用户名: 密码: 验证码:
方形金属框架鲆鲽类网箱水动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鲆鲽类网箱养殖是近年来发展起来的1种节能型生态养殖模式。由于鲆鲽鱼类的栖底习性,目前用于海上养殖的网箱多为方形平底结构,其水面框架由金属管材制成,底部配有张紧绳索的框架以支撑底部网衣。在海上养殖中,鲆鲽类网箱在水流和波浪的作用下会产生变形,特别是网箱的底部在波流的作用下极易发生倾斜、摇摆和震动,这对鲆鲽鱼类的养殖危害极大。因此,为确保网箱设施的安全和稳定,必须对波流作用下鲆鲽类网箱的水动力学特性开展研究。本论文研究依托于国家“863”计划、鲆鲽类产业技术体系和国家自然科学基金项目。
     本研究通过水槽模型实验的方法,分别研究鲆鲽类网箱在水流、波浪以及波流联合作用下的水动力学特性。选取了不同的网箱底框架结构、不同的网目形状与不同规格大小的网箱进行对比分析,以期为网箱结构优化设计提供理论依据。此外,在数值模拟中,本文基于ANSYS提供的参数化建模技术,利用APDL语言开发出适合于鲆鲽类网箱结构分析的专用程序,对波流场中网箱整体结构进行了动力分析。通过将水槽实验结果与模拟结果对比分析,验证了数值模拟方法的可靠性。通过研究发现:
     1.单纯水流作用下,网箱底框架最大倾角与迎流面锚绳最大张力均随流速的增加而增大。3种不同重量底框架的网箱迎流面锚绳最大张力随底框架重量的增加而增大。方形网目网箱的底框架最大倾角随流速增加几乎没有改变。当改变网箱规格时,大规格网箱的迎流面锚绳最大张力大于小网箱,但大规格的网箱相比小网箱具有更好的稳定性。
     2.单纯波浪作用下,网箱底框架最大倾角与锚绳张力随周期、波高的增加而增大。改变底框的重量对底框倾角的影响明显,且重量越大网底结构越稳定;改变网目形状对网箱的影响较明显,且综合比较方形网箱更合理;改变网箱大小对网箱的影响较明显,且综合比较大网箱更合理。在波浪作用的数值模拟中,采用线性波浪理论得到的模拟值比斯托克斯5阶波浪理论更加接近实验值。
     3.波流联合作用下,改变底框的重量对浮架和底框的倾角影响明显,底框越重倾角越小。改变网目形状对网箱运动受力的影响较明显,且综合比较方形网箱更合理;改变网箱大小对其运动受力的影响较明显,且综合比较大网箱更合理。其次,通过2种不同的波流相互作用模式对网箱运动受力进行了数值模拟,结果显示差别不明显。通过数值模拟还可发现,当水流入射方向与波浪成一定角度时,网箱底框架的最大倾角与迎波面锚绳最大张力均随波流夹角的增加而减小。
The flatfish is one of the valuable bottom fish species. At present aquacultureproduction of flatfish mostly depends on circulating system because of their livinghabit, whereas some issues occur during the aquaculture production such as drugremnant. Recently flatfish cage aquaculture plays an increasingly important role in theflatfish production industry in China and worldwide. The configuration of flatfishcage is usually square, furthermore the surface frame of cage is made up of metal pipeand there are tight ropes in the bottom frame to hold the bottom nets. In practiceproduction the bottom component of flatfish cage will sharply incline due to highspeed ocean current and strong sea wave, moreover it results in a lot of harm to theflatfish in cage. So one of the key problem is to research the dynamic behavior of theflatfish cage under current and wave conditions for aquaculture engineering,i.e. thecage deformation should be as slight as possible to maintain balance for the flatfish incage.
     A series of scaled physical model tests in current and regular waves are conducted.And then the whole displacements of flatfish cage assembled support pipes in bottomframe are measured and calculated by CCD and special software. The mooring lineforces are also measured by four transducers. The APDL language provided byANSYS itself is used to develop the specific program for structural analysis of flatfishcage. And then the dynamic analysis of flatfish cage in currents and waves isconducted. Furthermore, the model test data are used to verify the validity of thesimulated results. The results show that:
     (1) The maximum inclination of bottom frame and the maximum values of frontmooring line force increase with increasing flow velocity in currents. And the maximum values of front mooring line force increase with increasing bottom weight.The maximum inclinations of bottom frame for cage of square mesh change lessobviously with increasing flow velocity. Moreover, the maximum values of frontmooring line force of large cage are greater than that of small cage, but the large cagehas better stability than the small cage.
     (2) The differences in displacement and mooring line force of flatfish cages inwaves for the three weight modes are insignificant. The maximum inclinations ofbottom frame decrease with increasing bottom weight under wave conditions. And themaximum values of front mooring line force increase with increasing bottom weight.Moreover, the maximum incline angles of bottom frame with diamond mesh arelarger than that of cage with square mesh. The tendency seems to be that thedeformation and force of flatfish cage increase with increasing wave height for thesame wave period and increase with increasing wave period for the same wave height.
     (3) The maximum inclination of float and bottom frame are affected by weight ofbottom frame obviously. And the heavier bottom frame is, the better stability the cagehas. The motion and load are affected by shape of mesh obviously, and the stability ofcage of square mesh is better. The motion and load are also affected by the size ofcage obviously, and the large cage is better. Then, the effect of waves and current oncage is simulated by two modes of wave-flow interaction. The results show nodifference. And the maximum inclination and front mooring line force of cagedecrease with increasing angle between wave and current.
引文
[1] Fredriksson, D.W., Swift, M.R., Irish, J.D., Tsukrov, I., Celikkol, B.. Fish cage and mooringsystem dynamics using physical and numerical models with field measurements.Aquacultural Engineering,2003(27):117-146
    [2] Fredriksson, D.W.. Open ocean fish cage and mooring system dynamics. UNH:PhDdissertation,2001
    [3] Lader,P.F., Enerhaug,B..Experimental investigation of forces and geometry of a net cage inuniform flow.IEEE Journal of Oceanic Engineering,2005,30(1):79-84
    [4] Lee,C.W.,Kim,Y.B., Lee,G.H., Choe,M.Y., Lee,M.,K., Koo,K.,Y.. Dynamic simulation of afish cage system subjected to currents and wave. Oceanic Engineering,2008(35):1521-1532
    [5] DeCew, J., Tsukrov, I., Risso, A., Swift, M.R., Celikkol,B.. Modeling of dynamic behaviorof a single-point moored submersible fish cage under currents. Aquacultural Engineering,2010(43):38-45
    [6] Colboume,D.B., Allen,J.H..Observations on motions and loads in aquaculture cages fromfull scale and model scale measurements. Aquacultural Engineering,2001(24):129-148
    [7] Tsukrov, I., Ozbay, M., Fredriksson, D.W., Swift, M.R., Baldwin, K., Celikkol, B.. Openocean aquaculture engineering numerical modeling. Marine Technology Society Journal,2000,34(1):29-40
    [8] Tsukrov, I., Eroshkin, O., Fredriksson, D.W., Swift, M.R., Celikkol, B.. Finite elementmodeling of net panels using a consistent net element. Ocean Engineering,2003(30):251-270
    [9] Fredriksson,D.W., DeCewa,J., Swift,R., Tsukrov,I., Chambers,M.D., Celikkol,B..Thedesign and analysis of a four-cage grid mooring for open ocean aquacultuer. AquaculturalEngineering,2004(32):77-94
    [10] Fredriksson,D.W.,Swift,M.R.,Eroshkin,O.,Tsukrov,I.,Irish,J.D.,Celikkol, B.. Moored FishCage Dynamics in Waves and Currents. IEEE Journal of Oceanic Engineering,2005,30(1):28-36
    [11] Fredriksson,D.W., DeCew, J.C., Tsukrov, I., Swift, M.R., Irish, J.D.. Development of largefish farm numerical modeling techniques with in-situ mooring tension comparisons.,Aquacultural Engineering,2007(36):137-148
    [12] Fredriksson, D.W., Swift, M.R., Irish, J.D., Tsukrov, I., Celikkol, B.. Fish cage and mooringsystem dynamics using physical and numerical models with field measurements. Aquacult.Eng,2003(27):117-146
    [13] Fredriksson, D.W., DeCew, J.C., Tsukrov, I.. Development of structural modelingtechniques for evaluating HDPE plastic net pens used in marine aquaculture. OceanEngineering,2007(34):2124–2137
    [14] Fredriksson, D.W., Tsukrov, I., Hudson,P.. Engineering investigation of design proceduresfor closed containment marine aquaculture systems. Aquacultural Engineering,2008(39):91-102
    [15] Jensen,., Wroldsen, A. S., Lader, P. F., Fredheim, A., Heide, M.. Finite element analysisof tensegrity structures in offshore aquaculture installations. Aquacultural Engineering,2007(36):272-284
    [16] Helsley, C. E., Kim, W. J.. Mixing Downstream of a Submerged Fish Cage:A NumericalStudy. IEEE Journal of Oceanic Engineering,2005,30(1):12-19
    [17] Suhey, J. D., Kim, N. H., Niezrecki, C.. Numerical modeling and design of inflatablestructures—application to open-ocean-aquaculture cages. Aquacultural Engineering,2005(33):285-303
    [18]黄洪亮,王鲁民,王明彦.沉力变化对圆形重力式网箱容积的影响.中国水产科学,2004,Vol.11Suppl. June:31-35
    [19]王鲁民,黄洪亮,王明彦.圆形重力式网箱阻力性能研究.中国海洋大学学报,2004,34(4):31-35
    [20]黄六一,梁振林,赵芬芳,等.网箱形状在海流中变化的模型实验.青岛海洋大学学报,2006,36(2):245-248
    [21]黄六一,梁振林,宋伟华,等.方形箱网结构减流效果实验.中国水产科学,2007,14(5):860-863
    [22]宋伟华,梁振林,关长涛,等.方形网箱水平波浪力的迭加计算和实验验证.海洋与湖沼,2004,35(3):202-208
    [23]宋伟华.网衣波浪水动力学研究.博士学位论文.青岛:中国海洋大学,2006
    [24]李玉成,陈昌平,董华洋,等.重力式网箱锚锭型式优化的研究.中国造船,2005,46(增刊):98-104
    [25]李玉成,董国海,关长涛,等.深水重力式网箱水动力特性研究报告.2005,大连理工大学
    [26] Li, Y.C., Gui, F.K., Teng, B.. Hydrodynamic behavior of a straight floating pipe under waveconditions. Ocean Engineering,2007(34):552-559
    [27]郑艳娜,董国海,桂福坤,等.圆形重力式网箱锚锭系统的受力研究.应用力学学报,2007,24(2):180-185
    [28]桂福坤.深水重力式网箱水动力学特性研究.博士学位论文.2006,大连,大连理工大学
    [29]李玉成,毛雨禅,桂福坤.不同配重方式和配重大小对重力式网箱受力的影响.中国海洋平台,2006,21(l):6-15
    [30]李玉成,宋芳,董国海,等.碟形网箱水动力特性的研究.海洋工程,2004,22(4):19-25
    [31]李玉成,宋芳,张怀慧,等.拟碟形网箱水动力特性的研究.中国海洋平台,2004,19(1):1-7
    [32]陈昌平,李玉成.组合式网箱运动特性研究.中国海洋平台,2006,25(1):21-26
    [33]陈晓蕾,刘永利,黄洪亮,等.不同排布方式圆形重力式网箱容积保持率的模型实验.海洋渔业,2008,30(4):340-349
    [34]刘永利,陈晓蕾,石建高,等.圆形重力式网箱不同排布方式受力变化的模型实验.海洋渔业,2008,30(2):117-126
    [35] Huang, C.C., Tang, H.J., Liu, J.Y.. Dynamical analysis of net cage structures for marineaquaculture: numerical simulation and model testing. Aquacultural Engineering,2006,35,258–270
    [36] Huang, C.C., Tang, H.J., Liu, J.Y.. Modeling volume deformation in gravity-type cageswith distributed bottom weights or a rigid tube-sinker.Aquacultural Engineering,2007(37):144–157
    [37] R.Wan, F. Hu, T. Tokai and K. Matuda. A method for analyzing the static response ofsubmerged rope systems based on finite element method. Fisheries Science,2002,68(2):65-70
    [38] R.Wan, F. Hu, and T. Tokai. A static analysis of the tension and configuration of submergedplane netting. Fisheries Science,2002,68(4):815-823
    [39] R.Wan, F. Hu, and T. Tokai. Computer simulation of shape and tension on fishing net andrope system. Fisheries Science,2002,68:1853-1856
    [40] Wan,R., Huang,W.Q., Song, X.F., Hu, F.X. okai, T..TStatics of a gillnet placedin a uniformcurrent. Ocean Engineering,2004,31:1725–1740
    [41]崔江浩.重力式养殖网箱耐流特性的数值模拟及仿真.硕士学位论文.青岛:中国海洋大学,2005
    [42]万荣,崔勇,崔江浩,等.一种基于有限元原理的养殖网箱耐流特性的数值计算方法.中国海洋大学学报,2007,37(5):709-712
    [43]何鑫.重力式网箱群组系统耐流特性的数值模拟.硕士学位论文.青岛:中国海洋大学,2007
    [44]崔勇,关长涛,万荣,等.基于有限元方法对波流场中养殖网箱的系统动力分析.工程力学,2008,27(5):250-256
    [45] Zhan J M, Jia,X. P., Li, Y.S., Sun M.G., Guo,G..X., Hu,Y.Z.. Analytical and experimentalinvestigation of drag on nets of fish cages. Aquacultural Engineering,2006,35:91-101
    [46]詹杰民,苏炜.浮式养殖网箱系统的数值模拟.中山大学学报,2006,45(6):1-6
    [47]朱立新.流场中圆形养殖网箱动态响应的数值模拟研究.博士学位论文.青岛:中国海洋大学,2006
    [48] Huang,C.C., Tang, H.J., Liu, J.Y.. Effects of waves and currents on gravity-type cages inthe open sea. Aquacultural Engineering,2008(38):105-116
    [49] Huang, C.C., Pan, J.Y.. Mooring line fatigue: A risk analysis for an SPM cage system.Aquacultural Engineering,2010(42):8-16
    [50] Lee, H. H., Wang, P.,W.,. Dynamic behavior of tension-leg platform with net-cage systemsubjected to wave forces. Ocean Engineering,2000(28):179-200
    [51] Zhao, Y.P., Li, Y.C., Dong, G.H., Gui, F.K., Teng, B.. Numerical simulation of the effects ofstructure size ratio and mesh type on three-dimensional deformation of the fishing-netgravity cage in current. Aquacultural Engineering,2007(36):285-301
    [52]赵云鹏,李玉成.配重变化对重力式网箱网衣水动力特性影响的数值分析.大连理工大学学报,2006,Suppl.46(19):8-20
    [53] Zhao.Y.P., Li, Y.C.Dong,G.H.,Gui,F.K.Numerical simulation of the hydrodynamicbehaviour of gravity cage in waves. China Ocean Engineering,2007,21(2):225-238
    [54] Zhao,Y.P.. Li, Y.C., Dong,G.H., Gui,F.K.. A numerical study on hydrodynamic Properties ofgravity cage in combined wave-current flow. Ocean Engineering.2007(34):2350-2363
    [55]郝双户.深水重力式网箱浮架的流固耦合研究.博士学位论文.大连:大连理工大学,2008
    [56] Dong,G.H., Xu,T.J., Zhao,Y,P., Li,Y.C., Gui,F.K.. Numerical simulation of hydrodynamicbehavior of gravity cage in irregular waves. Aquacultural Engineering,2010(42):90-101
    [57]黄小华,郭根喜,胡昱,等.波浪作用下圆形网箱浮架系统的运动特性分析.水产学报,2009,33(5):878-884
    [58]黄小华,郭根喜,胡昱,等.圆形网衣在水流作用下的运动变形特性.中国水产科学,2010,17(2):312-319
    [59]郭根喜,黄小华,胡昱,等.高密度聚乙烯圆形网箱锚绳受力实测研究.中国水产科学,2010,17(4):847-852
    [60]梁永超.基于ANSYS程序二次开发的导管架平台结构分析.硕士学位论文.青岛:中国海洋大学,2004
    [61]王勖成.有线单元法.北京:清华大学出版社,2003.469-470
    [62]李茜,杨树耕.采用ANSYS程序的自升式平台结构有限元动力分析.中国海洋平台,2003,18(4):41-46
    [63] ANSYS Release13.0Documentation
    [64] ANSYS Elements Reference,13thEdition,SAS IP,Inc
    [65]胡可.有限元方法一致质量矩阵的理论分析与应用.大庆石油学院学报,2011,35(5):102-106
    [66]杨树耕,藤明清,孟昭瑛,等.有限元分析软件AN SYS在海洋工程中的应用(续1).中国海洋平台,2000,15(5):40-45
    [67]董军,刘旭红,姚顺忠,等.基于虚功原理表达的空间梁单元刚度矩阵分析.西南林学院学报,2002,22(4):59-62
    [68]段艳丽,张金平,刘学虎,等.半潜式平台的波浪载荷计算.石油矿场机械,2006,35(2):41-44
    [69]赵云鹏.深水重力式网箱水动力特性数值模拟研究.博士学位论文.大连:大连理工大学,2007
    [70] Skjelbreia L, Hendrickson J A. Fifth Order Gravity Wave Theory, Proceedings, SeventhConference of Coastal Engineering, Ch.10, pp.184-196(1961)
    [71] Dean R G. Evaluation and Development of Water Wave Theories for EngineeringApplication, prepared for U. S. Army Corp of Engineers, Coastal Engineering ResearchCenter,(Novembed1974)
    [72]国家鲆鲽类产业技术研发中心.国家鲆鲽类产业技术体系年度报告(2009).青岛:中国海洋大学出版社,2010
    [73]国家鲆鲽类产业技术研发中心.国家鲆鲽类产业技术体系年度报告(2010).青岛:中国海洋大学出版社,2011
    [74]崔勇,关长涛,万荣,等.基于有限元方法对鲆鲽网箱耐流特性的数值模拟.中国海洋大学学报,2011,41(6):51-54
    [75]崔勇,关长涛,万荣,等.数值模拟在网箱工程设计中的应用.海洋水产研究,2008,29(5):140-146
    [76]黄滨,关长涛,崔勇,等.台风米雷对山东网箱养殖业灾害性影响的调查与技术解析.渔业现代化,2011,38(4):17-21
    [77]董登攀,宋协法,关长涛,等.褐牙鲆陆海接力养殖实验.中国海洋大学学报,2010,40(10):38-42
    [78]黄滨,关长涛,李娇,等.一种联排升降式鲆鲽鱼类网箱系统的构建与研究.渔业现代化,2010,37(3):20-24
    [79]黄滨,关长涛,崔勇,等.HDPE倾角入水式大型深水升降网箱的研究.渔业现代化,2008,35(6):1-4
    [80]黄滨,关长涛,崔勇,等.国产HDPE升降式深水网箱下沉关键技术的研究.渔业科学进展,2009,30(5):102-107
    [81]董登攀.鲆鲽类离岸网箱及陆海接力养殖技术研究.硕士学位论文,青岛:中国海洋大学,2010
    [82]赵云鹏,陈小芳,徐条建,等.波浪作用下鲆鲽类方形网箱水动力特性数值模拟.中国科技论文在线,2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700