用户名: 密码: 验证码:
穿心莲内酯对牙周炎骨吸收的影响及其机理的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     牙周炎是人类的常见病和多发病,本质上属于非特异性的炎症和特异性的免疫应答而导致牙周组织的破坏,其中牙槽骨吸收是牙周炎重要的病理过程,也是人类失牙的重要原因。现已明确T细胞过度活化可引发牙周炎,IFN-γ的增强抗原呈递作用和NF-κB通路活化与牙槽骨吸收关系密切,但牙周炎所致牙槽骨吸收机理尚不明确,因而一般抗炎治疗效果不佳。祖国医学在治疗多种复杂性疾病方面有明显的优势,在中药中具有独特作用机制的小分子天然药物如穿心莲内酯等受到关注。研究表明穿心莲内酯可以抑制NF-κB信号通路,发挥抗炎和免疫调节作用,但其是否能够抑制T细胞的过度活化,抑制牙周炎骨吸收还有待研究结果的验证,同时,穿心莲内酯抑制NF-κB信号通路的作用和牙周炎骨吸收的IFN-γ依赖途径之间的相互关系,都需要进一步深入研究。
     目的
     通过穿心莲内酯抑制实验性牙周炎骨吸收的效果观察,研究穿心莲内酯在牙周炎免疫调节治疗中的作用,分析穿心莲内酯抑制T细胞过度活化的作用机制,探讨IFN-γ依赖性牙周炎牙槽骨吸收和穿心莲内酯抑制NF-κB信号通路作用之间的关系,旨在为牙周炎牙槽骨吸收的免疫调节治疗提供新的思路和实验室证据。
     方法
     采用饱和水溶液法制备穿心莲内酯(andrographolide)-β-环糊精包合物,提高穿心莲内酯药物的溶解度;采用LPS局部注射的方式建立小鼠实验性牙周炎牙槽骨吸收模型,以模型动物为基础,根据分组情况,分别给予实验动物穿心莲内酯灌胃和腹腔注射IFN-γ-Ab进行干预,进行体内和体外实验研究。首先在体内,通过显微CT和组织病理学切片研究穿心莲内酯对于LPS诱导的实验性牙周炎骨吸收的影响,利用血清学免疫检测和免疫组化染色研究穿心莲内酯对牙周炎骨吸收相关因子IFN-γ和TNF-α等的调控作用;随后在体外,获取牙周炎状态下动物体内的T细胞和骨髓巨噬细胞进行原代培养并进行相关研究,应用流式细胞术、实时定量PCR和Westernblot观察穿心莲内酯对T细胞活化,IFN-γ、RANKL和TNF-α炎症细胞因子的表达和T细胞NF-κB通路活化的影响,观察穿心莲内酯对巨噬细胞增殖特性、抗原递呈功能调节和NF-κB通路活化的影响;利用破骨细胞诱导分化培养基体外培养小鼠单核巨噬细胞RAW264.7,诱导其向破骨细胞表型分化,观察穿心莲内酯对条件培养基诱导破骨细胞终末分化形成作用的影响和此过程中细胞内NF-κB通路活化情况。
     结果
     经过β-环糊精的物理包合作用,穿心莲内酯在37℃时的溶解度从0.072mg·ml~(-1)提高至0.956mg·ml~(-1);显微CT显示:穿心莲内酯灌胃使得牙周炎骨吸收模型动物的骨小梁相关参数较之未处理组有显著改善(P<0.05);穿心莲内酯灌胃使得牙周炎骨吸收模型动物血清中炎症因子IFN-γ和TNF-α的表达水平较之未处理组显著降低(P<0.05),但是和小鼠腹腔注射IFN-γ-Ab作用无差异(P>0.05);穿心莲内酯灌胃使得牙周炎骨吸收模型动物牙周组织中的炎症分子表达较之未处理组显著减少(P <0.05);穿心莲内酯处理组可以下调T细胞中IFN-γ、RANKL和TNF-α炎症因子的表达,抑制T细胞中NF-κB通路的活化,结果较之未处理组差异显著(P<0.05),但是和IFN-γ-Ab处理组作用无差异(P>0.05);穿心莲内酯处理组可以抑制巨噬细胞的增殖生长,下调巨噬细胞中CIITA的表达,抑制巨噬细胞中NF-κB通路的活化,结果较之未处理组差异显著(P<0.05),但是和IFN-γ-Ab处理组作用无差异(P>0.05);穿心莲内酯处理组可以抑制条件培养基诱导RAW264.7细胞形成破骨细胞终末分化的作用,抑制RAW264.7细胞中NF-κB通路的活化,结果较之未处理组差异显著(P<0.05),但是和IFN-γ-Ab处理组作用无差异(P>0.05)。
     结论
     穿心莲内酯可以抑制实验性牙周炎的牙槽骨吸收。本研究结果提示:穿心莲内酯可以抑制T细胞过度活化,对实验性牙周炎具有免疫调节作用,可以抑制IFN-γ依赖性的牙周炎牙槽骨吸收,这些作用的产生都和穿心莲内酯抑制NF-κB信号通路的活化作用有关。
Periodontitis is a common oral disease with high incidence in human body.Unspecific inflammatory reaction and specific immunological response play keyroles in its development. It’s reported that the over-activation of T cells can lead toperiodontitis. Besides, IFN-γ promotes the antigen presentation and the activation ofNF-κB signal resulting in alveolar bone resorption. However, the immunopathologicmechanism of periodontitis is complex and routine anti-inflammatory treatment isusually ineffective. Traditional Chinese medicine has unique advantage in treatingdiseases with complex mechanism and many natural drugs of small molecule thatshow unique effect have drawn attention. Andrographolide is reported to inhibit theover-activation of NF-κB signal playing roles in anti-inflammation andimmunoregulation, while whether it can inhibit the over-activation of T cells and thealveolar bone resorption still need verification. Further, it’s unclear whether there isrelation between the inhibitory effect of andrographolide on NF-κB signal and the effect of IFN-γ in periodontitis development.
     Aim: To observe the therapeutic effect of andrographolide on experimentalperiodontitis model, analyze the mechanism for andrographolide to inhibit T cellover-activation, and explore the potential relation between the inhibitory effect ofandrographolide on NF-κB signal and the role of IFN-γ in periodontitis development,in order to provide new approach and evidence for treating periodontitis throughimmunoregulation.
     Materials and methods: The inclusion compound of andrographolide-β-cyclodextrin was fabricated by a saturated solution method to improve the solubilityof andrographolide. Experimental murine periodontitis model was established byLPS local administration. The animals were treated by andrographolide intragastricadministration or IFN-γ-Ab intraperitoneal injection respectively, and in vivo andin vitro experiments were conducted. Firstly, in vivo studies were performed toobserve the effect of andrographolide on experimental periodontitis model inducedby LPS. Micro CT and histological section were conducted to observe the effect ofandrographolide on bone resorption in experimental periodontitis. Blood serumimmunological assays and immunohistochemical staining were performed to studythe regulating effect of andrographolide on the bone resorption related factors inperiodontitis. Then in vitro studies were performed to obtain T cells and bonemarrow macrophages from the experimental periodontitis model, which werecultured in vitro. Flow cytometry, Real time PCR and Western blot were done toobserve the effect of andrographolide on T cell activation, the expression ofinflammatory factors such as IFN-γ, RANKL and TNF-α and the activation ofNF-κB signal in T cells. Mouse mononuclear macrophage cell line RAW264.7wascultured in macrophage inductive conditioned medium. The influence ofandrographolide in late differentiation of macrophages and the activation of the NF-κB signal in this process were observed.
     Results: After inclusion by β-cyclodextrin, the solubility of andrographolideincreased from0.072to0.956mg·ml-1.The micro CT results showed that theintragastric administration of andrographolide significantly improved the bonetrabeculae related parameters in the periodontitis model (p <0.05); The intragastricadministration of andrographolide significantly decreased the levels of IFN-γ andTNF-α in the blood serum of the periodontitis animal model (p <0.05), which wassimilar to the effect of IFN-γ-Ab intraperitoneal injection (p>0.05); The intragastricadministration of andrographolide obviously decreased the expressions ofinflammatory factors in the blood serum and the periodontal tissue of theperiodontitis animal (p <0.05); Andrographolide down-regulated the expressions ofIFN-γ, RANKL and TNF-α in T cells, and inhibited the activation of NF-κB signal(p <0.05), and this effect was similar to the effect of IFN-γ-Ab (p>0.05);Andrographolide inhibited the growth of macrophages, down-regulated theexpression of CIITA and inhibited the activation of NF-κB signal in macrophages(p <0.05), while this effect was also similar to the effect of IFN-γ-Ab (p>0.05);Andrographolide inhibited the inductive effect of conditioned medium on RAW264.7late phenotype differentiation from macrophages to osteoclasts, down-regulated theactivation of NF-κB signal in it (p <0.05), while this effect was also at the same levelto the effect of IFN-γ-Ab (p>0.05).Conclusion: Andrographolide inhibits the bone resorption in the experimentalperiodontitis model as well as the over-activation of T cells, showing significantimmunoregulating effect on experimental periodontitis. In addition, it inhibits theIFN-γ dependent alveolar bone resorption in periodontitis. These effects forandrographolide are related to its inhibitory effect on the NF-κB signal.
引文
[1] Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is aligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and isidentical to TRANCE/RANKL[J]. Proceedings of the National Academy ofSciences of the United States ofAmerica,1998,95(7):3597-3602.
    [2] A Y T, Teng. The role of acquired immunity and periodontal diseaseprogression[J]. Oral Biol Med,2003,14:237-252.
    [3] Kawai T, Eisen-Lev R, Seki M, et al. Requirement of B7costimulation forTh1-mediated inflammatory bone resorption in experimental periodontaldisease[J]. Journal of Immunology,2000,164(4):2102-2109.
    [4] Ogawa K, Funaba M, Chen Y, et al. Activin A functions as a Th2cytokine inthe promotion of the alternative activation of macrophages[J]. J. Immunol,2006,177(3):6787-6794.
    [5] Martinez Fo, Helming L, Gordon S. Alternative Activation of Macrophages:An Immunologic Functional Perspective[J]. Annu Rev Immunol,2009,27(4):451-483.
    [6] Mantovani A, Sica A, Sozzani S, et al. The chemokine system in diverseforms of macrophage activation and polarization[J]. Trends Immunol,2004,25(5):677-686.
    [7] Gallina G, Dolcetti L, Serafini P, et al. Tumors induce a subset ofinflammatory monocytes with immunosuppressive activity on CD8+Tcells[J]. J. Clin. Invest,2006,116(4):2777-2790.
    [8] Kzhyshkowska J, Workman G, Cardo-Vila M, et al. Novel function ofalternatively activated macrophages: stabilin-1-mediated clearance ofSPARC[J]. J. Immunol,2006,176(5):5825-5832.
    [9]杨一新,李桂源. LPS介导的信号转导通路研究[J].中南大学学报(医学版),2006,31(1):141-145.
    [10] Hill P A, Tumber A, Papaioannou S, et al. The cellular actions ofinterleukin-11on bone resorption in vitro[J]. Endocrinology,1998,139(4):1564-1572.
    [11] Lian K, Du J, Rao Z, et al. The experimental study on the effect calcitoningene-related peptide on bone resorption mediated by interleukin-1[J]. Journalof Tongji Medical University,2001,21(4):304-307.
    [12] Boyce B F, Aufdemorte T B, Garrett I R, et al. Effects of interleukin-1onbone turnover in normal mice[J]. Endocrinology,1989,125(3):1142-1150.
    [13] Graves D T, Cochran D. The contribution of interleukin-1and tumor necrosisfactor to periodontal tissue destruction[J]. Journal of Periodontology,2003,74(3):391-401.
    [14] Chiang C-Y, Fu E, Shen E C. The role of interleukin-1beta inPorphyromonas gingivalis lipopolysaccharide-induced bone resorption[J].Chung Hua i Hsueh Tsa Chih-Chinese Medical Journal,2002,65(5):225-230.
    [15] Delaurier A, Allen S, Deflandre C, et al. Cytokine expression in felineosteoclastic resorptive lesions[J]. Journal of Comparative Pathology,2002,127(2-3):169-177.
    [16] Masada M P, Persson R, Kenney J S, et al. Measurement of interleukin-1alpha and-1beta in gingival crevicular fluid: implications for thepathogenesis of periodontal disease[J]. Journal of Periodontal Research,1990,25(3):156-163.
    [17] Jandinski J J, Stashenko P, Feder L S, et al. Localization of interleukin-1betain human periodontal tissue[J]. Journal of Periodontology,1991,62(1):36-43.
    [18] Stashenko P, Fujiyoshi P, Obernesser M S, et al. Levels of interleukin1betain tissue from sites of active periodontal disease[J]. Journal of ClinicalPeriodontology,1991,18(7):548-554.
    [19] Klein D C, Raisz L G. Prostaglandins: stimulation of bone resorption in tissueculture[J]. Endocrinology,1970,86(6):1436-1440.
    [20]金小岚.破骨细胞及其功能的局部调控[J].国外医学:内分泌学分册,1998,18(2):61-64.
    [21] Goodson J M, Dewhirst F E, Brunetti A. Prostaglandin E2levels and humanperiodontal disease[J]. Prostaglandins,1974,6(1):81-85.
    [22] Nagai M, Sato N. Reciprocal gene expression of osteoclastogenesisinhibitory factor and osteoclast differentiation factor regulates osteoclastformation[J]. Biochemical&Biophysical Research Communications,1999,257(3):719-723.
    [23] Rifkin B R, Baker R L, Coleman S J. Effects of prostaglandin E2onmacrophages and osteoclasts in cultured fetal long bones[J]. Cell&TissueResearch,1980,207(2):341-346.
    [24] Lader C S, Flanagan a M. Prostaglandin E2, interleukin1alpha, and tumornecrosis factor-alpha increase human osteoclast formation and boneresorption in vitro[J]. Endocrinology,1998,139(7):3157-3164.
    [25] Akatsu T, Takahashi N, Udagawa N, et al. Role of prostaglandins ininterleukin-1-induced bone resorption in mice in vitro[J]. Journal of Bone&Mineral Research,1991,6(2):183-189.
    [26] Grcevic D, Lee S K, Marusic A, et al. Depletion of CD4and CD8Tlymphocytes in mice in vivo enhances1,25-dihydroxyvitamin D3-stimulated-94-osteoclast-like cell formation in vitro by a mechanism that is dependent onprostaglandin synthesis[J]. Journal of Immunology,2000,165(8):4231-4238.
    [27] Sakuma Y, Tanaka K, Suda M, et al. Crucial involvement of the EP4subtypeof prostaglandin E receptor in osteoclast formation by proinflammatorycytokines and lipopolysaccharide[J]. Journal of Bone&Mineral Research,2000,15(2):218-227.
    [28] Loning T, Albers H K, Lisboa B P, et al. Prostaglandin E and the localimmune response in chronic periodontal disease. Immunohistochemical andradioimmunological observations[J]. Journal of Periodontal Research,1980,15(5):525-535.
    [29] Offenbacher S, Farr D H, Goodson J M. Measurement of prostaglandin E increvicular fluid[J]. Journal of Clinical Periodontology,1981,8(4):359-367.
    [30] Offenbacher S, Heasman P A, Collins J G. Modulation of host PGE2secretion as a determinant of periodontal disease expression[J]. Journal ofPeriodontology,1993,64(5Suppl):432-444.
    [31]周坚,邹石莹.龈沟液中前列腺素E2和牙周炎关系的探讨[J].中华口腔医学杂志,1994,29(3):178-180.
    [32] Noguchi K, Shitashige M, Yanai M, et al. Prostaglandin production viainduction of cyclooxygenase-2by human gingival fibroblasts stimulated withlipopolysaccharides[J]. Inflammation,1996,20(5):555-568.
    [33] Fokkema S J, Loos B G, Slegte C, et al. A type2response inlipopolysaccharide (LPS)-stimulated whole blood cell cultures fromperiodontitis patients[J]. Clinical&Experimental Immunology,2002,127(2):374-378.
    [34] Takiguchi H, Yamaguchi M, Okamura H, et al. Contribution of IL-1beta tothe enhancement of Campylobacter rectus lipopolysaccharide-stimulatedPGE2production in old gingival fibroblasts in vitro[J]. Mechanisms ofAgeing&Development,1997,98(1):75-90.
    [35] Pauletto N, Silver J G, Larjava H. Nonsteroidal anti-inflammatory agents:potential modifiers of periodontal disease progression[J]. J Can Dent Assoc,1997,63(11):824-829,832.
    [36] Roggia C, Gao Y, Cenci S, et al. Up-regulation of TNF-producing T cells inthe bone marrow: a key mechanism by which estrogen deficiency inducesbone loss in vivo[J]. Proceedings of the National Academy of Sciences of theUnited States ofAmerica,2001,98(24):13960-13965.
    [37] Gao Y, Qian W-P, Dark K, et al. Estrogen prevents bone loss throughtransforming growth factor beta signaling in T cells[J]. Proceedings of theNational Academy of Sciences of the United States of America,2004,101(47):16618-16623.
    [38]白岚,姜云飞,牛杰志等.溶性肿瘤坏死因子受体的治疗作用[J].国外医学免疫学分册,1999,22(5):291-293.
    [39] Asuma M. Fundamental meehanisms of host immune responses toinfection[J]. J Periodontal Res,2006,41(5):361-373.
    [40] Gonzalez-Alvaroⅰ, Dominguez-Jimenez C, Ortiz Am, et al.Inierleukin-15and interferon-gamma Participate in the cross-talk betweennatural killer and monocytic cells required for tumour necrosis factorProduction[J]. Arthritis Res Ther,2006,37(8):88-95.
    [41] Delnestey, Charbonnier P, Herbault N, et al. Interferon-γ switches monocytedifferentiation from dendritic cells to macrophages [J]. Blood,2003,101(7):143-150.
    [42] Ma X, J.M.Chow, G.Gri, et al. The interleukin12p40gene promoter isprimed by inierferon γ inmonocytic cells[J]. J Exp Med,1996,183(6):147-157.
    [43] Bekeredjian-Ding Ⅰ, Roth Si, Gilles S, et al. T cell-Independent,TLR-indueed IL-12p70produetion in primary human monocytes[J]. JImmunol2006,176(12):7438-7446.
    [44] Taubman M A, Kawai T. Involvement of T-lymphocytes in periodontaldisease and in direct and indirect induction of bone resorption[J]. CriticalReviews in Oral Biology&Medicine,2001,12(2):125-135.
    [45] Weitzmann M N, Pacifici R. Estrogen deficiency and bone loss: aninflammatory tale[J]. Journal of Clinical Investigation,2006,116(5):1186-1194.
    [46] Cenci S, Toraldo G, Weitzmann M N, et al. Estrogen deficiency induces boneloss by increasing T cell proliferation and lifespan throughIFN-gamma-induced class II transactivator[J]. Proceedings of the NationalAcademy of Sciences of the United States of America,2003,100(18):10405-10410.
    [47] Van Roon J a G, Glaudemans K a F M, Bijlsma J W J, et al. Interleukin7stimulates tumour necrosis factor alpha and Th1cytokine production in jointsof patients with rheumatoid arthritis[J]. Annals of the Rheumatic Diseases,2003,62(2):113-119.
    [48] Moriyama H, Ukai T, Hara Y. Interferon-gamma production changes inparallel with bacterial lipopolysaccharide induced bone resorption in mice:an immunohistometrical study[J]. Calcified Tissue International,2002,71(1):53-58.
    [49] Mann G N, Jacobs T W, Buchinsky F J, et al. Interferon-gamma causes lossof bone volume in vivo and fails to ameliorate cyclosporin A-inducedosteopenia[J]. Endocrinology,1994,135(3):1077-1083.
    [50] Goodman G R, Dissanayake I R, Gorodetsky E, et al. Interferon-alpha,unlike interferon-gamma, does not cause bone loss in the rat[J]. Bone,1999,25(4):459-463.
    [51] Baker P J, Dixon M, Evans R T, et al. CD4(+) T cells and theproinflammatory cytokines gamma interferon and interleukin-6contribute toalveolar bone loss in mice[J]. Infection&Immunity,1999,67(6):2804-2809.
    [52] Arnoldi J, Gerdes J, Flad H D. Immunohistologic assessment of cytokineproduction of infiltrating cells in various forms of leprosy[J]. AmericanJournal of Pathology,1990,137(4):749-753.
    [53] Madyastha P R, Yang S, Ries W L, et al. IFN-gamma enhances osteoclastgeneration in cultures of peripheral blood from osteopetrotic patients andnormalizes superoxide production[J]. Journal of Interferon&CytokineResearch,2000,20(7):645-652.
    [54] Key L L, Jr., Rodriguiz R M, Willi S M, et al. Long-term treatment ofosteopetrosis with recombinant human interferon gamma[J]. New EnglandJournal of Medicine,1995,332(24):1594-1599.
    [55] Rodriguiz R M, Key L L, Jr., Ries W L. Combination macrophage-colonystimulating factor and interferon-gamma administration ameliorates theosteopetrotic condition in microphthalmic (mi/mi) mice[J]. PediatricResearch,1993,33(4Pt1):384-389.
    [56] Kotake S, Nanke Y, Mogi M, et al. IFN-gamma-producing human T cellsdirectly induce osteoclastogenesis from human monocytes via the expressionof RANKL[J]. European Journal of Immunology,2005,35(11):3353-3363.
    [57] Taubman M A, Valverde P, Han X, et al. Immune response: the key to boneresorption in periodontal disease[J]. Journal of Periodontology,2005,76(11Suppl):2033-2041.
    [58] Teng Y T, Nguyen H, Gao X, et al. Functional human T-cell immunity andosteoprotegerin ligand control alveolar bone destruction in periodontalinfection[J]. Journal of Clinical Investigation,2000,106(6): R59-67.
    [59] Firestein G S, Alvaro-Gracia J M, Maki R. Quantitative analysis of cytokinegene expression in rheumatoid arthritis.[Erratum appears in J Immunol1990Aug1;145(3):1037Note: Alvaro-Garcia JM [corrected to Alvaro-GraciaJM]][J]. Journal of Immunology,1990,144(9):3347-3353.
    [60] Fox S W, Chambers T J. Interferon-gamma directly inhibitsTRANCE-induced osteoclastogenesis[J]. Biochemical&BiophysicalResearch Communications,2000,276(3):868-872.
    [61] Takayanagi H, Ogasawara K, Hida S, et al. T-cell-mediated regulation ofosteoclastogenesis by signalling cross-talk between RANKL andIFN-gamma[J]. Nature,2000,408(6812):600-605.
    [62] Takayanagi H, Kim S, Taniguchi T. Signaling crosstalk between RANKL andinterferons in osteoclast differentiation[J]. Arthritis Research,2002,4Suppl3:S227-232.
    [63] Yang S, Madyastha P, Ries W, et al. Characterization of interferon gammareceptors on osteoclasts: effect of interferon gamma on osteoclasticsuperoxide generation[J]. Journal of Cellular Biochemistry,2002,84(3):645-654.
    [64] Van't Hof R J, Ralston S H. Cytokine-induced nitric oxide inhibits boneresorption by inducing apoptosis of osteoclast progenitors and suppressingosteoclast activity[J]. Journal of Bone&Mineral Research,1997,12(11):1797-1804.
    [65] Mortara L, Castellani P, Meazza R, et al. CIITA-induced MHC class IIexpression in mammary adenocarcinoma leads to a Th1polarization of thetumor microenvironment, tumor rejection, and specific antitumor memory[J].Clinical Cancer Research,2006,12(11Pt1):3435-3443.
    [66] Cenci S, Weitzmann M N, Roggia C, et al. Estrogen deficiency induces boneloss by enhancing T-cell production of TNF-alpha[J]. Journal of ClinicalInvestigation,2000,106(10):1229-1237.
    [67] Mancini L, Paul-Clark M J, Rosignoli G, et al. Calcitonin and prednisolonedisplay antagonistic actions on bone and have synergistic effects inexperimental arthritis[J]. American Journal of Pathology,2007,170(3):1018-1027.
    [68]丰盛梅,高建军,金慰芳. PTH作用于老年大鼠骨髓细胞骨代谢相关基因表达的实验方法[J].复旦学报:医学版,2005,32(2):219-221.
    [69] Carayol N, Chen J, Yang F, et al. A dominant function of IKK/NF-kappaBsignaling in global lipopolysaccharide-induced gene expression[J]. J BiolChem,2006,281(41):31142-31151.
    [70] Murayama R, Kobayashi M, Takeshita A, et al. MAPKs, activator protein-1and nuclear factor-kappaB mediate production ofinterleukin-1beta-stimulated cytokines, prostaglandin E and MMP-1inhuman periodontal ligament cells[J]. J Periodontal Res,2011,46(5):568-575.
    [71] Zhang H G, Huang N, Liu D, et al. Gene therapy that inhibits nucleartranslocation of nuclear factor kappaB results in tumor necrosis factoralpha-induced apoptosis of human synovial fibroblasts[J]. Arthritis&Rheumatism,2000,43(5):1094-1105.
    [72] Mcintyre K W, Shuster D J, Gillooly K M, et al. A highly selective inhibitorof I kappa B kinase, BMS-345541, blocks both joint inflammation anddestruction in collagen-induced arthritis in mice[J]. Arthritis&Rheumatism,2003,48(9):2652-2659.
    [73] Tak P P, Gerlag D M, Aupperle K R, et al. Inhibitor of nuclear factor kappaBkinase beta is a key regulator of synovial inflammation[J]. Arthritis&Rheumatism,2001,44(8):1897-1907.
    [74] Hajishengallis G, Shakhatreh M-a K, Wang M, et al. Complement receptor3blockade promotes IL-12-Mediated Clearance of Porphyromonas gingivalisand Negates Its Virulence In Vivo[J]. Journal of Immunology,2007,179(4):2359-2367.
    [75] Pan Z, Guzeldemir E, Toygar H U, et al. Nitric oxide synthase in gingivaltissues of patients with chronic periodontitis and with and without diabetes[J].J Periodontol,2010,81(1):109-120.
    [76] Muia C, Mazzon E, Maiere D, et al. Pyrrolidine dithiocarbamate reducedexperimental periodontitis[J]. European Journal of Pharmacology,2006,539(3):205-210.
    [77] Ramamurthy N S, Xu J-W, Bird J, et al. Inhibition of alveolar bone loss bymatrix metalloproteinase inhibitors in experimental periodontal disease[J].Journal of Periodontal Research,2002,37(1):1-7.
    [78] Vardar S, Buduneli E, Baylas H, et al. Individual and combined effects ofselective cyclooxygenase-2inhibitor and omega-3fatty acid onendotoxin-induced periodontitis in rats[J]. Journal of Periodontology,2005,76(1):99-106.
    [79] Delima a J, Oates T, Assuma R, et al. Soluble antagonists to interleukin-1(IL-1) and tumor necrosis factor (TNF) inhibits loss of tissue attachment inexperimental periodontitis[J]. Journal of Clinical Periodontology,2001,28(3):233-240.
    [80] Bozkurt F Y, Berker E, Akkus S, et al. Relationship between interleukin-6levels in gingival crevicular fluid and periodontal status in patients withrheumatoid arthritis and adult periodontitis[J]. J Periodontol,2000,71(11):1756-1760.
    [81] Martuscelli G, Fiorellini J P, Crohin C C, et al. The effect of interleukin-11onthe progression of ligature-induced periodontal disease in the beagle dog[J].Journal of Periodontology,2000,71(4):573-578.
    [82]曹采方.牙周炎的药物治疗[M].牙周病学.北京;人民卫生出版社.2000:186.
    [83] Goldhaber P, Rabadjija L, Beyer W R, et al. Bone resorption in tissue cultureand its relevance to periodontal disease[J]. Journal of the American DentalAssociation,1973,87(5):1027-1033.
    [84] Williams R C, Offenbacher S, Jeffcoat M K, et al. Indomethacin orflurbiprofen treatment of periodontitis in beagles: effect on crevicular fluidarachidonic acid metabolites compared with effect on alveolar bone loss[J].Journal of Periodontal Research,1988,23(2):134-138.
    [85] Aboul-Dahab O. A clinical evaluation of non-steroidal anti-inflammatorydrugs (NSAIDS) as adjuncts in the management of periodontal disease[J].Egyptian Dental Journal,1993,39(3):511-518.
    [86] Jeffcoat M K, Reddy M S, Wang I C, et al. The effect of systemicflurbiprofen on bone supporting dental implants[J]. Journal of the AmericanDental Association,1995,126(3):305-311; quiz346-307.
    [87] Li K L, Vogel R, Jeffcoat M K, et al. The effect of ketoprofen creams onperiodontal disease in rhesus monkeys[J]. Journal of Periodontal Research,1996,31(8):525-532.
    [88] Paquette D W, Fiorellini J P, Martuscelli G, et al. Enantiospecific inhibition ofligature-induced periodontitis in beagles with topical (S)-ketoprofen[J].Journal of Clinical Periodontology,1997,24(8):521-528.
    [89] Cavanaugh P F, Jr., Meredith M P, Buchanan W, et al. Coordinate productionof PGE2and IL-1beta in the gingival crevicular fluid of adults withperiodontitis: its relationship to alveolar bone loss and disruption by twicedaily treatment with ketorolac tromethamine oral rinse[J]. Journal ofPeriodontal Research,1998,33(2):75-82.
    [90] Howell T H, Jeffcoat M K, Goldhaber P, et al. Inhibition of alveolar bone lossin beagles with the NSAID naproxen[J]. Journal of Periodontal Research,1991,26(6):498-501.
    [91] Bichara J, Greenwell H, Drisko C, et al. The effect of postsurgical naproxenand a bioabsorbable membrane on osseous healing in intrabony defects[J].Journal of Periodontology,1999,70(8):869-877.
    [92] Jeffcoat M K, Page R, Reddy M, et al. Use of digital radiography todemonstrate the potential of naproxen as an adjunct in the treatment ofrapidly progressive periodontitis[J]. Journal of Periodontal Research,1991,26(5):415-421.
    [93] Reddy M S, Palcanis K G, Barnett M L, et al. Efficacy of meclofenamatesodium (Meclomen) in the treatment of rapidly progressive periodontitis[J].Journal of Clinical Periodontology,1993,20(9):635-640.
    [94] Offenbacher S, Williams R C, Jeffcoat M K, et al. Effects of NSAIDs onbeagle crevicular cyclooxygenase metabolites and periodontal bone loss[J].Journal of Periodontal Research,1992,27(3):207-213.
    [95] Williams R C, Jeffcoat M K, Howell T H, et al. Altering the progression ofhuman alveolar bone loss with the non-steroidal anti-inflammatory drugflurbiprofen[J]. Journal of Periodontology,1989,60(9):485-490.
    [96] Maitra S R, Bhaduri S, Valane P D, et al. Inhibition of matrixmetalloproteinases by chemically modified tetracyclines in sepsis[J]. Shock,2003,20(3):280-285.
    [97] Llavaneras A, Ramamurthy N S, Heikkila P, et al. A combination of achemically modified doxycycline and a bisphosphonate synergisticallyinhibits endotoxin-induced periodontal breakdown in rats[J]. J Periodontol,2001,72(8):1069-1077.
    [98]王晓敏,于世风,庞淑珍等.阿仑膦酸盐诱导破骨细胞凋亡fas基因的表达[J].中国骨质疏松杂志,1998,4(4):30-33.
    [99] De Vries E, Van Der Weij J P, Van Der Veen C J, et al. In vitro effect of(3-amino-1-hydroxypropylidene)-1,1-bisphosphonic acid (APD) on thefunction of mononuclear phagocytes in lymphocyte proliferation[J].Immunology,1982,47(1):157-163.
    [100] Menezes a M A, Rocha F a C, Chaves H V, et al. Effect of sodiumalendronate on alveolar bone resorption in experimental periodontitis inrats[J]. Journal of Periodontology,2005,76(11):1901-1909.
    [101] Lane N, Armitage G C, Loomer P, et al. Bisphosphonate therapy improvesthe outcome of conventional periodontal treatment: results of a12-month,randomized, placebo-controlled study[J]. Journal of Periodontology,2005,76(7):1113-1122.
    [102] El-Shinnawi U M, El-Tantawy S I. The effect of alendronate sodium onalveolar bone loss in periodontitis (clinical trial)[J]. Journal of theInternational Academy of Periodontology,2003,5(1):5-10.
    [103] O'uchi N, Nishikawa H, Yoshino T, et al. Inhibitory effects of YM175, abisphosphonate, on the progression of experimental periodontitis in beagledogs[J]. Journal of Periodontal Research,1998,33(4):196-204.
    [104]朱久育.中医药治疗牙周炎概况中医杂志[J].中医杂志,1990,11(2):47-49.
    [105]李爱芹,胡大利.中医辨证施治牙周炎临床疗效分析[J].天津中医,2000,17(2):51-51.
    [106]李宏丽.中医辨治牙周炎213例[J].河南中医药学刊,2000,15(5):70-71.
    [107]李点.中西医结合治疗牙周炎40例[J].湖南中医杂志,1998,14(2):47-48.
    [108]陈雁,蒋崇琨.中西医结合治疗成年女性牙周炎[J].云南中医中药杂志,1998,19(4):20-21.
    [109]冯长寿,徐进海.金匮肾气汤治疗牙周炎52例观察[J].中国中医药信息杂志,1998,5(8):40-40.
    [110]侯逢春,张云之.口炎净液治疗牙周炎38例[J].中国中西医结合杂志,1998,18(1):40-40.
    [111]刘新,开雁.清胃泻火法治疗急性牙周炎62例[J].黑龙江中医药,2000,4:36-36.
    [112]陈建灵,池逊.口炎康口服液的药效学研究及安全实验[J].广东医学,1998,19(3):228-229.
    [113]李青南,吴铁.淫羊藿提取液对去睾尺大鼠骨代谢的影响[J].中草药,1993,24(12):637-638.
    [114]王晶,于世凤,庞淑珍.淫羊藿抑制颌骨骨吸收的体外实验研究[J].中国骨质疏松杂志,2004,10(3):277-279.
    [115]郑洪军,黄公怡.淫羊藿对体外培养破骨细胞的影响[J].中华实验外科杂志,2000,17(5):460-461.
    [116]樊粤光,黄永明,曾意荣等.骨碎补提取液对体外分离破骨细胞性骨吸收的作用[J].中国中医骨伤科杂志,2003,11(6):4-6.
    [117]刘金文,黄永明,许少健等.中药骨碎补对大鼠骨髓破骨细胞体外培养的影响[J].中医研究,2005,18(7):5-7.
    [118]陈莉丽,詹琪,严杰.骨碎补提取液对实验性牙槽骨吸收疗效的研究[J].中国中药杂志,2004,29(6):549-553.
    [119]张润荃,史凤芹.补骨脂对分离破骨细胞作用研究[J].现代口腔医学杂志,1995,9(3):136-138.
    [120]苏开鑫,谢华,石小华等.复方丹参滴丸对去卵巢大鼠骨代谢及骨生物力学的影响[J].中国临床解剖学杂志,2009,27(4):455-458.
    [121] Morioka M, Hinode D, Nagata A, et al. Cytotoxicity of Porphyromonasgingivalis toward cultured human gingival fibroblasts[J]. Oral Microbiology&Immunology,1993,8(4):203-207.
    [122]史凤芹,于世凤. IL-2,TNF-α和PGE2对破骨细胞性骨吸收的作用[J].中华骨科杂志,1995,15(7):458-461.
    [123]陈建伟,李祥,吴慧平等.明党参多糖对NF-kB结合活性的影响[J].南京中医药大学学报,1999,15(6):356-357.
    [124]莫碧文,王昌明,刘晓晴等.黄茂对过敏性哮喘豚鼠核因子κB表达的影响[J].广西医科大学学报,2002,19(2):181-183.
    [125]肖准,彭文珍,王正荣.丹参抑制牵张诱导的心肌细胞NF-kB激活的观察[J].华西药学杂志,2000,2000(15):4.
    [126]王勇,黄文华,彭代智.三七总皂普对烫伤后核因子κB及肿瘤坏死因子的影响[J].医药导报,2001,20(5):279-281.
    [127]唐旭东,姜建青,姜大春等.三七总皂普对心肌缺血一再灌注中中性粒细胞核因子kB活化及其劲附的影响[J].中国药理学通报,2002,18(5):556-560.
    [128]颜吉丽,李华,范钮等.虫草多糖对大鼠肝星状细胞核因子κB活性和肿瘤坏死因子-α表达的影响[J].复旦学报(医学版),2003,30(1):27-29.
    [129]方勇飞,王勇,周新等.青藤碱对佐剂性关节炎大鼠滑膜细胞因子表达的影响[J].医药导报,2003,22(8):519-521.
    [130]刘浩,刘志红,章精等.雷公藤内醋醇降低T淋巴细胞核因子κB的活性[J].肾脏病与透析肾移植杂志,1998,7(4):312-315.
    [131]翁少翔,单江,徐耕等.小白菊内酯抑制胎牛血清诱导的大鼠血管平滑肌细胞增殖及信号转导机理[J].中国药理学与毒理学杂志,2002,16(5):331-335.
    [132]陈建,何冰,刘新民等.银杏叶制剂治疗肺间质纤维化的实验研究[J].中国中西医结合杂志,2000,20(6):441-443.
    [133]俞燕,杨于嘉.黄芩甙对大鼠感染性脑水肿NF—kB活性的影响[J].中国当代儿科杂志,2000,2(6):386-389.
    [134]戴桂馥,王俊峰,何帅伟.穿心莲内酯及其衍生物的药理活性研究进展[J].中成药,2006,7(28):2301-2304.
    [135] Shen Y C, Chen C F, Chiou W F. Supression of rat neutrophil reactiveoxygen species production and adhesion by the diterpenoid lactoneandrographolide.[J]. Planta Med,2000,66:314-317.
    [136] Chiou W F, Chen C F, Lin J J. Mechanism of suppression of inducible nitricoxide synthase(iNOS) expression RAW264.7cells by andrographolide.[J].Br J Pharmacol,2000,129:1553-1560.
    [137]梁文权.生物药剂学与药物动力学[M].北京:人民卫生出版社,2007.
    [138] Loscher W, Hoenack D, Richter A, et al. New injectable aqueouscarbamazepine solution through complexing with2-hydroxypropyl-β-cyclodextrin; tolerability and pharmacokineticsafterintravenous injection in comparision to a glycofurol-basedformulations[J]. Epolepsia(N.Y),1995,36:255-261.
    [139] Xu Y, Chen A, Fry S, et al. Modulation of immune response in miceimmunised with an inactivated Salmonella vaccine and gavaged withAndrographis panieulata extract or andrographolide[J]. Intemationallmmunopharmacology,2007,7(4):515-523.
    [140] Singha P K, Roy S, Dey S. Antimicrobial activity of Andrographispaniculata[J]. Fitoterapia,2003,74(7-8):692-694.
    [141] Jada S R, Subur G S, Matthews C, et al. Semisynthesis and in vitroanticancer activities of andrographolide analogues[J]. Phytochemistry,2007,68(5):904-912.
    [142] Calabrese C, Berman S H, Babish J G, et al. A Phase1Trial ofAndrographolide in HIV positive patients and normal Volunteer[J]. Phytother.Res,2000,14(5):333-338.
    [143] Xia Yf, Ye Bq, Li Yd, et al. Andrographolide attenuates inflammation byinhibition of NF-kappa B activation through covalent modification ofreduced cysteine62of p50.[J]. J Immunol2004,173(6):4207-4217.
    [144]贾伟,高文远.药物控释新剂型[M].北京:化学工业出版社,2005.
    [145]赵东宇.穿心莲内酯β-环糊精包合物特性的研究及包合过程的分子模拟
    [D].兰州:兰州大学,2003.
    [146]崔福德.药剂学第6版[M].北京:人民卫生出版社,2007.
    [147]江苏新医学院编.中药大辞典[M].上海:上海科学技术出版社,1986.
    [148] Kasaihf, Tsubukim, Y M, et al. Separation of stereoisomers of some terpenederivatives by capillary gas chromatography-mass spectrometry andhigh-performance liquid chromatography using beta-cyclodextrin derivativecolumns[J]. Chem Pharm Bull,2004,52(3):311-315.
    [149] Arredondo J, Chernyavsky a I, Jolkovsky D L, et al. Receptor-mediatedtobacco toxicity: cooperation of the Ras/Raf-1/MEK1/ERK andJAK-2/STAT-3pathways downstream of alpha7nicotinic receptor in oralkeratinocytes[J]. FASEB J,2006,20(12):2093-2101.
    [150] Chernyavsky a I, Arredondo J, Karlsson E, et al. The Ras/Raf-1/MEK1/ERKsignaling pathway coupled to integrin expression mediates cholinergicregulation of keratinocyte directional migration[J]. J Biol Chem,2005,280(47):39220-39228.
    [151]杨一新,李桂源. LPS所介导的信号转导通路研究[J].中南大学学报(医学版),2006,31(1):141-145.
    [152] Liu Y C, Lerner U H, Teng Y T. Cytokine responses against periodontalinfection: protective and destructive roles[J]. Periodontol2000,2010,52:163-206.
    [153] Teng Y T. Protective and destructive immunity in the periodontium: Part1--innate and humoral immunity and the periodontium[J]. J Dent Res,2006,85(3):198-208.
    [154] Teng Y T. Protective and destructive immunity in the periodontium: Part2--T-cell-mediated immunity in the periodontium[J]. J Dent Res,2006,85(3):209-219.
    [155] Baker P J, Howe L, Garneau J, et al. T cell knockout mice have diminishedalveolar bone loss after oral infection with Porphyromonas gingivalis[J].FEMS Immunology&Medical Microbiology,2002,34(1):45-50.
    [156] Afar B, Engel D, Clark E A. Activated lymphocyte subsets in adultperiodontitis[J]. Journal of Periodontal Research,1992,27(2):126-133.
    [157] Kinane D F, Johnston F A, Evans C W. Depressed helper-to-suppressor T-cellratios in early-onset forms of periodontal disease[J]. Journal of PeriodontalResearch,1989,24(3):161-164.
    [158] Stashenko P, Resmini L M, Haffajee a D, et al. Helper and suppressor T cellsin periodontal disease[J]. Journal of Periodontal Research,1985,20(5):515-521.
    [159] Kornman K S, Manti F, Goldschneider I. Peripheral blood lymphocytepopulations in ligature-induced periodontitis[J]. Journal of PeriodontalResearch,1982,17(5):469-471.
    [160] Craston R, Koh M, Mc Dermott A, et al. Temporal dynamics of CD69expression on lymphoid cells[J]. Journal of Immunological Methods,1997,209(1):37-45.
    [161] Altman A, Isakov N, Baier G. Protein kinase Ctheta: a new essential superstaron the T-cell stage[J]. Immunology Today,2000,21(11):567-573.
    [162] Van Leeuwen J E, Samelson L E. T cell antigen-receptor signaltransduction[J]. Current Opinion in Immunology,1999,11(3):242-248.
    [163] Carter J, Vaitaitis G M, Waid D M, et al. CD40engagement of CD4+CD40+T cells in a neo-self antigen disease model ablates CTLA-4expression andindirectly impacts tolerance[J]. European Journal of Immunology,42(2):424-435.
    [164] Sun Z, Arendt C W, Ellmeier W, et al. PKC-theta is required forTCR-induced NF-kappaB activation in mature but not immature Tlymphocytes[J]. Nature,2000,404(6776):402-407.
    [165] Zambonin Zallone A, Teti A, Primavera M V. Monocytes from circulatingblood fuse in vitro with purified osteoclasts in primary culture[J]. Journal ofCell Science,1984,66:335-342.
    [166] Humphrey M B, Daws M R, Spusta S C, et al. TREM2, a DAP12-associatedreceptor, regulates osteoclast differentiation and function[J]. Journal of Bone&Mineral Research,2006,21(2):237-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700