用户名: 密码: 验证码:
羽衣甘蓝小孢子培养及红叶性状的SRAP标记
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羽衣甘蓝是一种重要的观赏植物和蔬菜作物,但由于其为绿体春化植物,花芽分化所需时间长,两年才能完成一个有性生活周期,利用常规育种手段培育一个自交系需要6~8年。采用双单倍体育种方法替代自交系选育过程,可以有效地缩短育种年限,提高育种效率,小孢子培养便是一种高效的培育双单倍体的细胞育种技术,因此,优化羽衣甘蓝小孢子培养技术体系,有重要的实践意义。叶色是羽衣甘蓝最重要的观赏性状,开发与叶色紧密连锁的分子标记,是探索叶色形成机理和开展分子标记辅助育种研究的重要前提。
     本项研究以16个羽衣甘蓝杂交种为试材进行小孢子培养,分析小孢子胚状体的发生与发育、以及小孢子植株再生的影响因素,筛选准确高效的小孢子植株倍性鉴定方法,探索人工诱导染色体加倍方法,鉴定培养所得DH系的自交亲和性及用其配制杂交种的园艺学性状;利用小孢子培养创制的DH系配制杂交组合,构建F2分离群体,筛选与红叶性状连锁的SRAP标记。获得了以下结果:
     1.优化了羽衣甘蓝小孢子胚诱导体系。研究证明了基因型是影响羽衣甘蓝游离小孢子培养中胚状体形成的关键因素。在供试的16个基因型材料中15个基因型获得了小孢子胚状体,但出胚品种的胚诱导率相差很大,最高的‘皱叶红心’和最低的‘白鸠’两者胚诱导率相差达1.94胚·蕾~(-1)。花蕾长度在3.01~3.50mm范围内时,小孢子所处单核中晚期的比例最高,达67.31%。因此,在羽衣甘蓝小孢子培养时,选蕾长度应集中在3.01~3.50mm范围内,有助于胚状体诱导成功,此时花瓣与花药比在2/3~4/5。花蕾经4℃低温预处理可以提高胚产量,以处理24h效果最好,时间过长则会起反作用;小孢子培养前先在33℃热激处理24h有利于小孢子启动胚状体发育途径。培养过程中添加和更换培养基均能显著提高胚产量,加液培养更有利于提高胚产量。不同材料对激素反应不尽相同。‘波浪叶红心’在不含激素的培养基中胚诱导率最高;‘红欧’以在添加0.10mg·L~(-1)6-BA的培养基中培养效果最好;‘白鸥’则在6-BA0.10mg·L~(-1)+NAA0.10mg·L~(-1)浓度组合的培养基中反应最好。振荡培养有利于胚状体的发生和发育,既能提高小孢子胚诱导率,又能促进子叶形胚发生,提高子叶形胚的比例,减少畸形胚发生率。
     2.建立了羽衣甘蓝小孢子胚高频再生植株体系。B5固体培养基最适合羽衣甘蓝小孢子胚的再生。小孢子胚形成后,转至B5培养基,萌发很快,胚芽迅速分化,有利于胚发育成再生植株。子叶形胚植株再生频率显著高于其它类型的胚。鱼雷形胚可以发育成子叶形胚,然后再发育成苗;也可以先形成愈伤组织然后再分化成植株。心形胚、球形胚和畸形胚只有很小一部分能发育形成植株。最适宜的转胚时间是小孢子培养后的第25天。尽量减少胚状体在NLN液体培养基中滞留的时间,可以获得高的植株再生频率。小孢子胚转至固体培养基后,先在4℃低温培养一定时间,可以显著提高植株再生频率。‘白欧’和‘皱叶白心’的小孢子胚在4℃处理5d时效果最好;而‘皱叶红心’的胚在4℃处理2d后再生频率最高,但是低温处理时间不宜过长。接种到添加活性炭培养基上的胚状体萌发较快,再生植株生长健壮,成活率高。但是,添加活性炭并不能显著提高植株再生频率。添加适当浓度的AgNO_3能促进小孢子胚发育形成植株。‘红欧’在添加3.0mg·L~(-1)AgNO_3处理中获得最高植株再生频率,‘皱叶红心’在添加5.0mg·L~(-1)AgNO_3的处理中植株再生频率最高。
     3.研究确定了羽衣甘蓝小孢子植株倍性鉴定及加倍方法。小孢子再生植株鉴定方法可以应用染色体计数的直接鉴定方法与形态学特征、气孔特征、花粉粒大小与活力、自交结实情况和流式细胞仪间接鉴定方法相结合。小孢子再生植株群体中,单倍体、双单倍体和四倍体同时存在,但不同基因型间再生植株的自然加倍率差别很大,对于自然加倍率低的基因型有必要进行人工加倍处理。在不同人工染色体加倍方法中,秋水仙素处理小孢子方法效果最好,在50mg·L~(-1)处理36h时加倍效率为52.9%,显著高于对照;秋水仙素处理切根小植株处理效果最差,小植株死亡率很高;在试管苗浸根试验中以1000mg·L~(-1)的秋水仙素处理植株根部4h的加倍效果最好,为44.8%,但这种方法容易造成根部损伤,移栽田间后生长较弱。
     4.鉴定筛选出一批优异的羽衣甘蓝DH系。通过游离小孢子培养体系的优化,获得10个品种羽衣甘蓝来自不同胚状体的小孢子植株239株,经园艺学性状鉴定筛选出优异DH系18个。经自交亲和指数测定,所有DH系均符合自交不亲和系标准。利用DH系试配杂交组合,筛选出综合性状优良的杂交组合7个。
     5.筛选获得了与红叶性状紧密连锁的SRAP标记。通过遗传分析证明了羽衣甘蓝红叶与白叶性状为一对基因控制的质量性状,红叶为显性。采用SRAP+BSA法,筛选获得了3个与红叶基因Re紧密连锁的SRAP标记,它们位于Re基因的两侧,遗传距离分别为2.2cM、6.4cM和3.7cM。
Kale is an important ornamental plant and vegetable. The flower bud differentiation ofkale takes a long time and it takes two years to accomplish a cycle of sexual life as it is avernalization plant. Six to eight years needed to cultivate an inbred line using conventionalmeans of breeding. Breeding method of double haploid utilized can effectively shorten thebreeding period and raise the efficiency of breeding instead of breeding process for inbredlines. Microspore culture is a technique of cell breeding to cultivate double haploid efficiently.Thus, the optimization of system for culture technique in kale has practical significance.Color of leaves as the most important ornamental trait in kale, and exploiting the molecularmarker closely linked to color of leaves forms an important premise of exploring themechanism of color conformation and carrying out research of breeding assisted bymolecular marker.
     Microspore culture was conducted using16F1hybrids of kale as materials in this study.We studied the initiation and development of microspore embryos and the effect factors forregeneration of microspore embryo. The comparison of identifications for ploidy fromdifferent plant was made. The artificial induction for chromosome doubling method wasexplored. Identification of self-compatibility from DH lines and the horticultural traits forhybrid combinations from DH lines was taken. Hybrid combinations prepared using DH linesto build F2segregating populations to filter out SRAP markers on red leaf genes. The mainresults are as follows:
     1. Optimization for mbryogenesis system of microspore in kale was conducted. It wasrevealed that genotype played a key role in the conformation of embryoids from isolatedmicrospore culture of kale.15microspore embryos obtained in the16tested materials.While, the differences of embryo rate for varieties were great. The difference of embryo ratebetween the highest ‘Zhouyehongxin’ and the lowest ‘Baijiu’ was1.94embryos per bud.The highest proportion of medium and late uninucleate period for microspore was67.31%,when the range of bud length for kale was from3.01to3.50mm. Thus, the range of budlength should be3.01~3.50mm when microspore culture of kale was taken, and contributingfor embryo induction. The ratio between petals and anthers was2/3~4/5. The production ofembryo was enhanced by low temperature(4℃)pretreatment on bud and24hours of treatment was the best result. Counterproductive was occurred when processing time wastoo long. Microspore treated with heat shock of33℃for24h before cultured contributed forstarting the developmental pathway of embryo. Adding and replacing the medium forculture of isolated microspore significantly improved the production of embryos. Addingliquid medium culture contributed to increasing production of embryos. The response forvarious materials to hormone was different. The embryo rate for ‘Bolangyehongxin’ inmedium without hormone was the highest. In vitro culture of0.10mg·L~(-1)of6-BA mediumwhen ‘Hongou’ added was the best, and0.10mg·L~(-1)of6-BA+0.10mg·L~(-1)of NAA mediumwhen ‘Baijiu’ added was the best. Shaking culture contributed for the initiation anddevelopment of embryos. The embryo rate of microspore and initiation of cotyledonaryembryo were promoted, as well as the proportion of cotyledonary embryo. In addition, theincidence of deformed embryos was reduced by shaking culture.
     2. System for high-frequency regeneration of microspore-derived plant in kale was built.B5solid medium was most suitable for regeneration of microspore embryo in kale. Whenmicrospore embryo formed, and then transferred onto B5solid medium, after that, quicklygerminates and rapid differentiation of germ was found. It contributed for embryo developinginto regeneration plant. The regeneration frequency of cotyledonary embryo was significantlyhigher than other types of embryos. Torpedo-shaped embryos can develop into cotyledon,then into seedling. It also develops into callus, and then differentiates into plant. Only a smallfraction of heart-shaped embryo, globular embryo and embryonic malformations can developinto plant. The most appropriate time of embryo transfer was the25thday after microsporeculture. Higher regeneration frequency of plant observed when embryos stranded in NLNliquid medium was minimized. Microspore embryo was transferred into solid medium, andthen cultivated under low temperature(4℃)pretreatment for a certain period couldsignificantly increase the regeneration frequency of plant. Microspore embryo of ‘Baiou’ and‘Zhouyebaixin’ pretreated for5d was best, and the regeneration frequency of‘Zhouyehongxin’ pretreated for2d was the highest. However, the period for pretreatment oflow temperature should not be too long. Germination of embryos inoculated into the medium,which added activated carbon was faster, and the regeneration plant grew stronger andreached higher survival percentage. Howeve, addition of activated carbon did notsignificantly increase the percentage of plant regeneration. Appropriate concentration of AgNO_3was added to promote microspore embryo to develop into plant. The regenerationfrequency of ‘Hongou’ when3.0mg·L~(-1)of AgNO_3added was the highest, and when‘Zhouyehongxin’ added with5.0mg·L~(-1)of AgNO_3was the highest.
     3. Identification and doubling methods for microspore-derived ploidy in kale werestudied. The application of combination for directs identification of chromosome count andindirect identification of characteristics of morphological and stoma, size and vitality ofpollen grain, from outcrossing and flow cytometry to evaluate the microspore regenerationplant. Haploid, double haploid and tetraploid existed among plant groups of microsporeregeneration. However, natural doubling rate from different genotypes of regenerated plantmade a great difference. It is necessary to carry out artificial redouble for natural doublinglow genotypes. Small spores treated with colchicines among artificial chromosome doublingwere the best. Doubling efficiency was52.9%when treated with concentration of50mg· L~(-1)colchicine for36h and it was significantly higher than control. Cut root plants treated withcolchicines was the worst, and it is difficult for genetics and breeding research as a highmortality rate obtained. During baptist root test of plant, the redouble effect was44.8%and wasbest when the root immersed in1000mg·L~(-1)of colchicine for4h. While, this method was likely tocause root damage and there was a weak growth after transplanting field.
     4.Identification for DH lines population of kale was made. Two hundred and thirty nineof microspore-derived plntas were from10species of embryos in kale by optimization forsystem of isolated microspore culture. Eightteen excellent DH lines were identificatedaccording to horticultural traits. All DH lines fitted with standard of self-incompatibilitybased on the investigation of self-compatibility index. Seven hybrized combinations withexcellent comprehensive properties selected using DH lines to obtain the combination.
     5.SRAP marker linked to trait of red leaves closely was obtained by filtering. The lawwas found through genetic analysis indicated that a couple of dominant gene on quality traitcontrol the red and white leaf trait of kale. Marker analysis was carried out with BSA strategyand3SRAP markers linking to Re gene were developed with an F2population derived fromcrossing D05×D10. These markes, Me8Em4、Me8Em17and Me9Em11, were mapped to bothsides of Re with genetic distances of2.2cM,3.7cM and6.4cM, respectively.
引文
1.曹鸣庆,李岩,蒋涛,西尾刚.1992.大白菜和小白菜游离小孢子培养试验简报.华北农学报,7(2):119-120.
    2.曹鸣庆,李岩,刘凡.1993.基因型和供体植株生长环境对大白菜游离小孢子胚胎发生的影响.华北农学报,8(4):1-6.
    3.曹鸣庆,刘凡.1996. Progress in isolated microspore culture in Brassica vegetable crops.园艺学年评,2:63-90.
    4.陈锋,张洁夫,陈松,顾慧,戚存扣.2007.甘蓝型油菜隐性核不育基因的SRAP标记.江苏农业学报,23(4):283-288.
    5.陈军,陈正华,刘澄清,姚渝光,张丽华,关月兰.1995.甘蓝型油菜游离小孢子培养的胚胎发生.遗传学报,22(4):307-315.
    6.陈炜,张戈,长思仲.2001.基于生物信息学的SNP候选位点搜寻方法.遗传,23(2):153-156.
    7.陈文辉,方淑桂,曾小玲,朱朝辉,廖晓珍.2006.甘蓝和青花菜杂种小孢子培养.热带亚热带植物学报14:321-326.
    8.陈晓,詹玉丝,齐卫强.2003.建立辣椒DH纯系中花药培养的研究.辣椒杂志,2:13-16.
    9.陈学好,王佳,徐强,嵇怡梁,梁国华.2008.一个与黄瓜单性结实基因连锁的ISSR标记,分子植物育种,6(1):85-88.
    10.陈耀峰,朱庆麟.1993.蔗糖和麦芽糖的配比对小麦花粉愈伤组织诱导和分化频率的影响.作物学报,(3):145-148.
    11.陈玉萍,田志宏,陈爱武,孟金陵.1998.包心芥菜游离小孢子培养的初步研究.华中农业大学学报,17(1):93-95.
    12.邓英.2010.芥菜(Brassica juncea Coss.)游离小孢子培养诱导胚状体发生因素研究.[硕士论文].重庆:西南大学.
    13.董育红.2005.甘蓝型油菜白花基因的分子标记及辅助育种研究.[硕士论文].陕西:西北农林科技大学.
    14.杜虹,庄东红,黄文华.2000. AgNO3对大白菜子叶芽再生的促进作用.热带亚热带植物学报,8(2):109-112.
    15.方淑桂,陈文辉,曾小玲,等.2003.大白菜游离小孢子培养技术研究初报.福建农业学报,18(2):123-126.
    16.方淑桂,陈文辉,曾小玲,朱朝辉,廖晓珍,郑学立.2006.结球甘蓝游离小孢子培养及植株再生.园艺学报,33:158-160.
    17.方淑桂,曾小玲,朱朝辉,林碧英,陈文辉,廖晓珍.2005.结球甘蓝游离小孢子胚胎发生.武汉植物学研究,23:530-534.
    18.冯辉,姜凤英,冯建云,王超楠.2007.羽衣甘蓝游离小孢子培养体系的研究及其应用.园艺学报,34(4):1019-1022.
    19.付文婷.2010.大白菜游离小孢子胚诱导及植株再生技术研究.[硕士论文].杨凌:西北农林科技大学.
    20.付文婷,张鲁刚,胥宇建,张立志,牛娜.2010.大白菜游离小孢子胚诱导及植株再生.西北农业学报,19(3):139-143.
    21.高红亮,李英,宋玉萍,高素燕,王建军.2008.不结球白菜离体培养与植株再生体系研究.西北植物学报,28(5):963-968.
    22.高金萍,王超,刘英.2008.结球甘蓝抗TuMV基因的RAPD和SCAR标记研究.植物病理学报,38(5):549-552.
    23.高素燕,李英,单晓政等.2008.预处理对不结球白菜游离小孢子胚胎发生的影响.江苏农业学报,24(6):878-881.
    24.高素燕,侯喜林,李英,单晓政,马成英.2009.不结球白菜小孢子胚植株再生及倍性研究.西北植物学报29(6):1091-1096.
    25.耿建峰,侯喜林,张晓伟,蒋武生,原玉香,韩永平,姚秋菊,成妍,李英.2007.影响白菜游离小孢子培养关键因素分析.园艺学报,34(1):111-116.
    26.耿建峰,原玉香,张晓伟等.2003.利用游离小孢子培养育成早熟大白菜新品种‘豫新5号’.园艺学报,30(2):249.
    27.官春云.1995.油菜小孢子培养和双单倍体育种研究—供体植株和小孢子密度对小孢子培养的影响.作物学报,21(6):665-669.
    28.顾宏辉,楼健,周伟军.2003.秋水仙素在油菜小抱子培养中的应用研究进展.中国油料作物学报,25(2):103-106.
    29.顾宏辉,朱丹华,杨加付,饶立兵,陆艳婷,张晓辉.2006.早熟花椰菜小孢子高效胚胎发生及植株再生.浙江农业学报,18(5):365-368
    30.顾卫红,郑洪建,张燕,柳振誉.2002.观赏型羽衣甘蓝新品系的选育及其主要遗传性状的传递规律初探.上海交通大学学报,20(2):129-132.
    31.韩阳,冯辉,叶雪凌.2005.提高大白菜小孢子植株的获得率的研究.园艺学报,32(6):1092-1094.
    32.韩阳,叶雪凌,冯辉.2006.大白菜小孢子植株的倍性变异及倍性鉴定方法的研究.中国蔬菜,(11)9-11.
    33.何光明,孙传清,付永彩,等.2004.水稻抗衰老IPT基因与抗白叶枯病基因Xa23的聚合研究.遗传学报,31(8):836-841.
    34.何杭军,王晓武,汪炳良.2004.芥蓝游离小孢子培养初报.园艺学报,31(2):239-240.
    35.何小兰,吴敬音,朱卫民,薛启汉.2001.6BA和AgNO3对甘蓝型油菜带柄子叶外植体不定芽再生的影响.江苏农业科学,17(4):211-214.
    36.侯丽霞,刘淑梅,王施慧,吕鑫.2011.鲜食番茄茄红素基因的AFLP-SCAR分子标记,分子植物育种,9(6),744-748.
    37.黄普乐,吴伟锋,孙崇波,蒋桂华,张慧琴,谢鸣.2005.羽衣甘蓝花药离体培养研究.浙江农业科学,(2):114-115.
    38.嵇怡,徐强,缪旻珉,梁国华,陈学好.2008.与黄瓜矮生基因连锁的ISSR标记及其SCAR转换.园艺学报,35(11):1627-1634.
    39.贾继增.1996.分子标记种质资源鉴定和分子标记育种.中国农业科学,29(4):1-10.
    40.姜凤英.2006.羽衣甘蓝游离小孢子培养体系的构建及应用.[博士学位论文].沈阳:沈阳农业大学.
    41.姜凤英,冯辉,王超楠.2005.羽衣甘蓝游离小孢子培养初报.园艺学报,32(5):884.
    42.姜凤英,冯辉.2006a.植物生长调节剂对羽衣甘蓝小孢子胚发生的影响.园艺学报,33(3):642-644.
    43.姜凤英,冯辉,王超楠,冯建云.2006b.几种影响羽衣甘蓝小孢子胚状体成苗的因素.植物生理学通讯,42(1):58-60.
    44.姜立荣,刘凡,李怀军等.1996.大白菜小孢子胚状体发生早期的超微结构研究.北京农业科学,16(3):28-31.
    45.姜明,赵越,颉建明,田仁鹏,陈延阳,康俊根.2011.甘蓝抗枯萎病SCAR标记的开发.中国农业科学,44(14):3053-3059.
    46.蒋武生,姚秋菊,张晓伟,原玉香,耿建峰.2008.活性炭和振荡培养对提高大白菜胚诱导率的影响.中国瓜菜,(4):1-3.
    47.介智靖.2010.甘蓝型油菜小孢子培养及倍性鉴定.[硕士毕业论文].郑州:郑州大学.
    48.景世西.2007.园艺植物育种学总论.第二版.北京.中国农业出版社,230.
    49.李春红,刘建平,胡道芬.1990.用气孔保卫细胞鉴定小麦花粉植株倍性方法的研究.植物细胞工程与育种.北京:北京工业大学出版社,394-400.
    50.李光威,蓝素缺,孙宝启.2001.小麦游离小孢子培养的研究.华北农学报,16(1):83-87.
    51.李懋学,张赞平.1996.作物染色体及其研究技术.北京:中国农业出版社
    52.李栒,官春云,陈社元,王国槐,刘忠松.2003.油菜小孢子培养和双单倍体育种研究Ⅱ.影响甘蓝型油菜和芥菜型油菜种间杂种胚产量的因素.作物学报,29(5):744-749.
    53.李岩,刘凡,曹鸣庆.1993.通过游离小孢子培养方法获得小白菜三个变种的胚胎和植株.华北农学报,8(3):92-97.
    54.栗根义,高睦枪,赵秀山.1993.大白菜游离小孢子培养.园艺学报,20(2):167-170.
    55.栗根义,高睦枪,杨建平,徐小利,史宣杰,蒋武生,张晓伟,耿建峰,龙云铭.1998.利用游离小孢子培养技术育成豫白菜7号(豫园1号).中国蔬菜,4:16-19.
    56.林忠旭,张献龙,聂以春.2004.新型标记SRAP在棉花F2分离群体及遗传多样性评价中的适用性分析.遗传学报,31(6):622-626.
    57.刘成洪,王亦菲,陆瑞菊,孙月芳,黄剑华.2002.用气孔保卫细胞周长鉴定甘蓝型油菜植株倍性水平.上海农业学报,18(03):35-38.
    58.刘凡,李岩,曹鸣庆.1997.培养基水分状况对大白菜小孢子胚成苗的影响.农业生物技术学报,5(2):131-136.
    59.刘公社,李岩,刘凡等.1995.高温对大白菜小抱子培养的影响阴.植物学报,37(2):140-146.
    60.刘庆昌,吴国良.2003.植物细胞组织培养.中国农业大学出版社,113-116.
    61.刘文革,王鸣,阎志红.2003.蔬菜作物多倍体育种研究进展.长江蔬菜,01:29-33.
    62.刘雪平,刘志文,涂金星,陈宝元,傅廷栋.2003.甘蓝型油菜小孢子培养技术的几项改进.遗传,25(4):433-436.
    63.刘雪平,涂金星,陈宝元,傅廷栋.2004.人工合成甘蓝型油菜中花色与芥酸含量的遗传连锁分析.遗传学报,31:357-362.
    64.娄群峰,陈劲枫,Molly Jahn,陈龙正,耿红,罗向东.2005.黄瓜全雌性基因连锁的AFLP和SCAR分子标记,32(2):256-261.
    65.卢钢,曹家树.2001.白菜和芜菁杂种小孢子培养研究.浙江大学学报(农业与生命科学版),27(2):161-164.
    66.陆瑞菊,王亦菲,孙月芳,周润梅,黄剑华.2006.提高青花菜游离小孢子培养反应的研究.上海农业学报,22(2):1-4.
    67.马丽华,沈火林,王娟娟,郭爽,谭芳.2007.不结球白菜小孢子胚成苗及倍性变异研究.华北农学报,22(增刊):200-203.
    68.牛娜,郑晨光,张鲁刚,胥宇建,张立志,付文婷.2010.大白菜裂球性状的遗传与RAPD标记.中国蔬菜,(14):44-48.
    69.牛应泽,刘玉贞,汪良中,袁有喜,李首成,范巧佳.1999.人工合成甘蓝型油菜游离小孢子培养及其植株再生研究初报.四川农业大学学报,17(2):167-171.
    70.牛媛媛.2005.大白菜游离小孢子培养技术研究及初步应用.[硕士学位论文].福建:福建农林大学.
    71.潘海军,王春连,赵开军,等.2003.水稻抗白叶枯病基因Xa23的PCR分子标记定位及辅助选择.作物学报,29(4):501-509.
    72.潘俊松,王刚,李效尊,等.2005.黄瓜SRAP遗传连锁图的构建及始花节位的基因定位.科学通报,15(2):167-172.
    73.任羽,王得元,张银东,等.2004.辣椒SRAP-PCR反应体系的建立与优化.分子植物育种,2(5):689-693.
    74.桑玉芳,张恩慧,杨安平,马超,许忠民程永安,白延红.2007.甘蓝游离小孢子培养中影响胚状体形成的主要因素西北农业学报,16(2):125-129.
    75.申书兴,赵前程,刘世雄,张成合,李振秋,王彦华,任清,王梅,尚爱芹.1999.四倍体大白菜小孢子植株的获得与倍性鉴定.园艺学报,26(4):232-237.
    76.石淑稳,吴江生,周永明,刘后利.2002.甘蓝型油菜小孢子单倍体二倍化技术的研究.中国油料作物学报,24(1):1-5.
    77.石淑稳,周永明,吴江生,刘后利.2001.甘蓝型油菜小孢子培养、染色体加倍、试管苗继代越夏和田间移栽配套技术的研究及其在油菜育种中的应用.中国农学通报,17(2):57-59.
    78.孙保娟,李植良,黎振兴,罗少波,李艳艳.2010. SCAR标记转化失败的原因和对策.分子植物育种,8(3),589-594.
    79.谭亮萍,吴朝林,曾化伟.2007. DNA分子标记技术及其在蔬菜遗传育种研究中的应用.长江蔬菜,11:35-39.
    80.汤青林,宋明,张钟灵.2000.甘蓝类蔬菜游离小孢子培养研究进展.西南农业学报,13(3):98-103.
    81.佟智慧.2009.青花菜(Brassica oleracea L.)游离小孢子培养技术研究.[硕士论文].福州:福建农林大学.
    82.王晨.2005.甘蓝型油菜基因型对小孢子染色体加倍的反应及倍性鉴定.[硕士论文].武汉:华中农业大学.
    83.王春丽,王涛涛,张余洋,李汉霞.2010.青花菜小孢子胚植株再生及倍性研究.中国蔬菜,(4):36-40.
    84.王蒂,冉毅东,王汗宁.1996.不同培养基对甘蓝型油菜花药和花粉培养的效应比较.中国油料,18(2):1-3.
    85.王得元,何晓明,王鸣.2002.蔬菜生物技术概论.中国农业出版社,36-38.
    86.王国臣,张凤兰,余阳俊,张德双,赵岫云.2007.与大白菜橘红心基因紧密连锁的SCAR标记.园艺学报,34(1):217-220.
    87.王汉中,王新发,刘贵华,郑元本,杨庆.2004.甘蓝型杂交油菜亲本的小孢子培养技术研究.中国油料作物学报,26(1):1-4.
    88.王怀名,杜广岑,贾翠莹,等.1995.羽衣甘蓝的离体繁殖.华北农学报,10(1):64-69.
    89.王莎莎.2008.甘蓝小孢子发育观察与小孢子培养中高出胚率的诱导技术研究.西安:西北农林大学,12-15.
    90.王涛涛,李汉霞,张继红,卢永恩,叶志彪.2004.红菜薹游离小抱子培养与植株再生团.武汉植物学研究,22(6):569-57.
    91.王晓梅,杨秀荣.2000. DNA分子标记研究进展.天津农学院学报,7(1):21-23.
    92.王晓武,方智远,孙培田,刘玉梅,杨丽梅.1998.一个与甘蓝显性不育基因连锁的RAPD标记.园艺学报,25(2):197-198.
    93.王晓武,方智远,孙培田,刘玉梅,杨丽梅,庄木.2000.一个用于甘蓝显性雄性不育基因转育辅助选择的SCAR标记.园艺学报,27(2):143-144.
    94.王亚茹,邓高松,李云,姜金仲,孙宇涵.2010.秋水仙素对微管蛋白的作用机制及其细胞效应研究进展.西北植物学报.30(12):2570-2576.
    95.王亦菲,陆瑞菊,孙月芳,周润梅,刘成洪,黄剑华.2002.大田油菜游离小孢子培养高频胚状体诱导及植株再生.18(1):20-23.
    96.吴江生,石淑稳,周永明,刘后利.甘蓝型双低油菜品种华双3号的选育和研究.华中农业大学学报,18(1):1-4
    97.吴洁,谭文芳,何俊蓉,蒲志刚,王大一,张正圣,詹付凤,阎文昭,2005,甘薯SRAP连锁图构建淀粉含量QTL检测,分子植物育种,3(6):841–845.
    98.夏兰芹,郭三堆,蒋尤泉.2000.分子标记技术及其在苜蓿遗传育种研究中的作用.中国草地,3:66-69.
    99.解莉楠.2003.羽衣甘蓝叶色、叶型遗传及自交不亲和性机理的研究.[硕士论文].哈尔滨:东北林业大学.
    100.徐艳辉,冯辉,张凯.2001.大白菜游离小孢子培养中若干因素对胚状体诱导和植株再生影响.北方园艺,(3):6-8.
    101.杨硕.2009.青梗菜DH优异DH系的创制与利用.[硕士论文].沈阳:沈阳农业大学.
    102.张德双,曹鸣庆.1997.通过游离小孢子培养获得绿菜花再生植株.华北农学报,12(2):136-140.
    103.张德双,曹鸣庆,秦智伟.1998.绿菜花双核期小孢子比例对游离小孢子培养的影响.园艺学报,25(2):20l-202.
    104.张凤兰,高田义人.2001.甘蓝型油菜小孢子培养胚发生能力的遗传分析.华北农学报,16(1):27-32.
    105.张凤兰,钉贯靖久.1993.大白菜小孢子再生植株自然加倍率的探讨.北京农业科学,11(2):23-25.
    106.张凤兰,钉贯靖久,吉川宏昭.1994.环境条件对白菜小孢子培养的影响.华北农学报,9(1):95-100.
    107.张桂华,韩毅科,孙小红,李淑菊,魏爱民,杜胜利.2006.与黄瓜抗黑星病基因连锁的分子标记研究.中国农业科学,39(11):2250-2254.
    108.张慧,张淑江,武剑,李菲,章时蕃,王晓武,张新梅,孙日飞.2010.大白菜细胞核隐性雄性不育系恢复基因BrMf2的标记及定位.中国农业科学,43(5):993-999.
    109.张鹏,傅爱根,王爱国.1997.硝酸银在植物离体培养中的作用及可能的机制.植物生理学通讯,33(5):376-379.
    110.张淑江,李菲,韩和平,章时蕃,钮心恪,孙日飞.大白菜细胞核显性雄性不育基因连锁标记的筛选.中国农业科学,41(8):2379-2385.
    111.张文龙,陈志伟,杨文鹏,蔡一林.2008.分子标记辅助选择技术及其在作物育种上的应用研究.种子, l27(4):39-43.
    112.张晓伟,耿建峰,原玉香等.2002.耐热大白菜豫早1号的选育.中国蔬菜,(5):18-19.
    113.张晓芬,王晓武,张延国,刘运霞,王永清.2005.花椰菜游离小孢子培养再生植株研究.中国蔬菜,(1):16-17.
    114.张欣,施利利,陈玉桂,等.2003.抗白叶枯病水稻近等基因系的选育.天津农学院学报,10(2):5-8.
    115.郑祖玲,张承妹,李树林,封莉霞,章振华.1986.甘蓝型油菜(Brassica napus L.)花粉培养及植株再生.上海农业学报,2(3):9-16
    116.周敏,庄东红.2002.谷氨酰胺和硝酸银对花生幼叶芽再生的促进作用.植物生理学通讯,38(3):240-241.
    117.周伟军,毛碧增,顾宏辉,唐桂香.2002a.秋水仙素及热击与低温诱导对油菜小抱子胚状体成苗率的影响.作物学报,2002,28(3):369-373.
    118.周伟军,毛碧增,唐桂香,HasbergP.2002b.甘蓝型油菜小抱子再生植株染色体倍数检测研究.中国农业科学,2002,35(6):724-727.
    119.周元昌, Kennedy S.2002.抱子甘蓝花培苗倍性快速鉴定.福建农业大学学报(自然科学版),31(l):55-58.
    120.周志国,龚义勤,王晓武,柳李旺,张延国.2007.不同萝卜品种游离小孢子的诱导及培养体系优化研究.西北植物学报,7(1):3-38.
    121.祝红艺,张显,崔维红.2006.提高非洲菊试管苗叶片再生频率的研究.西北农业学报,15(5):233-235.
    122.朱守亮,张恩慧,杨安平,李宏伟,刘辉,张高翔,许忠民.2009.2个甘蓝F1小孢子培养中高出胚率的诱导技术研究.西北农业学报,18(6):237-241.
    123.朱彦涛,胡新强.2000.甘蓝型油菜生根培养基的筛选.安徽农业大学学报,27(1):86-88
    124.朱彦涛,李殿荣.2005.低温预处理和基因型对甘蓝型油菜小孢子胚胎发生的影响.西北农林科技大学学报,33(5):88-94.
    125.朱彦涛,李殿荣,胡新强.1998.甘蓝型油菜小孢子植株加倍方法及对植株农艺性状的影响研究.陕西农业科学,(2):1-10.
    126.朱允华,刘明月,吴朝林.2003.影响菜心游离小孢子培养的因素.长江蔬菜,9:46-47
    127.朱至清.2003.植物细胞工程.北京:化学工业出版社:115-145.
    128.庄丽,彭子模,穆培源.2003.试论DNA分子标记技术在植物学科上研究进展与应用前景.新疆师范大学学报,22(2):56-59.
    129.闫瑾琦.2000.大白菜抗芜菁花叶病毒病基因的RAPD分子标记研究.[硕士学位论文].北京:中国农业科学院.
    130.严准,田志宏,孟金陵.1999.甘蓝游离小孢子培养的初步研究.华中农业大学学报,18(1):5-7.
    131.杨清,曹鸣庆.1990.冬花椰菜的小孢子胚胎发生研究.华北农学报,5(3):48-51.
    132.杨清,曹鸣庆.1991.通过花药漂浮培养提高花椰菜小孢子胚胎发生率.华北农学报,6(3):65-69.
    133.姚军,武剑,王晓武等.2009.小白菜小孢子再生植株的倍性与基因组DNA甲基化的关系.中国蔬菜,(14):12-16.
    134.余凤群,刘后利,傅丽霞,瞿波.1995.甘蓝型油菜游离小孢子培养中挽救小胚状体的研究.华中农业大学学报,14(6):522-526.
    135.余凤群,刘后利.1995.供体材料和培养基成分对甘蓝型油菜小孢子胚状体产量的影响.华中农学通报,14(4):327-331.
    136.郁有健,张耀伟,张德双.2009.大白菜紫色性状的SRAP连锁标记的筛选.分子植物育种,7:(3)573–578.
    137.袁素霞,刘玉梅,方智远,等.2010.结球甘蓝和青花菜小孢子胚植株再生.植株学报,45(2):226–232.
    138.原玉香,张晓伟,耿建峰等.2004.利用游离小抱子培养技术育成早熟大白菜新品种‘豫新60’.园艺学报,31(5):704.
    139. Bassam B J, Caetano-Anolles G, Gresshoff P M. l991. Fast and sensitive silver staining ofDNA in polyacrylamide gels. Ana1Biochem,196(1):80-83.
    140. Bornman CH, Vogelmann TC.1984. Effect of rigdity of gelmedium onbenzyladenine-induced adventitionus bud formation and varification in vitro in picea abies.Physiologia Planttarum,61:505-512.
    141. Burnett L, Yarrow S, Huang B.1992. Embryogenesis and plant regeneration from isolatedmicrospores of Brassica napus L. ssp. Oleifera. Plant Cell Reports,11:215-218.
    142. Bleecker A B, Kende H.2000. Ethylene: a gaseous signal molecule in plants. Annu RevCell Dev Biol,16:1-18.
    143. Charne DG, Pukacki P, Kott LS, et al.1988. Embryogenesis following cryopreservation inisolated microspores of rapeseed (Brassica napus L.). Plant Cell Rep,7:407-409.
    144. Chen ZZ,Snyder S, Fan ZG, Loh WH.1994. Efficient production of doubled haploid plantsthrough chromosome doubling of isolated microspores in Brassica napus. Plant Breeding,113:217-221.
    145. Chuong PV, Beversdorf WD.1985. High frequency embryogenesis through isolatedmicrospore culture in Brassica napus L.and B.carinata Braun. Plant Science,39:219-226.
    146. Chuong PV, Deslauriers C, Kott LS.1988. Effects of donor genotype and bud sampling onmicrospore culture of Brassica napus. Can. J. Bot.,66:1653-1675.
    147. Condit R, Hubbell S.1991. Abundance and DNA sequence of two base repeat regions intropical tree genomes. Genome,34:66-71.
    148. Delourme R, Bouchereau A, Hubert N, et al.1994. Identification of RAPD markers linkedto a fertility restorer gene for the Ogura radish cytoplasmic male sterility of rapeseed(Brassica napus L.). Theor Appl Genet,88:741-748.
    149. Dias JS.1999.Effect of activated charcoal on Brassica oleracea microspore cultureembryogenesis. Euphytica,108(1):65-69.
    150. Dias JS.2003. Protocol for broccoli microspore culture. In: Maluszynski M, Kasha KJ,Forster B, Szarejko I, eds. Doubled Haploid Production in Crop Plants. The Netherlands:Kluwer Academic Publishers.195-204.
    151. Dias JS, Martins MG.1999. Effect of silver nitrate on anther culture embryo production ofdifferent B.oleracea morphotypes. Scientia Horticulturae,82(3-4):299-307.
    152. Dudley JW.1993. Molecularmarkers in plant improvement: manipulation of genes affectingquantitative traits. Crop Sci,(33):660-668.
    153. Duijs JGRE, Voorrips D L, Visser J B M. Custers.1992. Microspore culture is successful inmost types of Brassica oleracea L. Euphytica,60:45-55
    154. Ferriol M, Pico B, Nuez F.2003. Genetic diversity of a germplasm collection of Cucurbitapepo using SRAP and AFLP markers. Theo Appl Genet,107:271–282.
    155. Gland A, Lichter, Schweiger H G.1988. Genetic and exogenous factors affectingembryogenesis in isolated microspore cultures of Brassica napus L. J Plant Physiol,132:613-617.
    156. Graner A.1996. RFLP-mapping the haploid genome of barley (Hordeum vulgare L.). In:Jain SM, Sopory SK, Veilleux RE(eds) In vitro haploid production in higher plants, vol3.Kluwer, Dordrecht,127–150.
    157. Gu HH, Hagberg P.2004. Cold pretreatment enhances microspore embryogenesis in oilseedrape(Brassica napus L.). Plant Growth Regulation,42:137-143.
    158. Halkjaer M, Ringgaard S, Bohanesc B.2001.Genetic and exogenous factors affecting theinduction of double haploid cabbage (Brassica oleracea var. capitata L.). Biotechnologicalapproaches for utilization of gametic cells,12:147-150.
    159. Henderson CAP, Pauls KP,1992. The use of haploidy to develop plants that express severalrecessive traits using light-seeded canola (Brassica napus) as an example. Theor. Appl.Genet.83,476–479.
    160. Hansen M.2000. ABA treatment and desiccation of microspore-derived embryos of cabbage(Brassica oleracea ssp. capitata L.) improves plant development. J. Plant Physio,156,164-167.
    161. Hansen NJP, et al.1996.In vitro chromosome doubling potential of colchicine, oryzalin,trifluralin and APM in Brassica napus microspore culture. Euphytica,88:159-164.
    162. Hause B, Hause G, Pechan P, van Lammeren AAM.1993. Cytoskeletal changes andinducation of embryogenesis in microspore and pollencultures of Brassica napus L. CellBio.inter.,17:153-168.
    163. Hause B, van Veenendaal WL, Hause G, van Lammeren A A.1994. Expression of polarityduring early development of microspore-derived and zygotic embryos of Brassica napus L.Bot Acta,107,407-415.
    164. Hogers R, Bleeker M.1995. AFLP: a new technique for DNA fingerprinting. Nucleic AcidsResearch,23:4407-4414.
    165. Huang B, Sharon Bird, Roger Kemble, Brian Miki, Wilf Keller.1991. Plant regenerationfrom microspore-derived embryos of Brassica napus: Effect of embryo age, culturetemperature, osmotic pressure, and abscisic acid. In Vitro Cell. Dev. Biol.27:28-31.
    166. Keller W A, Dela RA L.1982. The production and utilization of microsporederived-haploids in Brassica crops. In: Plant Cell Culture in Crop Inprovement (Eds: S.K.Sen and K.L. Giies). Plenum Press, New York:163-183.
    167. Keller WA, Fan Z, Pechan P et al.1988. An efficient method for culture of isolatedmicrospore of Brassica napus. In: Proc.7th Inter Rapeseed Cong,152-157.
    168. Kosambi DD.1944. The estimation of map distance from recombination values. Ann Eugen,12:172-175.
    169. Kott LS, Beversdorf WD.1990. Enhanced plant regeneration from microspore-derivedembryos of Brassica napus by chilling, partial desiccation and age selection. Plant Cell TissOrg Cult,23:187-192.
    170. Kott LS, Polsoni L.1988. Autotoxicity in isolated microspore culture of Brassica napus.CanJ.Bot.66:1665-1670
    171. Kuginuki Y, Miyajima T, Masuda H et al.1999. Highly regenerative cultivars inmicrospore culture in Brassica oleracea L. var. capitata. Breeding Science,49(4):251-256.
    172. Kyo M, Harada H.1985.Studies on conditions for cell division and embryogenesis inisolated pollen culture of Nicotiana rustica. Plant Physiol,79:90-94.
    173. Lai KL, Liu LF.1988.Increased plant regeneration frequency in water stressed rice tissuecultures. Japan J. Crop Sci,57:553-557.
    174. Lichter R.1982. Induction of haloid plants from isolated Pollen of Brassica napus. ZPflanzenphysiol,105:427-434.
    175. Lichter R.1989. Efficient yield of embryo by culture of isolated microspores of differentBrassicaceae species. Plant Breed,103:119-123.
    176. Li G, Quiros C F.2001. Sequence-related amplified polymorphism (SRAP), a new markersystem based on a simple PCR reaction: its application to mapping and gene tagging inBrassica. Theor Appl Genet,103:455–461.
    177. Li G, Gao M, Yang B.2003. Gene for gene alignment between the Brassica andArabidopsis genomes by direct transcriptome mapping.TheorApp1Genet,107(1):168–l80.
    178. Lin ZX,Zhang XL,Nie YC,He DH,Wu MQ.2003.Construction of a genetic linkage maDin coaon based on SRAP,Chinese Science Bulletin,48(19):2063-2067.
    179. Mathias R, Robbelen G.1991. Effective diploidization of microspore-derived haploids rape,Brassica napus L., by in vitro colchicines treatment. Plant Breeding,106:82-84.
    180. Michelmore R W, Paran I, Kesseli R V.1991. Identification of marker linked todisease-resistance gene by bulked segregant analysis: a rapid method to detect markers inspecific genomic regions by using segregating populations, Proceedings of the NationalAcademy of Sciences of the United States of America,88:9828-9832.
    181. Mollers C, Iqbal MCM, Robbelen G.1994. Efficient production of doubled haploidBrassica napus plants by colchicines treatment of microspores. Euphytica,75:95-104.
    182. Murray MG, Thompson WF.1980. Rapid isolation of high molecular weight plant DNA.Nucleic Acids Research,8(19):4321-4326.
    183. Nitsch C, Norreel CR.1973. Effect d’un choc technique sur le pouvoir embryogenese dupollen de Dature innoxia cultive dans l’anthere ou isole de l’anthere. C. R. Acad. Sci. Paris.276:303-306
    184. Ockendon DJ, Mclenghan R.1993. Effect of silver nitrate and2,4-D on anther culture ofBrussels sprouts (Brassica oleracea var. gemmifera). Plant Cell Tissue and Organ Culture,32:41-46.
    185. Ozudogru E A, Ozden-Tokatl Y, Akcn A.2005. Effect of sliver nitrate on multiple shootformation of Virginia-type peanut through shoot tip culture. In Vitro Cellular&Developmental Biology-Plant,41(2):151-156.
    186. Palmer C E, Keller W A, Arnison P G.1996. Experimental haploidy in Brassica species. In:Jain S M, Sopory S K, Veilleux R E (eds.), In vitro Haploid Production in Higher Plants.Vol.3, Dordrecht, Netherlands: Kluwer Academic Publishers,143-172.
    187. Paran I, Michelmore RW.1993. Development of reliable PCR-based markers linked todowny mildew resistance genes in lettuce, Theor. Appl. Genet.,85(8):985-993.
    188. Polsoni L, Kott L S, Berersodorf W D.1988. Large-scale microspore culture technique formutation selection studies in Brassica napus. Can J. Bot.,66(8):1681-1685.
    189. Rao PS. Suprasanna P.1996. Methods to double haploid chromosome numbers. Jain SM,Sopory S K,Veilleux R E.In vitro Haploid Prpoductiom in Higher Plants. Vol1.Dordrecht, Netherlands: Kluwer Academic Publishers,315-343.
    190. Riaz A, Li G, Quresh Z, Swati M S, Quiros C F.2001.Genetic diversity of oil seed Brassicanapus inbred lines based on sequence-related amplified polymorphism and its relation tohybrid performance. Plant Breeding,120(5):411-415.
    191. Ritala A, Mannonen L, Oksman-Cadentey K M.2001. Factors affecting the rgenerationcapacity of isolation barley microspores (Hordeum vulgare L.). Plant Cell Rep.,20(5):403-407.
    192. Rudolf K, Bohanec B, Hansen M.1999. Microspore culture of white cabbage, Brassicaoleracea var. capitata L: genetic improvement of non-responsive cultivars and effect ofgenome doubling agents. Plant Breed,118:237-241.
    193. Sato T,Nishio T,Hirai M.1989. Plant regeneration (Brassica campestris ssp. Pekinensis)from isolated microspore cultures of Chinese cabbage.Cell Reports,(8):486-488.
    194. St ger E, Fink C, Pfosser M, Heberle-Bors E.1995. Plant transformation by particlebombardment of embryogenic pollen. Plant Cell Rep14:273-278.
    195. Swanson EB, Coumans MP, Wu S C, et al.1987. Efficient isolation of microspores and theproduction of microspore-derived embryos from Brassica napus. Plant Cell Reports,6:94-97.
    196. Swanson EB, Herrgesell NJ, Arnoldo M, et al.1989. Microspore mutageness and selection:Canola plants with field tolerance to the imidazolinones. Theor. Appl. Genet.,78:525-530.
    197. Takahata Y, Keller WA.1990. High frequency embryogenesis from microspore culture ofBrassica oleracea. Jpn J breed,40(1):134-135.
    198. Takahata Y, Brown DCW, Keller WA.1991. Effect of donor plant age inflorescence age onmicrospore culture of Brassica napus L. Euphytica.58:51-55.
    199. Thurling N and Chay P M.1984.The influence of donor plant genetype and environment onproduction of microspore in cultured anthers of Brassica napus. of eifera. Ann Bot, London,54:681-693.
    200. Van Ooijen JW, Voorrips RW,2001. JoinMap3.0, Software for the calculation of geneticlinkage maps. PlantResearch International, Wageningen, the Netherlands.
    201. Vanichanon, Blake NK, Martin JM, et al.2000. Properties of sequence-tagged sit primer setsinfluencing repeatability. Genome,43:47-52.
    202. Vos P, Vanichanon, BlakeNK, Martin JM, et al.2000. Properties of sequence-tagged siteprimer sets influencing repeatability. Genome,43:47-52.
    203. Wang YS, Tong Y, Li YF, et al.2011. High frequency plant regeneration frommicrospore-derived embryos of ornamental kale (Brassica oleracea L. var. acephala).Scientia Horticulturae,130(1):296-302.
    204. Welsh J, McClelland M.1990. Fingerprinting genomes using PCR with arbitrary primers.Nucleic Acids Research,18(24):7213-7218.
    205. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV.1990. DNA polymorphismsamplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research,18(22):6531-6535.
    206. Young ND, Zamir D, Ganal MW, Tanksley SD.1988. Use of isogenic lines andsimultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato.Genetics,120:579-585.
    207. Zhang GQ, Zhang DQ, Tang GX, He Y, Zhou WJ.2006.Plant developm ent f rommicrospore derived embryos in oilseed rape as affected by chilling desiccat ion andcotyledon excision. Biologia Plantarum,50(2):180-186.
    208. Zhang W, Fu Q,Dai X G and Bao M Z.2008.The culture isolated microspores ofornamental kale (Brassica oleracea var. acephala)and the importance of genotype to embryoregeneration. Scientia Horticulturae,117:69-72.
    209. Zhang WW, He H, Guan Y, Du H, Yuan LH, Li Z, Yao D, Pan JS, Cai R.2010. Identificationand mapping of molecular markers linked to the tuberculate fruit gene in the cucumber(Cucumis sativus L.). Theor Appl Genet,120:645-654.
    210. Zhou W J, Mao B Z, Gu H H, Tang G X.2003. Effects of colchicine with heat shock andcold induction on plant regeneration from microspore-derived embryos in Brassica napus.Acta Agronomica Sinica,28(3):369-373.
    211. Zhou WJ, Tang GX, Hagberg P.2002. Efficient production of doubled haploid plants byimmediate colchicine treatment of isolated microspores in winter Brassica napus. PlantGrowth Regul,37:185-192.
    212. Zietkewicz E,Rafalski A,Labuda D.1994. Genome fingerprinting by simple sequencerepeats (SSR) anchored polymerase chain reaction amplification.Genomics,20:176-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700