian.J. Chem. Sect B,1986,25(12):1245~1246.
    [57] Talapatra S K, Pal M K, Mallik A K, et al. Structure and Synthesis of (-)-Anabellamide. ANew Phenylalanine derived ester amide from Anaphalis Subumbellata: Occurrence of4'-Hydroxydehydrokawain. J. Nat. Prod.,1983,46(1):140~143.
    [58] Banerji A, Ray R. Auranamide, a new phenylalanine derivative isolated from Piperaurantiacum Wall. Indian. J. Chem. Sect B,1981,20(7):597~598.
    [59] Jakupovic J, Chen Z L, Bohlmann F. Artanomaloide, a dimeric guaianolide andphenylalanine derivatives from Artemisia anomala. Phytochemistry,1987,26(10):2777~2779.
    [60] Pictet A, Gams A. Synthese des Papaverins. Berichteder deutschen chemischen Gesellschaft,1909,42(3):2943~2952.
    [61] Gebhardt K, Schimana J, Holtzel A, et al. Aspochalamins A-D and aspochalasin Z producedby the endosymbiotic Fungus Aspergillus niveus LU9575. I. Taxonomy, fermentation,isolation and biological activities. J. Antibiot.(Tokyo),2004,57(11):707~714.
    [62] Naruse N, Yamamoto H, Murata S, et al. Aspochalasin E, a new antibiotic isolated from afungus. J. Antibiot.(Tokyo),1993,46(4):679~681.
    [63] Lin Z J, Zhu T J, Chen L, et al. Three new aspochalasin derivatives from the marine-derivedfungus Spicaria elegans. Chin. Chem. Lett.,2010,21(7):824~826.
    [64] Kimura Y, Nakajima H, Hamasaki T. Structure of rosellichalasin, a new metabolite producedby Rosellinia necatrix. Agr. Biol. Chem.,1989,53(6):1699~1701.
    [65] Wagenaar M M, Corwin J, Strobel G, et al. Three new cytochalasins produced by anendophytic fungus in the genus Rhinocladiella. J. Nat. Prod.,2000,63(12):1692~1695.
    [66] Fujii Y, Tani H, Ichinoe M, et al. Zygosporin D and two new cytochalasins produced by thefungus Metarrhizium anisopliae. J. Nat. Prod.,2000,63(1):132~135.
    [67] Zhang Y, Wang T, Pei Y, et al. Aspergillin PZ, a novel isoindole-alkaloid from Aspergillusawamori. J Antibiot.(Tokyo),2002,55(8):693~695.
    [68] Liu R, Lin Z, Zhu T, et al. Novel open-chain cytochalsins from the marine-derived fungusSpicaria elegans. J. Nat. Prod.,2008,71(7):1127~1132.
    [69]李国友,李伯刚,刘光晔, et al.赭曲霉43的甾醇成分研究[J].应用与环境生物学报,2005,11(1):67~70.
    [70]Piccialli V, Sica D. Four New Trihydroxylated Sterols from the Sponge Spongionella gracilis.J. Nat. Prod.,1987,50(5):915~920.
    [71]李冬利,李晓明,崔传明, et al.鸭毛藻内生真菌Hypocreales sp.的化学成分研究.海洋科学,2008,32(11):51~55.
    [72] Trisuwan K, Rukachaisirikul V, Phongpaichit S, et al. Modiolide and pyrone derivatives fromthe sea fan-derived fungus Curvularia sp. PSU-F22. Arch. Pharm. Res.,2011,34(5):709~714.
    [73] Greve H, Schupp P J, Eguereva E, et al. Ten-membered lactones from the marine-derivedfungus Curvularia sp. J. Nat. Prod.,2008,71(9):1651~1653.
    [74] Zhang L, Shen Y, Wang F, et al. Rare merosesquiterpenoids from basidiomycete Craterellusodoratus and their inhibition of11β-hydroxysteroid dehydrogenases. Phytochemistry,2010,71(1):100~103.
    [75] Wang W, Wang Y, Tao H, et al. Cerebrosides of the halotolerant fungus Alternaria raphaniisolated from a sea salt field. J. Nat. Prod.,2009,72(9):1695~1698.
    [76] Madaio A, Piccialli V, Sica D, et al. New Polyhydrozysterols fron the Dityoceratid SpongesHippospongia Communis, Spongia officinalis, Ircinia Variabilis, and Spongionella gracilis. J.Nat. Prod.,1989,52(5):952~961.
    [77] Kudo S, Murakami T, Miyanishi J, et al. Isolation and absolute stereochemistry of opticallyactive sydonic acid from Glonium sp.(Hysteriales, Ascomycota). Biosci. Biotechnol.Biochem.,2009,73(1):203~204.
    [78] Hamasaki T, Nagayama K, Hatsuda Y. Two new metabolites, sydonic acid andhydroxysydonic acid, from Aspergillus sydowi. Agr. Biol. Chem.,1978,42(1):37~40.
    [79] Lu Z, Zhu H, Fu P, et al. Cytotoxic polyphenols from the marine-derived fungus Penicilliumexpansum. J. Nat. Prod.,2010,73(5):911~914.
    [80] Serra S, Bisabolane S. Bisabolane Sesquiterpenes: Synthesis of (R)-(+)-Sydowic Acid and(R)-(+)-Curcumene Ether. Synlett.,2000(6):890~892.
    [81] Hamasaki T, Sato Y, Hatsuda Y, et al. Sydowic acid, a new metabolite from AspergillusSydowi [J]. Tetrahedron Lett,1975,16(9):659~660.
    [82] Wang D-X, Liang M-T, Tian G-J, et al. A facile pathway to synthesize diketopiperazinederivatives. Tetrahedron Lett.,2002,43(5):865~867.
    [83] Kimura Y, Tani K, Kojima A, et al. Cyclo-(l-tryptophyl-l-phenylalanyl), a plant growthregulator produced by the fungus Penicillium sp. Phytochemistry,1996,41(3):665~669.
    [84] Barrow C J, Cai P, Snyder J K, et al. WIN64821, a new competitive antagonist to substanceP, isolated from an Aspergillus species: structure determination and solution conformation. J.Org. Chem.,1993,58(22):6016~6021.
    [85] Li L Y, Deng Z W, Fu H Z, et al.6-hydroxy-4-en-3-one sterols from the marine spongeIotrochoto birotulata. J. Asian. Nat. Prod. Res.,2005,7(2):115~120.
    [1] Li L, Wang C Y, Shao C L, Han L, Sun X P, Zhao J, Guo Y W, Huang H, Guan H S.Two new metabolites from the Hainan soft coral Sarcophyton crassocaule. J. Asian. Nat.Prod. Res.,2009,11(9–10),850~854.
    [2] Li L, Wang C Y, Shao C L, et al. Sarcoglycosides A–C, new O-glycosylglycerolderivatives from the South China Sea soft coral Sarcophyton infundibuliform. Helv. Chim.Acta.,2009,92:1495~1502.
    [3] Wang C Y, Chen A N, Shao C L, Li, L, Xu Y, Qian P Y. Chemical constituents of softcoral Sarcophyton infundibuliforme from the South China Sea. Biochem. Syst. Eco.,2011,39(4–6),853~856.
    [4] Anjaneyulu A S R, Rao, G. Venkateswara. Chemical constituents of the soft coralspecies of Sarcophyton genus: a review. J. Indian Chem. Soc.,1997,74(4),272~278.
    [5] Faulkner D J. Marine natural products. Nat. Prod. Rep.,2002,19:1~48.
    [6] Blunt J W, Copp W B R, Keyzers R A, Munro M H G, Prinsep M R. Marine naturalproducts. Nat. Prod. Rep.,2012,29:144~222, and earlier ref. in this series.
    [7] Wang C Y, Liu H Y, Shao C L. Progress of the Research on Chemical DefenseCompounds from Soft Corals and Gorgonians. Acta. Ecologia. Sinca.,2008,28,2320~2329.
    [8] Pham N B, Butler M S, Quinn R J. Naturally occurring cembranes from an AustralianSarcophyton species. J. Nat. Prod.,2002,65(8):1147~1150.
    [9] Zhang W, Guo Y W, Gu Y. Secondary metabolites from the South China Seainvertebrates: chemistry and biological activity. Current. Med. Chem.,2006,13(17):2041~2090.
    [1] Singh R, Chauhan S M.9,10-Anthraquinones and other biologically active compounds fromthe genus Rubia. Chem. Biodivers.,2004,1(9):1241~1264.
    [2] El-Beih A A, Kawabata T, Koimaru K, et al. Monodictyquinone A: a new antimicrobialanthraquinone from a sea urchin-derived fungus Monodictys sp. Chem. Pharm. Bull.(Tokyo),2007,55(7):1097~1098.
    [3] Jadulco R, Brauers G, Edrada R A, et al. New metabolites from sponge-derived fungiCurvularia lunata and Cladosporium herbarum. J. Nat. Prod.,2002,65(5):730~733.
    [4] Cui H, Shaaban K A, Qin S. Two Anthraquinone Compounds from a marine Actinomyceteisolate M097isolated from Jiaozhou Bay. World Journal Microbiol Biotechnology,2006,22(12):1377~1379.
    [5] Bucar F, Schneider I, Ogmundsdottir H, et al. Anti-proliferative lichen compounds withinhibitory activity on12(S)-HETE production in human platelets. Phytomedicine,2004,11(7~8):602~606.
    [6]徐任生,叶阳,赵维民.天然产物化学.北京;科学出版社.2004:587.
    [7] Bernan V S, Montenegro D A, Korshalla J D, et al. Bioxalomycins, new antibiotics producedby the marine Streptomyces sp. LL-31F508: taxonomy and fermentation. J. Antibiot.(Tokyo),1994,47(12):1417~1424.
    [8] Pusecker K, Laatsch H, Helmke E, et al. Dihydrophencomycin methyl ester, a new phenazinederivative from a marine Streptomycete sp. J. Antibiot.(Tokyo),1997,50(6):479~483.
    [9] Uchida R, Tomoda H, Arai M, et al. Chlorogentisylquinone, a new neutral sphingomyelinaseinhibitor, produced by a marine fungus. J. Antibiot.(Tokyo),2001,54(11):882~889.
    [10] Abdel-Lateff A, Konig G M, Fisch K M, et al. New antioxidant hydroquinone derivativesfrom the algicolous marine fungus Acremonium sp. J. Nat. Prod.,2002,65(11):1605~1611.
    [11] Kuznetsova T A, Dmitrenok A S, Sobolevskaya M P, et al. Ubiquinone Q9from a marineisolate of an actinobacterium Nocardia sp. Russ. Chem. Bull.,2002,51(10):1951~1953.
    [12] Son B, Kim J, Choi H, et al. A radical scavenging farnesylhydroquinone from amarine-derived fungus Penicillium sp. Arch. Pharm. Research.,2002,25(1):77~79.
    [13] Lee S M, Li X F, Jiang H, et al. Terreusinone, a novel UV-A protecting dipyrroloquinonefrom the marine algicolous fungus Aspergillus terreus. Tetrahedron Lett.,2003,44(42):7707~7710.
    [14] Wang C, Sperry J. Total synthesis of the photoprotecting dipyrrolobenzoquinone(+)-terreusinone. Org. Lett.,2011,13(24):6444~6447.
    [15] Li X, Lee S M, Choi H D, et al. Microbial transformation of terreusinone, an ultraviolet-A(UV-A) protecting dipyrroloquinone, by Streptomyces sp. Chem. Pharm. Bull.(Tokyo),2003,51(12):1458~1459.
    [16] Gautschi J T, Amagata T, Amagata A, et al. Expanding the strategies in natural productstudies of marine-derived fungi: a chemical investigation of penicillium obtained from deepwater sediment. J. Nat. Prod.,2004,67(3):362~367.
    [17] Liu W, Gu Q, Zhu W, et al. Two new benzoquinone derivatives and two newbisorbicillinoids were isolated from a marine-derived fungus Penicillium terrestre. J. Antibiot.(Tokyo),2005,58(7):441~446.
    [18] Lin X, Zhou X, Wang F, et al. A New Cytotoxic Sesquiterpene Quinone Produced byPenicillium sp. F00120Isolated from a Deep Sea Sediment Sample. Mar. Drugs,2012,10(1):106~115.
    [19]刘红兵,崔承彬,任虹等.天然来源萘醌及其人工衍生物抗癌剂的研究进展.天然产物研究与开发,2005,17(1):104~107.
    [20] Poch G K, Gloer J B. Obionin A: A new polyketide metabolite from the marine fungusleptosphaeria obiones. Tetrahedron Lett.,1989,30(27):3483~3486.
    [21] Guerriero A, D'Ambrosio M, Cuomo V, et al. A Novel, Degraded Polyketidic Lactone,Leptosphaerolide, and Its Likely Diketone Precursor, Leptosphaerodione. Isolation fromCultures of the Marine Ascomycete Leptosphaeria oraemaris (LINDER). Helv. Chim. Acta.,1991,74(7):1445~1450.
    [22] Ford P W, Gadepalli M, Davidson B S. Halawanones A–D, new polycyclic quinones from amarine-derived streptomycete. J. Nat. Prod.,1998,61(10):1232~1236.
    [23] Pathirana C, Jensen P R, Fenical W. Marinone and debromomarinone: Antibioticsesquiterpenoid naphthoquinones of a new structure class from a marine bacterium.Tetrahedron Lett.,1992,33(50):7663~7666.
    [24] Hardt I H, Jensen P R, Fenical W. Neomarinone, and new cytotoxic marinone derivatives,produced by a marine filamentous bacterium (actinomycetales). Tetrahedron Lett.,2000,41(13):2073~2076.
    [25] Shin-ya K, Furihata K, Hayakawa Y, et al. Biosynthetic studies of naphterpin, a terpenoidmetabolite of streptomyces. Tetrahedron Lett.,1990,31(42):6025~6026.
    [26] Kalaitzis J A, Hamano Y, Nilsen G, et al. Biosynthesis and structural revision ofneomarinone. Org. Lett.,2003,5(23):4449~4452.
    [27] Adinarayana G, Venkateshan M, Bapiraju V, et al. Cytotoxic compounds from the marineactinobacterium Streptomyces corchorusii AUBN1/71. Russ. J. Bioorg. Chem.,32(3):295~300.
    [28] Gorajana A, Kurada B V, Peela S, et al.1-Hydroxy-1-norresistomycin, a new cytotoxiccompound from a marine actinomycete, Streptomyces chibaensis AUBN1/7. J. Antibiot.(Tokyo),2005,58(8):526~529.
    [29]He H, Ding W D, Bernan V S, et al. Lomaiviticins A and B, potent antitumor antibiotics fromMicromonospora lomaivitiensis. J. Am. Chem. Soc.,2001,123(22):5362~5363.
    [30] Nicolaou K C, Denton R M, Lenzen A, et al. Stereocontrolled synthesis of model coresystems of lomaiviticins A and B. Angew. Chem. Int. Ed. Engl.,2006,45(13):2076~2081.
    [31] Gholap S L, Woo C M, Ravikumar P C, et al. Synthesis of the fully glycosylatedcyclohexenone core of lomaiviticin A. Org. Lett.,2009,11(19):4322~4325.
    [32] Li X, Zheng Y, Sattler I, et al. Griseusin C, a novel quinone derivative from a marine-derivedfungus Penicillium sp. Arch. Pharm. Res.,2006,29(11):942~945.
    [33] Okazaki T, Kitahara T, Okami Y. Studies on marine microorganisms. IV. A new antibioticSS-228Y produced by Chainia isolated from shallow sea mud. J. Antibiot.(Tokyo),1975,28(3):176~184.
    [34] Kitahara T, Naganawa H, Okazaki T, et al. The structure of SS-228Y, an antibiotic fromChainia sp. J. Antibiot.(Tokyo),1975,28(4):208~205.
    [35]Cameron D W, Feutrill G I, Gibson C L, et al. Synthesis of the naphthacenequinone SS-228R.Tetrahedron Lett.,1985,26(32):3887~3888.
    [36] Schumacher R W, Davidson B S, Montenegro D A, et al. Gamma-indomycinone, a newpluramycin metabolite from a deep-sea derived actinomycete. J. Nat. Prod.,1995,58(4):613~617.
    [37] Biabani M A, Laatsch H, Helmke E, et al. delta-Indomycinone: a new member of pluramycinclass of antibiotics isolated from marine Streptomyces sp. J. Antibiot.(Tokyo),1997,50(10):874~877.
    [38] T M B, Tadigoppula N, A K C, et al. Saliniquinones A–F, New members of the highlycytotoxic anthraquinone-γ-pyrones from themarine actinomycete Salinispora arenicola. Aust.J. Chem.,2010,63(6):929~934.
    [39] Brady S F, Singh M P, Janso J E, et al. Cytoskyrins A and B, new BIA activebisanthraquinones isolated from an endophytic fungus. Org. Lett.,2000,2(25):4047~4049.
    [40] Itoh T, Kinoshita M, Aoki S, et al. Komodoquinone A, a novel neuritogenic anthracycline,from marine Streptomyces sp. KS3. J. Nat. Prod.,2003,66(10):1373~1377.
    [41] Itoh T, Kinoshita M, Wei H, et al. Stereostructure of komodoquinone A, a neuritogenicanthracycline, from marine Streptomyces sp. KS3. Chem. Pharm. Bull.(Tokyo),2003,51(12):1402~1404.
    [42] Bugni T S, Janso J E, Williamson R T, et al. Dictyosphaeric acids A and B: new decalactonesfrom an undescribed Penicillium sp. obtained from the alga Dictyosphaeria versluyii. J. Nat.Prod.,2004,67(8):1396~1399.
    [43]朱峰,林永成,周世宁.南海海洋真菌#2526中蒽醌类代谢产物的研究.有机化学,2004,23(9):1114~1117.
    [44] Wang S, Li X M, Teuscher F, et al. Chaetopyranin, a benzaldehyde derivative, and otherrelated metabolites from Chaetomium globosum, an endophytic fungus derived from themarine red alga Polysiphonia urceolata. J. Nat. Prod.,2006,69(11):1622~1625.
    [45] Adinarayana G, Venkateshan M R, Bapiraju V V S N K, et al. Cytotoxic compounds fromthe marine actinobacterium Streptomyces corchorusii AUBN1/71. Russ. J. Bio. Chem.,2006,32(3):295~299.
    [46] Xia X K, Huang H R, She Z G, et al.(1)H and (13)C NMR assignments for fiveanthraquinones from the mangrove endophytic fungus Halorosellinia sp.(No.1403). Magn.Reson. Chem.,2007,45(11):1006~1009.
    [47] Shao C, Wang C, Wei M, et al. Structural and spectral assignments of six anthraquinonederivatives from the mangrove fungus (ZSUH-36). Magn. Reson. Chem.,2008,46(9):886~889.
    [48] Shao C, She Z, Guo Z, et al.1H and13C NMR assignments for two anthraquinones and twoxanthones from the mangrove fungus (ZSUH-36). Magn. Reson. Chem.,2007,45(5):434~438.
    [49]李想,姚燕华,孙光芝, et al.红树植物内生真菌Penicillium sp.中一个醌类化学成分的研究.分析测试学报,2007,26(2):195~197.
    [50] Du L, Zhu T, Fang Y, et al. Aspergiolide A, a novel anthraquinone derivative withnaphtho[1,2,3-de]chromene-2,7-dione skeleton isolated from a marine-derived fungusAspergillus glaucus. Tetrahedron,2007,63(5):1085~1088.
    [51] Clark B, Capon R J, Stewart M, et al. Blanchaquinone: a new anthraquinone from anAustralian Streptomyces sp. J. Nat. Prod.,2004,67(10):1729~1731.
    [52] Tan N, Cai X-L, Wang S-Y, et al. A new hTopo I isomerase inhibitor produced by amangrove endophytic fungus no.2240. J. Asian. Nat. Pro. Res.,2008,10(7):607~610.
    [53] Chen Y, Cai X, Pan J, et al. Structure elucidation and NMR assignments for threeanthraquinone derivatives from the marine fungus Fusarium sp.(No. ZH-210). Magn. Reson.Chem.,2009,47(4):362~365.
    [54] Li D L, Li X M, Wang B G. Natural anthraquinone derivatives from a marine mangroveplant-derived endophytic fungus Eurotium rubrum: structural elucidation and DPPH radicalscavenging activity. J. Microbiol. Biotechnol.,2009,19(7):675~680.
    [55]王军,马文哲,汪夕芳, et al.来自海南红树林内生真菌ZSU-H85(L.K)的新蒽醌.中山大学学报(自然科学版),2010,49(4):150~152.
    [56] Trisuwan K, Khamthong N, Rukachaisirikul V, et al. Anthraquinone, cyclopentanone, andnaphthoquinone derivatives from the sea fan-derived fungi Fusarium spp. PSU-F14andPSU-F135. J. Nat. Prod.,2010,73(9):1507~1511.
    [57] Run-Yun Y, Zhong-Jing H. New athraquinone derivative produced by cultivation ofmangrove endophytic fungus Fusarium sp. ZZF60from the South China Sea. Chinese. J.Applied. Chem.(Chinese Version),2010,27(4):394~397.
    [58] Shao C L, Wang C Y, Zheng C J, et al. A new anthraquinone derivative from the marineendophytic fungus Fusarium sp.(No. b77). Nat. Prod. Res.,2010,24(1):81~85.
    [59] Huang C H, Pan J H, Chen B, et al. Three bianthraquinone derivatives from the mangroveendophytic fungus Alternaria sp. ZJ9-6B from the South China Sea. Mar. Drugs,2011,9(5):832~843.
    [59] Zheng C J, Shao C L, Guo Z Y, Chen J F, Deng D S, Yang K L, Chen Y Y, Fu X M, She Z G,Lin Y C, Wang C Y. J. Nat. Prod.2012,75,189–197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700