用户名: 密码: 验证码:
雷电脉冲对移动通信基站影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷电脉冲对移动通信基站的影响是当前雷电防护技术领域的研究热点问题。由于需要收发无线通信信号,移动通信基站往往建于空旷或地势较高的地区。这就使得基站铁塔容易遭受雷击。雷击基站铁塔时,塔体上的雷电流分布,基站接地网上的雷电流分布、入地电流分布和地电位升等问题是移动通信基站防雷能力和防雷设计的关键。此外,受雷击影响,天线电缆屏蔽层上产生的感应电流可造成误码。因电位分布而形成的屏蔽层与塔体之间的电压甚至可以击穿天线电缆,导致通信中断。然而,雷电是一种强电磁冲击现象,是时域电磁学问题;雷电防护又是工程实现性很强的技术。这就对防雷研究者提出了许多挑战性的课题和目标。
     纯粹的理论研究方法很难直接指导实际防雷工程设计。本文是在服务于广东移动防雷设计研究中撰写的,更加偏重于实际防雷工程的需要。因此,本文从雷电放电电荷移动的角度出发,建立雷击基站铁塔的物理模型,并综合考虑了具体的地质条件、实际可能的雷击位置以及塔体与天线电缆之间不同的连接方式等情况研究上述问题,给出指导移动通信基站防雷设计的仿真数据。
     本文的主要创新性在于,根据放电电荷的移动提出了由雷暴云、基站铁塔塔体、基站接地网、天线电缆以及无限远的大地构成的放电回路总体模型。分析了在防雷工程设计中采用等效电路模型的合理性,并建立了由基站铁塔塔体及接地网构成的“塔体—接地网”整体网络系统模型。在分析了雷击移动通信基站铁塔时的雷电流通道的基础上,逐一建立了基站铁塔塔体网络模型、基站接地网模型和天线电缆模型:
     (1)建立了移动通信基站铁塔塔体钢材的时域电磁模型和基于实际建筑结构的塔体网络等效电路模型。仿真分析比较了雷击基站铁塔时各种条件对塔体上的雷电流分布的影响,研究了由塔体上的电流分布而产生的干扰特性,给出了基站铁塔塔体上的归一化雷电流分布;
     (2)建立了基于实际建筑结构的基站接地网等效电路模型。仿真分析比较了雷击基站铁塔时各种条件对接地网上的入地电流分布的影响和由入地电流产生的地电位升特性,给出了接地网上的归一化雷电流分布;
     (3)在分析并建立了雷电流影响移动通信基站的进入渠道以及雷电流对天线电缆产生的干扰作用模型的基础上,建立了基于天线电缆与塔体建筑结构关系的天线电缆等效电路模型。将该模型与“塔体—接地网”整体网络系统模型相结合,仿真分析比较了雷击基站铁塔时各种条件对天线电缆屏蔽层上的感应电流以及塔体与屏蔽层之间的电压产生的影响。并且,给出了各种条件下的基站铁塔冲击阻抗特性,通过综合量化分析提出了防雷设计建议。
A hot issue in the area of lightning protection technology is the very influence of a lightning pulse on a mobile communications base station. Construction on weald or highland has advantage for requirement to transmit-receive wireless communications signal. Thus, for the base station tower, suffering a lightning stroke is common. When it happens, a serial of problems becomes the key of lightning protection ability and design of the mobile communications base station:lightning current distribution of the tower body and of the grounding network, leakage current distribution and ground potential rise of the grounding network. Affected by a lightning stroke, moreover, induced current on antenna cable shielding layer could result in error codes. Voltage between the shielding layer and the tower body, generated by potential distribution, might break down the antenna cable, and interrupt communications. In addition, as a powerful electromagnetic pulse phenomenon, lightning is of time-domain electromagnetics; and technology against it is much of project application. Inevitably, lightning protection researchers are facing many challenges.
     It is very difficult to instruct practical lightning project design by the means of pure theoretical research. This paper is achieved during the study of lighting protection design for China Mobile Group Guangdong Co.,Ltd. Therefore, it emphasizes the requirement of practical lightning protection project. Focusing on the movement of lightning discharge, this paper establishes a physical model which describes a lightning striking the base station tower. The above issues are discovered in account of concrete geological condition, possible lighting position and different connecting manners between the tower body and the antenna cable, as well as those simulation data to instruct lighting protection design for the mobile communications base station.
     Innovation of this paper lies in that a discharging loop model consisting of thundercloud, tower body, grounding network, antenna cable and the infinite far is proposed. In lightning protection project design, employing an equivalent circuit model is justified by analysis. A "Tower Body-Grounding Network" entire network system, composed by the base station tower body and grounding network, is established. Based on analyzing the current channel, when a lightning strikes the mobile communications base station tower, several models are revealed one by one-base station tower body network model, grounding network model and antenna cable model:
     (1) Establishing time-domain electromagnetic model of tower body steel and equivalent circuit model of tower body network, based on its real structure; Simulating and comparing influence of every factor on lighting current distribution of the tower body; Researching on interference character caused by current distribution of the tower body; Showing normalized lightning current distribution of the tower body;
     (2) Based on grounding network real structure, establishing its equivalent circuit model; Simulating and comparing influence of every factor on leakage current distribution and ground potential rise character caused by these leakage current; Showing normalized lightning current distribution of the grounding network;
     (3) Analyzing and prosing interference channel model of the lightning current influence on the mobile communications base station, and the model of interference from lightning current, suffered by the antenna cable; Based on these two models and on structure relationship between the antenna cable and tower body, establishing an equivalent circuit model of the antenna cable; Combining the antenna cable model with the "Tower Body-Grounding Network" entire network system model; Simulating and comparing influence of every factor on induced current of shielding layer and voltage between the shielding layer and the tower body; Showing pulse impedance of the base station tower, under every condition; Advising lightning protection by quantitive analysis.
引文
[1]G. Parise, M. Lucheroni, Measurements of Touch and Step Voltages Adopting Current Auxiliary Electrodes at Reduced Distance, IEEE Transactions on Industry Applications, Volume:44, Issue:6,2008,;pp:1896-1901
    [2]A. Andreotti, D. Assante, F. Mottola, et al, An Exact Closed-Form Solution for Lightning-Induced Overvoltages Calculations, IEEE Transactions on Power Delivery, Volume:24, Issue:3,2009, pp:1328-1343
    [3]K. Yamamoto, S. Yanagawa, K. Yamabuki, et al., Analytical Surveys of Transient and Frequency-Dependent Grounding Characteristics of a Wind Turbine Generator System on the Basis of Field Tests, IEEE Transactions on Power Delivery, Volume:25, Issue:4,2010, pp:3035-3043
    [4]G. Ala, P. L. Buccheri, P. Romano, et al., Finite Difference Time Domain Simulation of Earth Electrodes Soil Ionisation under Lightning Surge Condition, IET Science, Measurement & Technology, Volume:2, Issue:3,2008, pp:134 -145
    [5]M. Becerra, V. Cooray, On the Interaction of Lightning Upward Connecting Positive Leaders with Humans, IEEE Transactions on Electromagnetic Compatibility, Volume:51, Issue:4,2009,pp:1001-1008
    [6]R. B. Raysaha, U. Kumar, R. Thottappillil, A Macroscopic Model for First Return Stroke of Lightning, IEEE Transactions on Electromagnetic Compatibility, Volume:53, Issue:3,2011, pp:782-791
    [7]Zhong Zheng, S.A. Boggs, T. Imai, et al, Computation of Arrester Thermal Stability, IEEE Transactions on Power Delivery, Volume:25, Issue:3,2010, pp: 1526-1529
    [8]T. Nagai, A. Hirata, Computation of Induced Electric Field and Temperature Elevation in Human due to Lightning Current, Applied Physics Letters, Volume: 96, Issue:IS,2010,pp:183704-183704-3
    [9]S. Sekioka, I. Matsubara, S. Yokoyama, Return-Stroke Model Segmentation and its Application to Lightning-Induced Surges Calculation, IEEE Transactions on Electromagnetic Compatibility, Volume:53, Issue:1,2011, pp:122-130
    [10]Bo Yang, Bi-Hua Zhou, Bin Chen, et al., Numerical Study of Lightning-Innduced Currents on Buried Cables and Shield Wire Protection Method, IEEE Transactions on Electromagnetic Compatibility, Volume:54, Issue:2,2012, pp:323-331
    [11]S. Sekioka, K. Aiba, T. Miyazaki, et al., Lightning Overvoltages in Low-Voltage Circuit for Various Lightning Striking Points, IEEE Transactions on Power Delivery, Volume:25, Issue:4,2010, pp:3095-3104
    [12]F. H. Silveira, S. Visacro, On the Lightning-Induced Voltage Amplitude:First versus Subsequent Negative Strokes, IEEE Transactions on Electromagnetic Compatibility, Volume:51, Issue:3, Part:2,2009,pp:741-747
    [13]A. Andreotti, D. Assante, F. Mottola, et al., An Exact Closed-Form Solution for Lightning-Induced Overvoltages Calculations, IEEE Transactions on Power Delivery, Volume:24, Issue:3,2009,pp:1328-1343
    [14]G. Bargboer,, A. P. J. van Deursen, A Case Study on Lightning Protection, Current Injection Measurements, and Model, IEEE Transactions on Electromagnetic Compatibility, Volume:52, Issue:3,2010, pp:684-690
    [15]中国移动通信集团广东有限公司江门分公司,中讯邮电咨询设计院,移动基站防雷接地科学研究,[R].2007,pp:1-7
    [16]Aiming Yu, Shengli Lai, Yitian Chen, et al., Application of Ground Electric Field in Smart Power Supply against Lightning of Wireless Access Base Station, Proceedings of EMC 2005, Volume:2,pp:364-367
    [17]T. Thanasaksiri, Ground Potential Rise from Lightning Overvoltage in Communication Station, Proceedings of ECTI-CON 2008, pp:905-908
    [18]J. S. Boyle and R. E. Orville, Return Stroke Velocity Measurements in Multistroke Lightning flashes, Geophys. Res., Volume:81,1976, pp:4461 4466
    [19]P. Hubert and G. Mouget, Return Stroke Velocity Measurements in Two Triggered Lightning Flashes, Geophys. Res., Volume:86,1981,pp:5253-5261
    [20]V. P. Idone, R. E. Orville, P. Hubert, et al., Correlated Observations of Three Triggered Lightning Flashes, Geophys. Res., Volume:89,1984,pp:1385-1394
    [21]D. M. Mach and W. D. Rust, Photoelectric Return Stroke Velocity and Peak Current Estimates in Natural and Triggered Lightning, Geophys. Res., Volume: 94,1989, pp:13237-13247
    [22]C. E. R. Bruce and R. H. Golde, The Lightning Discharge, The Journal of The Institution of Electrical Engineers, Dec.1941, Volume:88, Part II (Power Engineering), No.66, pp:487-505
    [23]R. Sobocki, Function Representation of Lightning Impulse Wave, Physical Science, Measurement and Instrumentation, Management and Education Reviews, IEE Proceedings A, Lodz, Poland, November 1987, Volume:134, Issue:9,pp:721-726
    [24]R. Sobocki, Function Representation of Lightning Impulses Produced by a Testing Circuit with Continuity of Voltages and Currents at a Tested Object, Science, Measurement and Technology, IEE Proceedings A, Volume:138, Issue:1, Publication Year:1991, Poland, pp:78-82
    [25]Joseph M. Googe, Paul D. Ewing and Richard A. Hess, Parameter Correlation of Impulse Shapes Using Two-Port Synthesis, IEEE Transactions on Instrumentation and Measurment, Volume:41, No.1, FEBRUARY 1992, pp:54-58
    [26]Robert M. Del Vecchio, Rajendra Ahuja, and Robert Dean Frenette, Determining Ideal Impulse Generator Settings from a Generator-Transformer Circuit Model, IEEE Transactions on Power Delivery, Volume:17, No.1, JANUARY 2002, pp:142-148
    [27]K. Nakahori, T. Epawa, H. Mitani, Characteristics of Winter Lightning Currents in Hokuriku District, IEEE Transactions on Power Apparatus and Systems, Volume:PAS-101, Issue:11,1982,pp:4407-4412
    [28]Shigeru Yokoyama, Kunihiko Miyake, Hiroshi Mitani, et al, Advanced Observations of Lightning Induced Voltage on Power Distribution Lines, IEEE Transactions on Power Systems, Volume:PWRD-1, No.2, April 1986, pp: 129-139
    [29]Miyake. K, Suzuki. T, Shinjou. K, Characteristics of Winter Lightning Current on Japan Sea Coast, IEEE Transactions on Power Delivery, Volume:7, Issue:3, 1992,pp:1450-1457
    [30]Franz Fuchs, Ernst Ulrich Landers, Rudolf Schmid, et al., Lightning Current and Magnetic Field Parameters Caused by Lightning Strikes to Tall Structures Relating to Interference of Electronic Systems, IEEE Transaction on Electromagnetic Compatibility, Volume:40, No.4, November 1998, pp:444-451
    [31]H. Haruki, M. Sunaga, R. Kimata, et al., Development of a Lightning Current Waveform Measuring System for 500 kV Overhead Transmission Lines, IEEE Transactions on Power Delivery, Volume:4, No.3, July 1989,pp:1891-1896
    [32]D. W. CLIFFORD, KEITH E. CROUCH, Lightning Simulation and Testing, IEEE Transactions on Electromagnetic Compatability, Volume:EMC-24, Issue: 2, May 1982,pp:209-224
    [33]S. Yokoyama, K. Yamamoto, H. Kinoshita, Analogue Simulation of Lightning Induced Voltages and its Application for Analysis of Overhead—Ground-Wire Effects, IEE Proceedings C, Generation, Transmission and Distribution, Volume:132, Issue:4, July 1985,pp:208-216
    [34]L. A. Kraft, Modeling Lightning Performance of Transmission Systems using PSpice, IEEE Transactions on Power Systems, Volume:6, Issue:2, May 1991, pp:543-549
    [35]Chowdhuri P, Anderson JG, Chisholm WA, et al. Parameters of Lightning Strokes:A Review, IEEE Transcations on Power Delivery, Volume:20, Issue:1, 2005,pp:346-358
    [36]IEEE Power & Energy Society Transmission and Distribution Committee, IEEE Standard 1410-2010 (Revision of IEEE Std 1410-2004),2011, IEEE Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines, New York, U.S.A., IEEE Standards Association
    [37]CIGRE-CIRED JWG C4.4.02:Protection of MV and LV Networks against Lightning. Part I:Common Topics, Int. Council Large Electr. Syst. (CIGRE), Paris, France, CIGRE Tech. Brochure No.287,2006
    [38]A. Borghetti, C. A. Nucci, and M. Paolone, An Improved Procedure for the Assessment of Overhead Line Indirect Lightning Performance and its Comparison with the IEEE Std.1410 Method, IEEE Transations on Power Delivery, Volume:22, Issue:1, January 2007, pp:684-692
    [39]S. Yokoyama, Distribution Surge Arrester Behavior due to Lightning Induced Voltages, IEEE Transactions on Power Delivery, Volume:PWRD-1, Issue:1, January 1986, pp:171-178
    [40]T. A. Short and R. H. Ammon, Monitoring Results of the Effectiveness of Surge Arrester Spacings on Distribution Line Protection, IEEE Transactions on Power Delivery, Volume:14, Issue:3, July 1999, pp:1142-1150
    [41]M. Paolone, C. A. Nucci, E. Petrache, et al., Mitigation of Lightning-Induced Overvoltages in Medium Voltage Distribution Lines by Means of Periodical Grounding of Shielding Wires and of Surge Arresters:Modelling and Experimental Validation, IEEE Transactions on Power Delivery, Volume:19, Issue:1, January 2004, pp:423-431
    [42]K. L. Cummins, E. P. Krider, and M. D. Malone, The US National Lightning Detection Network (TM) and Applications of Cloud-to-Ground Lightning Data by Electric Power Utilities, IEEE Transactions on Electromagnetic Compatability, Volume:40, Issue:4, November 1998,pp:465-480
    [43]G. Diendorfer, Correlation of Power Line Failures and Lightning Location Data, 5th Int. Workshop Phys. Lightning, Nagoya, Japan,2001
    [44]J. Kosmac and V. Djurica, Use of Lightning Stroke Information for Overhead Line Fault Location, presented at the CIGRE, Paris, France,2002
    [45]M. Bernardi, C. Giorgi, and V. Biscaglia, Medium Voltage Line Faults Correlation with Lightning Events Recorded with the Italian LLP System CESI-SIRF, in Proc.24th Int. Conf. Lightning Prot., Birmingham, U.K.,1998, pp:187-192
    [46]A. Borghetti, C. A. Nucci, M. Paolone, et al., A Statistical Approach for Estimating the Correlation between Lightning and Faults in Power Distribution Systems, Proceedings of 9th International Conference on Probabilistic Methods Applied to Power Systems, Stockholm, Sweden,2006, pp:1-7
    [47]A. Borghetti, F. Napolitano, C. A. Nucci, et al., Correlation of Lightning Events and Faults in Distribution Power Networks:A Joint Research Project, the CIGRE, Paris, France,2008
    [48]Michel Ianoz, Review of New Developments in the Modeling of Lightning Electromagnetic Effects on Overhead Lines and Buried Cables, IEEE Transactions on Electromagnetic Compatability, Volume:49, Issue:2, MAY 2007,pp:224-236
    [49]Jun Zhu, Guangning Wu, Xiaobin Cao, et al., Analysis and Research Prospect of Lightning-Induced Voltages in Overhead Transmission Lines, Proceedings of 20117th Asia-Pacific International Conference on Lightning, November1-4, 2011, Chengdu, China, pp:347-352
    [50]T. Shindo, and T. Suda, A Study of Lightning Risk, IEEE Transactions on Electrical and Electronic Engineering, Volume:3, Issue:1,2008,pp:583 - 589
    [51]T. Shindo, and S. Yokoyama, Lightning Occurrence Data Observed with Lightning Location Systems in Japan:1992-1995, IEEE Transactions on Power Delivery, Volume:13, Issue:4,1995,pp:1468-1474
    [52]T. Shindo, and T. Suda, On Lightning Risk Management, Proceedings 28th International Conference on Lightning Protection (ICLP), No. VIII-4, Kanazawa,2006,pp:1205-1210
    [53]Ji Yanfei, Z. Jiang, L. Gang, Study on the Application of Risk Assessment and Monitoring of Lightning Disaster in Electrical Equipment Insulation, Proceedings of the 9th International Conference on Properties and Applications of Dielectric Materials July 19-23,2009, Harbin, China
    [54]CIGRE Brochure, Characterization of Lightning for Application in Electric Power Systems, Working Group 33.01 (Lightning) of SC33,2000
    [55]M. A. Uman and E. P. Krider. Natural and Artificially Initiated Lightning, Science, Volume:246,1989,pp:457-464
    [56]M. A. Uman, V.A. Rakov, K. J. Rambo, et al., Triggered — Lightning Experiments at Camp Blanding, Florida (1993-1995), Trans. IEE Japan,117-B, 1997,pp:446-452
    [57]K. Berger, R. B. Anderson, and H. Kroninger. Parameters of Lightning Flashes, Electra, Volume:41,1975, pp:23-37
    [58]M. Bernardi, L. Dellera. E. Garbagnati, Lightning Parameters for Protection:An Updated Approach, Proceedings of the 24th International Conference on Lightning Protection, Birmingham U.K., September 1998
    [59]T. Narita, T. Yamada, A. Mochizuki, et al., Observation of Current Waveshapes of Lightning Strokes on Transmission Towers, IEEE Transactions on Power Delivery, Volume:15, Issue:1, January 2000, pp:429-435
    [60]G. Diendorfer, W. Schulz, M. Maier. Evaluation of a LLS Based on Lightning Strikes to an Instrumented Tower,2001 International Lightning Detection Conference, Tucson Arizona. USA, Nov.2000
    [61]F. Fuchs, E. U. Landers, R. Schmid, et al., Lightning Current and Magnetic Field Parameters Caused by Lightning Strikes to Tall Structures Relating to Interference of Electronic Systems, IEEE Transactions on Electromagnetic Compatibility, Volume:40, Issue:4, November 1998, pp:444-451
    [62]Yajing Chai, Wenjun Zhou, Li Xue, et al., Lightning Performances for AC 500kV Transmission Lines with Quadruple-Circuit on Single Tower,5th International Conference-Workshop-CPE 2007
    [63]FARHAD Rachidi. Modeling Lightning Return Stroke to Tall Structures:A Review, Journal of Lightning Research, Volume:1,2007, pp:16-31
    [64]Yoshihiro Baba and Vladimir A. Rakov, Electric Fields at the Top of Tall Building Associated with Nearby Lightning Return Strokes. Proceedings,18th Int. Zurich Symposium on EMC, Munich 2007
    [65]Mohammad Saiful Islam Hossaini and Md. Osman Goni, Numerical Electromagnetic Analysis of GSM Tower under the Influence of Lightning Overvoltage using Method of Moments.2nd IEEE International Conference on Power and Energy (PECon 08), December 1-3,2008, Johor Baharu, Malaysia
    [66]李会群,纪新建,石永玮等,通信天线塔对雷电灾害环境的影响,兰州大学学报,第46卷专辑,2010年9月,pp:115-117
    [67]高攸纲,屏蔽与接地,北京,北京邮电大学出版社,2004,pp:116-148
    [68]虞昊,臧庚媛,张勋文等,现代防雷技术基础,北京,清华大学出版社,1995,pp:205-208
    [69]李景禄胡毅刘春生,实用电力接地技术,北京,中国电力出版社,2001,pp:1-45
    [70]Erling D. Sunde, Earth Conduction Effects in Transmission Systems, U.S.A. The Bell Telephone Laboratories Series,1949, pp:69-89
    [71]Farid P. Dawalibi, Wei Xiong and Jinxi Ma, Transient Performance of Substation Structures and Associated Grounding Systems, IEEE Transactions on Industry Applications, Volume:31, Issue:3, MAY&JUNE 1995, pp:520-527
    [72]IEC TC81, IEC 61024-1, Protection of Structure against Lightning-Part 1: General principles, IEC,1990
    [73]IEC TC81, IEC 61024-1-1, Protection of Structure against Lightning-Part 1:General Principles — Section 1:Guide A:Selection of Protection Levels for Lightning Protection Systems,2nd Ed., IEC,1998
    [74]IEC TC81, IEC 61024-1-2, Protection of Structures against Lightning-Part 1:General Principles — Section 2:Guide B:Design, Installation, Maintenance and Inspection of Lightning Protection Systems, IEC,1998
    [75]IEC TC81, IEC 61312-1, Protection against Lightning Electromagnetic Impulse, Part 1:General Principles, IEC,1995
    [76]IEC TC81, IEC 61312-2, Protection against Lightning Electromagnetic Impulse, Part 2:Shielding of Structures, Bonding Inside Structures and Earthing, IEC,1997
    [77]IEC TC81, IEC 61312-3, First Edition-Protection against Lightning Electromagnetic Impulse (LEMP)-Part 3:Requirements of Surge Protective Devices (SPDs), IEC,1999
    [78]IEC TR2 61662, Assessment of the Risk of Damage due to Lightning, April 1995, IEC,1995
    [79]IEC TC81, IEC 62305-1, Protection against Lightning-Part Part 1:General Principles, IEC,2006
    [80]IEC TC81, IEC 62305-2, Protection against Lightning-Part 2:Risk management, IEC,2006
    [81]IEC TC81, IEC 62305-3, Protection against Lightning-Part 3:Physical Damages to Structures and Life Hazard, IEC,2006
    [82]IEC TC81, IEC 62305-4, Protection against Lightning-Part 4:Electrical and Electronic Systems within structures, IEC,2006
    [83]中华人民共和国国家质量监督检验检疫总局,国家标准化管理委员会,GB/T 21714.1-2008雷电防护第1部分:总则,中国标准出版社,2008
    [84]中华人民共和国国家质量监督检验检疫总局,国家标准化管理委员会,GB/T 21714.2-2008雷电防护第2部分:风险管理,中国标准出版社,2008
    [85]中华人民共和国国家质量监督检验检疫总局,国家标准化管理委员会,GB/T 21714.3-2008雷电防护第3部分:建筑物的物理损坏和生命危险,中国标准出版社,2008
    [86]中华人民共和国国家质量监督检验检疫总局,国家标准化管理委员会,GB/T 21714.4-2008雷电防护第4部分:建筑物内电气和电子系统,中国标准出版社,2008
    [87](原)中华人民共和国信息产业部,YD/T 5098-2001,通信局(站)雷电过电压保护工程设计规范,北京邮电大学出版社,2001
    [88](原)中华人民共和国信息产业部,YD/T 1235.1-2002,通信局(站)低压配电系统用电涌保护器技术要求,人民邮电出版社,2003
    [89](原)中华人民共和国信息产业部,YD/T 1235.2-2002,通信局(站)低压配电系统用电涌保护器测试方法,人民邮电出版社,2003
    [90](原)中华人民共和国信息产业部,YD5068-98 1998-10-01,移动通信基站防雷与接地设计规范,北京邮电大学出版社,1998
    [91](原)中华人民共和国信息产业部,YD5078-98 1999-02-01,通信工程电源系统防雷技术规定,北京邮电大学出版社,1999
    [92]中华人民共和国工业和信息化部,YD 5098-2005,通信局(站)雷电过电压保护工程设计规范,北京邮电大学出版社,2005
    [93]中华人民共和国工业和信息化部,YD/T 5175-2009,通信局(站)防雷与接地工程验收规范,北京邮电大学出版社,2009
    [94]F. A. Fisher, J. A. Plumer, R. A. Perala, Aircraft Lightning Protection Handbook, Lightning Technologies, INC. Pittsfield, Massachusetts,1989, pp: 39-47
    [1]谭涌波,闪电放电与雷暴云电荷、电位分布相互关系的数值模拟,[学位论文],合肥,中国科学技术大学,2006
    [2]R. H. Golde著,周诗健,孙景群译,雷电(上卷),中国电力出版社,1982,pp:73-128
    [3]文武,感应雷电磁干扰及其防护研究,[学位论文],武汉,武汉大学,2004
    [4]刘辛,光频段雷电探测技术的研究,[学位论文],武汉,华中科技大学,2010
    [5]伏进,特高压直流输电线路耐雷性能分析方法研究,[学位论文],重庆,重庆大学,2009
    [6]虞昊,臧庚媛,罗福山,电—静电—雷电防护,中国计量出版社,1993,pp:20—120
    [7]宋庭新,基于网格计算的雷电电磁环境仿真,[学位论文],武汉,华中科技大学,2005
    [8]张义军,周秀骥,雷电研究回顾和进展,应用气象学报,17(6),2006,pp:829-834
    [9]李东铭,雷电电磁场以及架空导线雷电感应过电压计算分析,[学位论文],武汉,华中科技大学,2011
    [10]罗仕乾,雷电波的频谱及能量分布,高电压技术,21(1),1995,pp:85-86
    [11]Nathan G.Parker, E.Philip Krider. A Portable PC-Based System for Making Optical and Electromagnetic Measurements of Lightning. Journal of applied meteorology,42(6),2003, pp:267-289
    [12]R. B. Anderson, A. J. Eriksson, H. Kroninger, et al. Lightning and thunderstorm Parameters. In Proc. Lightning Power Systems,236(3),1984, pp:57-61
    [13]F. de la Rosa, R. Veazquez. Review of Ground Flash Density Measuring Device regarding Power System Applications. IEEE Trans. Power Del.,4(2), 1989,pp:921-926
    [14]K. L. Cummins, E. P. Krider, M. D. Malone. The U.S. national lightning detection network and applications of cloud—to—ground lightning data by electric Power utilities. IEEE Trans. Electromagn. Com Pat.,40(4),1998, pp: 465-480
    [15]IEEE Working Group on Lightning Performance of Transmission Lines. Estimating lightning Performance of transmission lines Ⅱ—updates to analytical models. IEEE Trans. Power Del,8(3),1993, pp:1254-1267
    [16]T. E. McDermott, V. J. Longo. Advanced computational methods in lightning Performance—the EPRI lightning Protection design work station. Proc. IEEE Power Engineering Soc. Winter Meeting,4,2000, pp:2425-2430
    [17]D. E. Parrish. Lightning—caused distribution circuit breaker operations. IEEE Trans. Power Del.,6(4),1991, pp:1395-1401
    [18]C. A. Warren, R. Ammon, G. Welch. A survey of distribution reliability measurement practices in the U.S.. IEEE Trans. Power Del,14(1),1999, pp:250-255
    [19]Franz Fuchs, Ernst Ulrich Landers, Rudolf Schmid and Johannes Wiesinger. Lightning Current and Magnetic Field Parameters Caused by Lightning Strikes to Tall Structures Relating to Interference of Electronic Systems. IEEE Transaction on Electromagnetic Compatibility, Vol.40, No.4, November 1998, pp:444-451
    [20]IEC TC81, IEC 62305-1, Protection against Lightning-Part Part 1:General Principles, IEC,2006
    [21]IEC TC81, IEC 61024-1-1, Protection of Structure against Lightning-Part 1:General Principles-Section 1:Guide A:Selection of Protection Levels for Lightning Protection Systems,2nd Ed., IEC,1998
    [22]IEC TC81, IEC 61312-1, Protection against Lightning Electromagnetic Impulse, Part 1:General Principles, IEC,1995
    [23](原)中华人民共和国机械部,GB50057-94,建筑物防雷设计规范(2000年版),中国计划出版社,2000
    [24](原)中华人民共和国信息产业部,YD/T 1235.1-2002,通信局(站)低压配电系统用电涌保护器技术要求,人民邮电出版社,2003
    [25](原)中华人民共和国信息产业部,YD/T 1235.2-2002, 通信局(站)低压配电系统用电涌保护器测试方法,人民邮电出版社,2003
    [26](原)中华人民共和国电力工业部,DL/T 620-1997,交流电气装置的过电压保护和绝缘配合,中国电力出版社,1997
    [27]张明霞,雷电电磁场计算方法及沿地表传播特性的研究[学位论文],北京,华北电力大学,2010
    [28]丁美新,李慧峰,朱子述等,雷电流波形的数学模型及频谱仿真,高电压技术,第28卷第6期,2002年6月,pp:8—10
    [29]Zhang Feizhou, Liu Shanghe, A New Function to Represent the Lightning Return-Stroke Currents, IEEE Transaction on Electromagnetic Compatibility, Vol.44, No.4, Nov 2002, pp:595-597
    [30]C. A. Nucci, G. Diendorfer and M. A. Uman, et al. Lightning return stroke current models with specified channel—base current:A review and comparison. Journal of Geophysical Research,95,1990, pp:20395—20408
    [31]C. E. R. Bruce and R. H. Golde, The Lightning Discharge, The Journal of The Institution of Electrical Engineers, Dec.1941, Vol.88, Part Ⅱ (Power Engineering), No.66,pp:487-505
    [32]F. Heidler. Traveling current source model for LEMP calculation. In Proc.6th Int. Zurich Symp. Electromagnetic Compatibility, Zurich, Switzerland,1985, pp:157-162
    [33]王晓辉,风力发电机组雷电暂态效应的研究,[学位论文],北京,北京交通大学,2009年12月
    [34]Alberto De Conti, Silverio Visacro. Analytical Representation of Single— and Double — Peaked Lightning Current Waveforms. IEEE Transaction on Electromagnetic Compatibility, Vol.49, No.2, May 2007, pp:448—451
    [35]F. A. Fisher, J. A. Plumer, R. A. Perala, Aircraft Lightning Protection Handbook, Lightning Technologies, INC. Pittsfield, Massachusetts,1989, pp: 39-47
    [36]Jun Takami, Shigemitsu Okabe, Observational Results of Lightning Current on Transmission Towers, IEEE Transaction on Power Delivery, Vol.22, No.1, Jan 2007,pp:547-556
    [37]区健昌,林守霖,吕英华,电子设备的电磁兼容性设计,电子工业出版社,2003,Pp:271-278
    [38]Vladimir A. Rakov and Martin A. Uman, Review and Evaluation of Lightning Return Stroke Models including Some Aspects of their Application, IEEE Transaction on Electromagnetic Compatibility, Vol.40, No.4, November 1998, pp:403-426
    [39]M. A. Uman and D. K. McLai, Magnetic field of the lightning return stroke, J. Geophysical Research, vol.74, No.28,1969,pp:6899-6910
    [40]V. A. Rakov and A. A. Dulzon, Calculated electromagnetic fields of lightning return stroke, Tekh. Elektrodinam., no.1,1987, pp :87-89
    [41]C. A. Nucci, C. Mazzetti, F. Rachidi, et al., On lightning return stroke models for LEMP calculations, Proc.19th Int. Conf. Lightning, Protection, Graz, Austria, Apr.1988
    [42]G. Diendorfer and M. A. Uman, An Improved Return Stroke Model with Specified Channel-Base Current. J. Geophysical. Research,1990,Vol.95, No. D9, pp:13621-13644
    [43]Y. T. Lin, M. A. Uman, J. A. Tiller et al. Characterization of lighting return stroke electric and magnetic fields from simultaneous two-station measurements. Journal of Geophysical Research,84,1979, pp:6307-6314
    [1]R. H. Golde著,周诗健,孙景群译,雷电(上卷),中国电力出版社,1982,pp:73-128
    [2]Roger F. Harrington. Time —Harmonic Electromagnetic Field. Version of 2001 IEEE Classic Reissue, IEEE Press,2001, pp:37-54
    [3]Frederick Emmons Terman, Radio Engineers'Handbook, McGRAW-HILL Book Company, Inc. New York and London,1943, pp:26-51
    [4]Roger F. Harrington著,王尔杰等译,计算电磁场的矩量法,国防工业出版社,1981,pp:26-42
    [5]吕英华,计算电磁学的数值方法,清华大学出版社,2006,pp:260-281
    [6]W. R. Smythe著,戴世强译,静电学和电动力学(上册),科学出版社,1981,pp:108-111
    [7]Erling D. Sunde, Earth Conduction Effects in Transmission Systems, U.S.A. The Bell Telephone Laboratories Series,1949, pp:267-269 & 297-299
    [8]Erling D. Sunde, Earth Conduction Effects in Transmission Systems, U.S.A. The Bell Telephone Laboratories Series,1949, pp:66-89
    [9]高攸纲, 屏蔽与接地,北京邮电大学出版社,2004,pp:132-148
    [10]李景禄胡毅刘春生,实用电力接地技术,中国电力出版社,2001,pp:13-36
    [11]Frederick M. Tesche, Michel V. Ianoz, Torbjorn Karlsson著,吕英华,王旭莹译,EMC分析方法与计算模型,北京邮电大学出版社,2009,pp:252-253& 352-354
    [1]中国移动通信集团广东有限公司江门分公司,中讯邮电咨询设计院,移动基站防雷接地科学研究,[R].2007,pp:89-91
    [2]吕英华,同轴电缆转移阻抗测试方法的研究,北京邮电大学学报,第02期,1981,PP:99-111
    [3]爱·弗·万斯著,高攸纲,吕英华译,电磁场对屏蔽电缆的影响,人民邮电出版社,1988,pp:31-48
    [4](原)中华人民共和国机械部,GB50057-94(2000年版),中华人民共和国国家标准建筑物防雷设计规范,中国计划出版社,2000
    [5]L. Paris and R. Cortina, Switching and Lightning Impulse Discharge Characteristics of Large Air Gaps and Long Insulator Strings, IEEE Trans. Power App. Syst., Vol.87,1968,pp:947-957
    [6]H. R. Amstrong and E. R. Whitehead, Filed Analytical Studies of Transmission Line Shielding, IEEE, Trans. Power App. Syst., Vol.87,1968, pp:270-281
    [7]A. M. Mousa and K. D. Srivastava, The Implications of the Electrogeometric Model regarding Effect of Height of Structure on the Median Amplitudes of Collected Lightning Strokes, IEEE Trans. Power Delivery, Vol.4,1989, pp: 1450-1460
    [8]N. Petrov and R. T. Waters, Determination of the Striking Distance of Lightning to Earthed Structures, Proc. Roy. Soc., Vol. A 450,1995, pp:589-601
    [9]V. Cooray, V. Rakov and N. Theethayi, The Lightning Striking Distance-Revisited, J. Electrostatics, Vol.65,2007, pp:296-306
    [10]Sonia Ait-Amar and Gerard Berger, A Modified Version of the Rolling Sphere Method, IEEE Transactions on Dielectrics and Electrical Insulation, Vol.16, No. 3, Jun 2009, pp:718-725
    [11]IEC TC81, IEC 62305-3, Protection against Lightning-Part 3:Physical Damages to Structures and Life Hazard, IEC,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700