用户名: 密码: 验证码:
使用多层光学介质薄膜滤光的聚光太阳能发电技术的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球表面接受的太阳能辐射具有能流密度低、光谱分布范围宽的特点。使用聚光器汇集太阳能;针对不同波长段的太阳辐射能量,分别利用相应的匹配性好、性能突出的多种太阳能发电元件转化能量,可以获得比传统的单一利用方法更好的效果。
     本文以发展较成熟的晶体硅太阳光伏电池做为主要发电部件,探索其与温差发电元件以及斯特林发电系统构建聚光分频联合发电系统,更全面地利用太阳辐射全波段能量的方法。根据典型的硅电池特性及与其联合使用的不同发电元件性能,展开了对应的介质多层薄膜滤光器研究。
     首先,介绍了地球接受的太阳辐射的特点,以及中国太阳能资源分布的情况;阐述了根据不同地域条件、气象情况,结合太阳辐射宽频、低能流密度和不稳定等特点合理利用太阳能的必要性,交代了全文工作的研究背景。介绍了主要的太阳能发电方式及其发展现状;综述了从太阳光谱特征入手优化太阳能发电效果的主要手段;分析了基于太阳能利用的主要分频技术及其发展情况。根据文献综述情况,制定了使用光学介质薄膜对太阳入射光分频,利用以硅电池为主的多种发电方式联合使用入射太阳辐射能量的方案。同时,提出了本文的主体结构和研究内容。
     介绍了光学薄膜设计的基础理论,根据电磁波理论分析了入射太阳光波与薄膜系统相互作用的情况。研究了薄膜主要物理参数如:膜料性能、薄膜基础结构特征等与滤光薄膜系统的光学性能间的关系。通过比较薄膜设计的两种方法:经典解析解法和计算机辅助的数值解法,确定了将两者相结合联合使用,设计本文需要的滤光器。
     根据典型温差发电元件与碟式斯特林系统的性能参数,以及硅电池的发电性能计算结果,确定了三种不同滤光薄膜系统的设计要求。选用了镀膜加工过程中性能稳定的介质材料作为设计原料。根据设计目标,利用解析解法计算了每一类滤光器的初始设计方案。使用针形数值方法优化了初始解的薄膜结构,获得了满足要求的三套设计结果。采用电子束加热蒸发的镀膜手段,制作了其中两种方案的滤光片样品,检测其光学性能很好地实现了设计目标。
     在室外利用自然太阳光条件,实验测试了多种硅电池使用不同滤光片样品在各种聚光条件下的发电效果。滤光器的使用可以明显改善电池短路电流与最大输出功率两种主要电输出性能参数随入射能量增加的变化情况,让硅电池的实际工作效率与整体发电效率相比不使用滤光片的情况得到优化。
     建立了针对光伏-温差元件联合发电系统与光伏-碟式斯特林发电联合利用系统的分析模型。根据光学滤光片的设计结果,使用标准直射辐射入射光谱,计算了3种不同硅电池作为光伏元件的光伏-温差元件联合发电系统在非聚光条件下的发电效率,分析了滤光器带来的发电效果变化情况;计算了使用聚光硅电池作为光伏端的光伏-温差元件联合发电系统与光伏-碟式斯特林发电联合利用系统在不同聚光倍数下的系统发电效果,比较分析了聚光分频联用方案与单一元件发电系统的差异。证明了光伏-温差元件联合发电系统可以在更高聚光倍数的条件下,利用相对更少的光伏材料获得比普通聚光光伏系统更多的电能。证明了光伏-碟式斯特林发电联合利用系统可以获得比普通碟式斯特林系统更高的发电效率,以及更长的日平均发电时数;同时可以获得比普通的聚光光伏系统更好的发电效率、更高的聚光比范围以及在入射能量条件自然变化时提供更稳定的发电效果。
     采用SMARTS太阳光谱分析模型计算了杭州典型气象条件下不同时间点接受的直射辐射光谱情况。利用计算结果作为入射光源的光谱,分析了聚光光伏系统、光伏-温差发电联用系统、碟式聚光斯特林发电系统、光伏-碟式斯特林发电联用系统的发电效率,随不同时间点入射辐射光谱变化的改变情况;比较了几种系统的性能差异,分析了分频方法可能带来的系统效率提升。
The solar radiation coming to earth have broad range of wavelengths in the spectrum and the irradiance is low. A spectrally selective approach will always be possible to achieve a higher efficiency than normal by using a concentrator to concentrating the solar energy, with a good chioce of convertors matching the solar spectrum.
     The thesis focus on the crystalline silicon photovoltaic(PV) solar cells, try to investigate an approach to utilize the whole solar radiation spectrum efficiently with the hybrid PV-TEG(thermoelectric generator) system and the hybrid PV-DS(dish Stirling) system. The design strategy of the filter used in the hybrid systems will be decided on the basis of the characters of silicon cells, TEG and DS.
     First, a theoretical discussion of the concept of 'solar energy'is presented; the main characteristics of solar radiation in China are analysed. A review of the various concentration soalr power systems, spectral beam splitting systems and other solar electricity generation technologies proposed in the literature is presented, which concludes that there is a potential for increased conversion efficiency in the hybrid receiver systems with a filter.
     An introduction about the basic methords of the optical thin-film design is presented. The electromagnetic wave theory is used to analysis the interaction of the incoming sunlight with the thin-film. The relationship between optical properties of thin-film filter and the main physical parameters of the film, such as material properties and structural characterisitics, is discussed. A combination of the analytical design method and the computer-aided numerical method is used to get the fianl design results of the filters in this thesis.
     According to the typical parameters of the TEG, DS systems and the silicon cells performances, all the requirements of the filters are determined. The dielectric materials which are stable in the fabrication process are selected as the design materials. The starting design of each filter is calculated with an analytical design method according to the design target. The needle method is used to optimize the starting structures to obtain the fianl results of three different requirements. Two types of the filter samples are produced by an electron beam heating evaporation coating method, a good testing performance is achieved.
     With natural sunlight in outdoor conditions, power generation efficiencies of different silicon cells with varies filters under varies concentrating ratio are tested. The filters significantly optimize the short-circuit current and maximum output power of the solar cells, mean while, the actual efficiency of silicon cells and the overall power generation efficiency are improved.
     A calculation model for a hybrid PV-TEG system using the fabricated thin-film filter is proposed. A hybrid system combining photovoltaic cells with a solar-powered Stirling engine using the designed filter is analyzed. The calculated results show the advantages of this spectrally selective method for solar power generation.
     The direct radiation spectrum of Hangzhou in typical weather conditions at different time points are obtained by the solar radiation analysis model SMARTS. The calculated results are used to analysis different solar power systems like CPV, DS, PV-TEG and PV-DS. The benefits of the filter for hybrid solar power systems are demonstrated.
引文
[1]BP. Statistical Review of World Energy [M]. BP Crop.2007-2011.
    [2]REN21. REN21 Renewables 2011 GLOBAL STATUS REPORT [M].2011.
    [3]IPCC,2007.
    [4]Available at http://en.wikipedia.org/wiki/Solar energy. (2011) [M].
    [5]DUFFIE J, BECKMAN W. Solar engineering of thermal processes [M].1980.
    [6]ASTM. G173-03 Standard Tables for Reference Solar Spectral lrradiances [M].
    [7]罗运俊,何梓年,王常贵.太阳能利用技术[M].北京:化学工业出版社,2005.
    [8]NREL. China Global Horizontal Solar Radiation [Available at: http://www.nrel.gov/] [M].2005.
    [9]中国资源综合利用协会可再生能源专业委员会.中国太阳能资源分布http://www.creia.net/?Infors/detail/t/6/id/463.html [M].2010.
    [10]赵东.中国太阳能长期变化及计算方法研究[D],2009.
    [11]BALZANI V, ARMAROLI N. Energy for a Sustainable World:From the Oil Age to a Sun-Powered Future [M]. VCH,2011.
    [12]COUNCIL W E.2010 Survey of Energy Resources [M],2010.
    [13]LUQUE A. Will we exceed 50% efficiency in photovoltaics? [J]. Journal of Applied Physics,2011,110(031301.
    [14]BARNETT A, HONSBERG C, KIRKPATRICK D, et al.50% efficient solar cell architectures and designs, F,2006 [C]. IEEE.
    [15]BARNETT A, KIRKPATRICK D, HONSBERG C, et al. Milestones toward 50% efficient solar cell modules, F,2007 [C].
    [16]BARNETT A, WANG X. High Efficiency, Spectrum Splitting Solar Cell Assemblies:Design, Measurement and Analysis, F,2010 [C]. Optical Society of America.
    [17]BARNETT A, KIRKPATRICK D, HONSBERG C, et al. Very high efficiency solar cell modules [J]. Progress in Photovoltaics:Research and Applications,2009, 17(1):75-83.
    [18]D M. Advances in solar thermal electricity technology [J]. solar energy,2004,76(1-3):19-31.
    [19]QUASCHNING V, JOURDAN H. Renewable Energy and Climate Change [M]. Wiley Online Library,2010.
    [20]ORGAN A J. The air engine:Stirling cycle power for a sustainable future [M]. Woodhead,2007.
    [21]KONGTRAGOOL B, WONGWISES S. A review of solar-powered Stirling engines and low temperature differential Stirling engines [J]. Renewable and Sustainable Energy Reviews,2003,7(2):131-54.
    [22]KONGTRAGOOL B, WONGWISES S. Performance of low-temperature differential Stirling engines [J]. Renewable energy,2007,32(4):547-66.
    [23]LAING D, P LSSON M. Hybrid dish/stirling systems:combustor and heat pipe receiver development [J]. Journal of Solar Energy Engineering,2002,124(176.
    [24]SES. Power to Deliver,SunCatcher Advantages [M].2011.
    [25]MANEEWAN S, HIRUNLABH J, KHEDARI J, et al. Heat gain reduction by means of thermoelectric roof solar collector [J]. solar energy,2005,78(4):495-503.
    [26]ROCKENDORF G, SILLMANN R, PODLOWSKI L, et al. PV-hybrid and thermoelectric collectors [J]. solar energy,1999,67(4-6):227-37.
    [27]KRAEMER D, HU L, MUTO A, et al. Photovoltaic-thermoelectric hybrid systems:A general optimization methodology [J]. Applied Physics Letters,2008, 92(243503.
    [28]VOROBIEV Y, GONZ"CLEZ-HERN"CNDEZ J, VOROBIEV P, et al. Thermal-photovoltaic solar hybrid system for efficient solar energy conversion [J]. solar energy,2006,80(2):170-6.
    [29]SCHLAICH J, BERGERMANN R, SCHIEL W, et al. Design of commercial solar updraft tower systemsia-utilization of solar induced convective flows for power generation [J]. Journal of Solar Energy Engineering,2005,127(117.
    [30]LINDBERG E. TPV optics studies:on the use of non-imaging optics for improvement of edge filter performance in thermophotovoltaic applications [J]. 2002,
    [31]BAUER T. Thermophotovoltaics:Basic Principles and Critical Aspects of System Design [M]. Springer Verlag,2011.
    [32]CHEN X, XUAN Y M, HAN Y G. Thermal analysis and optimization of the emitter in the solar thermophotovoltaic (STPV) [J]. Science in China Series E: Technological Sciences,2009,52(9):2660-9.
    [33]CHEN X, XUAN Y M, HAN Y G. Investigation on performance of a solar thermophotovoltaic system [J]. Science in China Series E:Technological Sciences, 2008,51(12):2295-304.
    [34]LIU G P, XUAN Y M, HAN Y G, et al. Investigation of one-dimensional Si/SiO 2 hotonic crystals for thermophotovoltaic filter [J]. Science in China Series E: Technological Sciences,2008,51(11):2031-9.
    [35]XUAN Y, CHEN X, HAN Y. Design and analysis of solar thermophotovoltaic systems [J]. Renewable energy,2010,
    [36]IMENES A, MILLS D. Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems:a review [J]. Solar Energy Materials and Solar Cells,2004,84(1-4):19-69.
    [37]RICHARDS B. Luminescent layers for enhanced silicon solar cell performance:Down-conversion [J]. Solar Energy Materials and Solar Cells,2006, 90(9):1189-207.
    [38]VAN SARK W, BARNHAM K, SLOOFF L, et al. Luminescent Solar Concentrators"CA review of recent results [J]. Optics Express,2008,16(26): 21773-92.
    [39]GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 37) [J]. Progress in Photovoltaics:Research and Applications,2011,19(1): 84-92.
    [40]GUTER W, SCH NE J, PHILIPPS S P, et al. Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight [J]. Applied Physics Letters,2009,94:223504.
    [41]GEISZ J, FRIEDMAN D, WARD J, et al.40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions [J]. Applied Physics Letters,2008,93:123505.
    [42]KING R, LAW D, EDMONDSON K, et al.40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells [J]. Applied Physics Letters,2007,90(18): 183516-3.
    [43]CHOW T. A review on photovoltaic/thermal hybrid solar technology-2010 [J]. Applied energy,2010,87(2):365-79.
    [44]LAW D C, KING R, YOON H, et al. Future technology pathways of terrestrial Ⅲ-Ⅴ multijunction solar cells for concentrator photovoltaic systems [J]. Solar Energy Materials and Solar Cells,2010,94(8):1314-8.
    [45]AIKEN D, STAN M, ENDICTER S, et al. A loss analysis for a 28% efficient 520x concentrator module, F,2006 [C].
    [46]GREEN M A, HO-BAILLIE A. Forty three per cent composite split-spectrum concentrator solar cell efficiency [J]. Progress in Photovoltaics: Research and Applications,2010,18(1):42-7.
    [47]TRIPANAGNOSTOPOULOS Y, NOUSIA T, SOULIOTIS M, et al. Hybrid photovoltaic/thermal solar systems [J]. solar energy,2002,72(3):217-34.
    [48]COVENTRY J. Simulation of a concentrating PV/thermal collector using TRNSYS, F,2004 [C].40th ANZSES Solar Energy Conference.
    [49]COVENTRY J, FRANKLIN E, BLAKERS A. Thermal and electrical performance of a concentrating PV/Thermal collector:results from the ANU CHAPS collector, F,2002 [C]. Newcastle, Australia.
    [50]COVENTRY J, BLAKERS A. Direct measurement and simulation techniques for analysis of radiation flux on a linear PV concentrator [J]. Progress in Photovoltaics:Research and Applications,2006,14(4):
    [51]COVENTRY J, LOVEGROVE K. Development of an approach to compare the'value'of electrical and thermal output from a domestic PV/thermal system [J]. solar energy,2003,75(1):63-72.
    [52]JOSHI A, TIWARI A, TIWARI G, et al. Performance evaluation of a hybrid photovoltaic thermal (PV/T)(glass-to-glass) system [J]. International Journal of Thermal Sciences,2009,48(1):154-64.
    [53]KALOGIROU S. Use of TRNSYS for modelling and simulation of a hybrid pv-thermal solar system for Cyprus [J]. Renewable energy,2001,23(2):247-60.
    [54]PEI G, JI J, LIU K, et al. Numerical study of PV/T-SAHP system [J]. Journal of Zhejiang University-Science A,2008,9(7):970-80.
    [55]SUN J, SHI M H. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system [J]. Science in China Series E: Technological Sciences,2009,52(12):3514-20.
    [56]OTANICAR T, CHOWDHURY I, PHELAN P E, et al. Parametric analysis of a coupled photovoltaic/thermal concentrating solar collector for electricity generation [J]. Journal of Applied Physics,2010,108(114907.
    [57]ZHAO J, SONG Y, LAM W H, et al. Solar radiation transfer and performance analysis of an optimum photovoltaic/thermal system [J]. Energy Conversion and Management,2010,
    [58]DAVIDSSON H, PERERS B, KARLSSON B. Performance of a multifunctional PV/T hybrid solar window [J]. solar energy,2009,
    [59]BAKKER M, ZONDAG H, ELSWIJK M, et al. Performance and costs of a roof-sized PV/thermal array combined with a ground coupled heat pump [J]. solar energy,2005,78(2):331-9.
    [60]BROGREN M, NOSTELL P, KARLSSON B. Optical efficiency of a PV-thermal hybrid CPC module for high latitudes [J]. solar energy,2001,69(1006): 173-85.
    [61]DESANDRE L, SONG D, MACLEOD H, et al. Thin-film multilayer filter designs for hybrid solar energy conversion systems, F,1985 [C].
    [62]OSBORN D, CHENDO M, HAMDY M, et al. Spectral selectivity applied to hybrid concentration systems [J]. Name:Sol Energy Mater,1986,
    [63]CHENDO M, JACOBSON M, OSBORN D. Liquid and thin-film filters for hybrid solar energy conversion systems [J]. Solar & wind technology,1987,4(2): 131-8.
    [64]HAMDY M, LUTTMANN F, OSBORN D. Model of a spectrally selective decoupled photovoltaic thermal concentrating system [J]. Applied energy,1988, 30(3):209-25.
    [65]HAMDY M, OSBORN D. The potential for increasing the efficiency of solar cells in hybrid photovoltaic/thermal concentrating systems by using beam splitting [J]. Solar & wind technology,1990,7(2-3):147-53.
    [66]MARTI A, DAVIES P A, OLIVAN J, et al. High-Efficiency Photovoltaic Conversion with Spectrum Splitting on GaAs and Si Cells Located in Light Confining Cavities; proceedings of the 23rd IEEE Photovoltaic Specialists Conference, Louisville, Ky, F May 10-14,1993 [C].1993.
    [67]LASICH J, CLEEVE A, KAILA N, et al. Close-packed cell arrays for dish concentrators, F,1994 [C]. IEEE.
    [68]YEHEZKEL N, APPELBAUM J, YOGEV A. Photovoltaic conversion in a common solar concentrating andspectrally splitting system, F,1994 [C].
    [69]APPELBAUM J, YEHEZKEL N, YOGEV A. Measurement of concentrator solar cell efficiency at high concentration and narrow-band spectrum [J]. Solar Energy Materials and Solar Cells,1998,51(3-4):317-25.
    [70]YOGEV A, KRIBUS A, EPSTEIN M, et al. Solar i°ower reflectorj±systems: A new approach for high-temperature solar plants [J]. International Journal of Hydrogen Energy,1998,23(4):239-45.
    [71]ORTABASI U, LEWANDOWSKI A, MCCONNELL R, et al. Dish/photovoltaic cavity converter (PVCC) system for ultimate solar-to-electricty conversion efficiency-general concept and first performance predictions, F,2002 [C]. IEEE.
    [72]SABRY M, GOTTSCHALG R, BETTS T, et al. Optical filtering of solar radiation to increase performance of concentrator systems, F,2002 [C].
    [73]SCHLEGEL G, BURKHOLDER F, KLEIN S, et al. Analysis of a full spectrum hybrid lighting system [J]. solar energy,2004,76(4):359-68.
    [74]SEGAL A, EPSTEIN M, YOGEV A. Hybrid concentrated photovoltaic and thermal power conversion at different spectral bands [J]. solar energy,2004,76(5): 591-601.
    [75]BIELAWNY A, MICLEA P T, RHEIN A, et al. Dispersive elements for spectrum splitting in solar cell applications; proceedings of the Proc of SPIE Vol 6197, F,2006 [C].
    [76]IMENES A, BUIE D, MCKENZIE D. The design of broadband, wide-angle interference filters for solar concentrating systems [J]. Solar Energy Materials and Solar Cells,2006,90(11):1579-606.
    [77]IMENES A, BUIE D, MILLS D, et al. A new strategy for improved spectral performance in solar power plants [J]. solar energy,2006,80(10):1263-9.
    [78]ORTABASI U, WINSTON R, ELLIS S. Second-generation PVCC design with a dielectric light injector and polyhedron interior cavity, F,2006 [C].
    [79]PELEGRINI A, HARRISON D, SHACKLETON J. Splitting and managing the solar spectrum for energy efficiency and daylighting [J]. Portugal SB07:sustainable construction, materials and practices:challenge of the industry for the new millenium,2007,451.
    [80]BARNETT A:DELAWARE UNIV NEWARK DEPT OF ELECTRICAL AND COMPUTER ENGINEERING,2008.
    [81]陈则韶,莫松平,李志宏,et al.太阳能分频利用电热联产初步研究[J].工程热物理学报,2008,01:13-5.
    [82]江守利,陈则韶,胡芃,et al.二次反射聚光分频光伏系统的光学分析[J].工程热物理学报,2008,03:369-72.
    [83]VINCENZI D, BUSATO A, STEFANCICH M, et al. Concentrating PV system based on spectral separation of solar radiation [J]. physica status solidi (a),2009, 206(2):375-8.
    [84]WANG X, WAITE N, MURCIA P, et al. Improved outdoor measurements for Very High Efficiency Solar Cell sub-modules, F,2009 [C]. IEEE.
    [85]江守利.反射聚光利用太阳能的基础理论与实验研究[D];中国科学技术大学,2009.
    [86]江守利,陈则韶,胡芃,et aI.二次反射聚光分频光伏系统的三维光学模型[J].太阳能学报,2009,09:1188-93.
    [87]江守利,陈则韶,胡芃,et al.半抛物槽式聚光分频光伏系统的性能分析[J].工程热物理学报,2009,03:365-9.
    [88]JIANG S, HU P, MO S, et al. Optical modeling for a two-stage parabolic trough concentrating photovoltaic/thermal system using spectral beam splitting technology [J]. Solar Energy Materials and Solar Cells,2010,94(10):1686-96.
    [89]MITCHELL B, PEHARZ G, SIEFER G, et al. Four-junction spectral beam-splitting photovoltaic receiver with high optical efficiency [J]. Progress in Photovoltaics:Research and Applications,2010,
    [90]PETERS M, GOLDSCHMIDT J C, L PER P, et al. Spectrally-Selective Photonic Structures for PV Applications [J]. Energies,2010,3(2):171-93.
    [91]SEGAL A, EPSTEIN M. Truncation of the Secondary Concentrator (CPC) as Means to Cost Effective Beam-Down System [J]. Journal of Solar Energy Engineering, 2010,132:031004.
    [92]XIONG K, LU S, DONG J, et al. Light-splitting photovoltaic system utilizing two dual-junction solar cells [J]. solar energy,2010,84(12):1975-8.
    [93]MOKRI A, EMZIANE M. A photovoltaic system with three solar cells and a band-stop optical filter [J]. Journal of Renewable and Sustainable Energy,2011, 3:023113.
    [94]PETERS M, ULBRICH C, GOLDSCHMIDT J C, et al. Directionally selective light trapping in a germanium solar cell [J]. Optics Express,2011,19(102):A136-A45.
    [95]TORREY E, RUDEN P, COHEN P. Performance of a split-spectrum photovoltaic device operating under time-varying spectral conditions [J]. Journal of Applied Physics,2011,109(074909.
    [96]ZHAO Y, SHENG M Y, ZHOU W X, et al. Study of spectrum-splitting solar photovoltaic system, F,2011 [C].
    [97]SHOU CHUN-HUI L Z-Y, WANG TAO, SHEN WEI-DONG, ROSENGARTEN GARY, WANG CHENG, NI MING-JIANG, CEN KE-FA. A Dielectric Multilayer Filter for Combining Photovoltaics with a Stirling Engine for Improvement of the Efficiency of Solar Electricity Generation [J]. Chinese Physics Letters 2011,28(12):
    [98]SHOU C, LUO Z, WANG T, et al. Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems [J]. Applied energy,2012, 92:298-306.
    [99]TAO W, CHUNHUI S, CHENG W, et al. PERFORMANCE OPTIMIZATION OF SILICON CELLS BY SOLAR SPECTRUM SPLITTING TECHNOLOGY [M]. Proceedings of the ASME 2011 Power Conference Co-located with International Conference on Power Engineering. Denver, Colorado, USA; ASME Power 2011 & ICOPE-2011.2011.
    [100]IMENES A G. Design and optimisation of spectral filters for hybrid receiver solar concentrating systems [D]; University of Sydney,2005.
    [101]MASSEY L K. The effects of UV light and weather on plastics and elastomers [M]. William Andrew,2007.
    [102]ZHANG Q C. Recent progress in high-temperature solar selective coatings [J]. Solar Energy Materials and Solar Cells,2000,62(1-2):63-74.
    [103]MARUYAMA S, KASHIWA T, YUGAMI H, et al. Thermal radiation from two-dimensionally confined modes in microcavities [J]. Applied Physics Letters,2001, 79(9):1393-5.
    [104]SAI H, YUGAMI H, KANAMORI Y, et al. Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion [J]. Solar Energy Materials and Solar Cells,2003,79(1): 35-49.
    [105]KENNEDY C, PRICE H. Progress in development of high-temperature solar-selective coating, F,2005 [C].
    [106]ZHAO S, WACKELGARD E. Optimization of solar absorbing three-layer coatings [J]. Solar Energy Materials and Solar Cells,2006,90(3):243-61.
    [107]LI X F, CHEN Y R, MIAO J, et al. High solar absorption of a multilayered thin film structure [J]. Optics Express,2007,15(4):1907-12.
    [108]TYAGI H, PHELAN P, PRASHER R. Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector [J]. Journal of Solar Energy Engineering,2009,131:041004.
    [109]OTANICAR T P, PHELAN P E, PRASHER R S, et al. Nanofluid-based direct absorption solar collector [J]. Journal of Renewable and Sustainable Energy,2010, 2(033102.
    [110]李晓凡.太阳光谱选择性的微纳光子结构特性和制备研究[D];复旦大学,2010.
    [111]DU M, HAO L, MI J, et al. Optimization design of TiO.5Al0.5N/Ti0.25Al0. 75N/AIN coating used for solar selective applications [J]. Solar Energy Materials and Solar Cells,2011,
    [112]OTANICAR T P, PHELAN P E, TAYLOR R A, et al. Spatially Varying Extinction Coefficient for Direct Absorption Solar Thermal Collector Optimization [J]. Journal of Solar Energy Engineering,2011,133(024501.
    [113]TAYLOR R, PHELAN P, OTANICAR T, et al. Nanofluid optical property characterization:towards efficient direct absorption solar collectors [J]. Nanoscale Research Letters,2011,6(1):1-11.
    [114]TAYLOR R A, PHELAN P E, OTANICAR T P, et al. Applicability of nanofluids in high flux solar collectors [J]. Journal of Renewable and Sustainable Energy,2011, 3(023104.
    [115]来松灿,马春荣,张静方.全息记录材料在太阳能利用方面的应用——全息太阳能集光器和全息窗[J].光学技术,1990,06):44-7.
    [116]薄秀华.全息太阳能菲涅耳透镜[J].太阳能学报,1991,01):48-52.
    [117]RICCOBONO J R, LUDMAN J E. Solar holography [J]. Holography for the New Millennium,2002,157-78.
    [118]黄学宁.全息太阳能集光器[J].广西物理,2003,01):36-7.
    [119]FROHLICHK, WAGEMANN E U, SCHULAT J, et al. Fabrication and test of a holographic concentrator for two color PV-operation, F,1994 [C].
    [120]LUDMAN J E, RICCOBONO J, SEMENOVA I V, et al. The optimization of a holographic system for solar power generation [J]. solar energy,1997,60(1):1-9.
    [121]KOSTUK R K, ROSENBERG G. Analysis and design of holographic solar concentrators, F,2008 [C].
    [122]CASTRO J M, ZHANG D, KOSTUK R. Planar Holographic Solar Concentrators for Low and Medium Ratio Concentration System, F,2010 [C]. Optical Society of America.
    [123]INGERSOLL K. Liquid Filters for the Visible and Near Infrared [J]. Applied optics,1971,10(12):2781-3.
    [124]INGERSOLL K. Liquid filters for the ultraviolet, visible, and near infrared [J]. Applied optics,1972,11(11):2473-6.
    [125]INGERSOLL K. Tunable Sharp Cutoff Liquid Optical Filter [J]. Applied optics,1973,12(7):1393-4.
    [126]赵佳飞.纳米流体辐射特性机理研究及其在太阳能电热联用系统中的应用研究[D];浙江大学,2009.
    [127]MAITI S, VYAS K, GHOSH P K. Performance of a silicon photovoltaic module under enhanced illumination and selective filtration of incoming radiation with simultaneous cooling [J]. solar energy,2010,84(8):1439-44.
    [128]赵佳飞,张艳梅,倪明江,et al.基于皮卡遗传算法的纳米多孔薄膜辐射特性反问题研究[J].中国电机工程学报,2010,30(23):
    [129]YABLONOVITCH E. Engineered omnidirectional external-reflectivity spectra from one-dimensional layered interference filters [J]. Optics Letters,1998, 23(21):1648-9.
    [130]CHIGRIN D N, SOTOMAYOR TORRES C. Periodic thin-film interference filters as one-dimensional photonic crystals [J]. Optics and Spectroscopy,2001,91(3): 484-9.
    [131]刘旭陈顾.一维光子晶体的电磁波理论及实现方法[J].光子学报,2001.
    [132]JOANNOPOULOS J D. Photonic crystals:molding the flow of light [M]. Princeton Univ Pr,2008.
    [133]MACLEOD H A. Thin Film Optical Filters_4rd Ed [M]. Tucson, Arizona, USA:Taylor & Francis,2010.
    [134]THELEN A. Design of optical interference coatings [M]. McGraw-Hill New York,1989.
    [135]POPOV K V, DOBROWOLSKI J, TIKHONRAVOV A V, et al. Broadband high-reflection multilayer coatings at oblique angles of incidence [J]. Applied optics, 1997,36(10):2139-51.
    [136]DEOPURA M, ULLAL C, TEMELKURAN B, et al. Dielectric omnidirectional visible reflector [J]. OPTICS LETTERS,2001,26(15):1197-9.
    [137]SAKODA K. Optical properties of photonic crystals [M]. Springer Verlag, 2005.
    [138]唐晋发,顾培夫,刘旭.现代光学薄膜技术[M].浙江大学出版社,2006.
    [139]DOBROWOLSKI J, BROWNING S, JACOBSON M, et al.2007 Topical Meeting on Optical Interference Coatings:Manufacturing Problem [J]. Applied optics, 2008,47(13):231-45.
    [140]DOBROWOLSKI J, LI L, JACOBSON M, et al.2010 topical meeting on optical interference coatings:manufacturing problem [J]. Applied optics,2011,50(9): C408-C19.
    [141]HENDRIX K, OLIVER J. Optical interference coatings design contest 2010: solar absorber and Fabry'CPerot etalon [J]. Applied optics,2011,50(9):C286-C300.
    [142]LAM PERT C. Advanced optical materials for energy efficiency and solar conversion [J]. Solar & wind technology,1987,4:347.
    [143]TIKHONRAVOV A V, TRUBETSKOV M K, DEBELL G W. Application of the needle optimization technique to the design of optical coatings [J]. Applied optics, 1996,35(28):5493-508.
    [144]SOUTHWELL W H. Extended-bandwidth reflector designs by using wavelets [J]. Applied optics,1997,36(1):314-8.
    [145]FINK Y, WINN J N, FAN S, et al. A dielectric omnidirectional reflector [J]. Science,1998,282(5394):1679.
    [146]LI H, GU G, CHEN H, et al. Disordered dielectric high reflectors with broadband from visible to infrared [J]. Applied Physics Letters,1999,74(22):3260-2.
    [147]LI H, CHEN H, QIU X. Band-gap extension of disordered ID binary photonic crystals [J]. Physica B:Condensed Matter,2000,279(1-3):164-7.
    [148]PATRINI M, GALLI M, BELOTTI M, et al. Optical response of one-dimensional (Si/SiO) photonic crystals [J]. Journal of Applied Physics,2002, 92(1816.
    [149]HUANG B, GU P, YANG L. Construction of one-dimensional photonic crystals based on the incident angle domain [J]. Physical Review E,2003,68(4): 046601.
    [150]IMENES A, MCKENZIE D. Flat-topped broadband rugate filters [J]. Applied optics,2006,45(30):7841-50.
    [151]TIKHONRAVOV A, TRUBETSKOV M, DEBELL G. Optical coating design approaches based on the needle optimization technique [J]. Applied optics,2007, 46(5):704-10.
    [152]MANCINI T, HELLER P, BUTLER B, et al. Dish-Stirling systems:An overview of development and status [J]. Journal of Solar Energy Engineering,2003, 125(135).
    [153]BERMEL P, GHEBREBRHAN M, CHAN W, et al. Design and global optimization of high-efficiency thermophotovoltaic systems [J]. Optics Express,2010, 18(103):A314-A34.
    [154]ULBRICH C, PETERS M, BL SI B, et al. Enhanced light trapping in thin-film solar cells by a directionally selective filter [J]. Optics Express,2010,18(102): A133-A8.
    [155]GUEYMARD C. SMARTS2, Simple Model of the Atmospheric Radiative Transfer of Sunshine:Algorithms and Performance Assessment [M]. Florida Solar Energy Center, Cocoa, FL.1995.
    [156]MADSEN C K, ZHAO J H. Optical Filter Design and Analysis:A Signal Processing Approach [M]. Wiley Online Library,1999.
    [157]TFCalc, Distributed by Software Spectra, Inc., Portland, Oregon 97229.Web page:http://www.sspectra.com/. [M].
    [158]刘梦夏,强西林.光学薄膜膜系设计方法及发展趋势[J].西安工业学院学报,2000,4(N4.
    [159]查家明.宽波段分色膜研制[D];南京理工大学,2007.
    [160]TIKHONRAVOV A V, TRUBETSKOV M K, DEBELL G W. Design of coatings for wide angular range applications, F,1997 [C].
    [161]TIKHONRAVOV A. About the limit accuracy of the synthesis problem solution [J]. Zh Vychisl Mat Mat Fiz,1982,22(1421-33.
    [162]钟迪生.真空镀膜——光学材料的选择与应用[M].沈阳:辽宁大学出版社,2001.
    [163]刘广平.微结构热辐射光谱控制特性及其应用研究[D];南京理工大学,2008.
    [164]VERA J. Some properties of multilayer films with periodic structure [J]. Optica Acta,1964,11(315-31.
    [165]S. PENSELIN A S, FABRY-PEROT. Interferometerverspiegelungen aus dielektrischen Vielfachschichten [J]. Z Phys,1955,142(21-41.
    [166]0. HEAVENS H L. Staggered broad-band reflecting multilayers [J]. Applied Optics,1966,5(373-6.
    [167]M. MEDHAT S F. Broad-band dielectric multilayer mirrors by period staggering [J]. Journal of Optics A:Pure and Applied Optics,2001,3(178-82.
    [168]A. TURNER P B. Multilayer mirrors with high reflectance over an extended spectral region [J]. Applied Optics,1966,5(69-76.
    [169]WELFORD W. Computations in thin film optics [M].1954.
    [170]EPSTEIN L. Improvements in heat reflecting filters [J]. Journal of the Optical Society of America,1955,45(361-2.
    [171]LIDDELL H. Computer-Aided Techniques for the Design of Multilayer Filters [M]. Bristol:Adam Hilger Ltd,1981.
    [172]COSTICH V. Reduction of polarization effects in interference coatings [J]. Applied Optics,1970,9(866-70.
    [173]MINKOV I. Theory of dielectric mirrors in obliquely incident light [J]. Opt Spektrosk,1972,33(332-8.
    [174]THELEN A. Avoidance or enhancement of polarization in multilayers [J]. Journal of the Optical Society of America,1980,70(118-21.
    [175]SEELEY J. Simple nonpolarizing high-pass filter [J]. Applied Optics,1985, 24(742-4.
    [176]DEBELL G. Use of a new synthesis algorithm to design polarisation insensitive optical coatings [M]//RANCOURT J. Optical Thin Films IV:New Developments,Proc SPIE. San Diego, California.1994:187-97.
    [177]A. YOGEV J A, M. ORON, N. YEHEZKEL. Concentrating and splitting of solar radiation for laser pumping and photovoltaic conversion [J]. Journal of Propulsion and Power,1996,12(405-9.
    [178]RABL A. Tower reflector for solar power plant [J]. Sol Energy;(United States),1976,18(3):
    [179]WENHAM S, GREEN M, WATT M, et al. Applied photovoltaics [M]. Earthscan/James & James,2007.
    [180]BULAT L P, VEDERNIKOV, M.V., VYALOV, A.I.,, GOLTSMAN B M, DRABKIN, I.A., IORDANISHVILI, E.K.,, TAKHISTOV F Y, TSVETKOV,O.B. Thermoelectric Cooling [M]. LP. Bulat; SPbSUR & FE.2002:85-147.
    [181]ROWE D M. CRC Handbook of Thermoelectrics [M]. London; CRC Press. 1995:700-2.
    [182]陈海燕.β-FeSi-2基热电材料的微观结构和性能优化[D],2007.
    [183]VENKATASUBRAMANIAN R, SILVOTA, E., COLPITTS, T, O'QUINN,B. Thin-film thermoelectric devices with high room-temperature figures of merit [J]. Nature,2001,413(597-608.
    [184]TAVKHELIDZE A, SKHILADZE, G., BIBILASHVILI, A., TSAKADZE, LJANGADZE, L, TALIASHVILI, Z., COX, I., BERISHVILI, Z. Thermionic converter with quantum tunneling [M]. ProcXXI Int Conf on Thermoelectrics. IEEE.2002:435-8.
    [185]杨泰蓉.1kW斯特林发动机的实验研究及热力学分析[D];中国科学技术大学,2010.
    [186]KONGTRAGOOL B, WONGWISES S. A review of solar-powered Stirling engines and low temperature differential Stirling engines [J]. Renew Sust Energ Rev, 2003,7(2):131-54.
    [187]FORMOSA F, DESPESSE G. Analytical model for Stirling cycle machine design [J]. Energ Convers Manage,2010,51(10):1855-63.
    [188]CHILDS W D, DABIRI A E, AL-HINAI H A, et al. VARI-RO solar-powered desalting technology [J]. Desalination,1999,125(1-3):155-66.
    [189]STONE KW D R. Impact of Stirling engine operational requirements on dish-Stirling system life cycle costs [M]. Proceedings of the 1994 ASME Solar Energy Conference. San Francisco.1994.
    [190]B W. Parabolic dish Stirling module development and test results [M]. Proceedings of the IECEC. San Francisco.1984:Paper No.849516.
    [191]DROHER J S S. Palo Alto:Electric Power Research Institute,1986.
    [192]TUCCI M, DE CESARE G.17% efficiency heterostructure solar cell based on p-type crystalline silicon [J]. Journal of Non-Crystalline Solids,2004,338-340(0): 663-7.
    [193]ZHAO J, WANG A, CAMPBELL P, et al. A 19.8% efficient honeycomb multicrystalline silicon solar cell with improved light trapping [J]. Electron Devices, IEEE Transactions on,2002,46(10):1978-83.
    [194]SINTON R, KWARK Y, GAN J, et al.27.5-percent silicon concentrator solar cells [J]. Electron Device Letters, IEEE,1986,7(10):567-9.
    [195]CUI F, HE Y, XU R, et al. Optical Analysis of Fresnel lens for concentrating PV system, F,2010 [C].
    [196]INC. E. Aspherically Contoured Fresnel Lenses (http://www.edmundopt ics.com/products/displayproduct.cfm?productid=2039) [M].2011.
    [197]SKOPLAKI E, PALYVOS J. On the temperature dependence of photovoltaic module electrical performance:A review of efficiency/power correlations [J]. solar energy,2009,83(5):614-24.
    [198]ZAUSCHER M. Solar Photovoltaic Panels From a Heat Transfer Perspective [J]. Retrieved June,2006,9(2010.
    [199]ROYNE A, DEY C, MILLS D. Cooling of photovoltaic cells under concentrated illumination:a critical review [J]. Solar Energy Materials and Solar Cells, 2005,86(4):451-83.
    [200]CUEVAS A, SINTON R, MIDKIFF N, et al.26-percent efficient point-junction concentrator solar cells with a front metal grid [J]. Electron Device Letters, IEEE,2002,11(1):6-8.
    [201]VERLINDEN P, SINTON R, SWANSON R, et al. Single-wafer integrated 140 W silicon concentrator module, F,2002 [C]. IEEE.
    [202]RABL A. Active solar collectors and their applications [M]. Oxford University Press, USA,1985.
    [203]KALOGIROU S A. Solar thermal collectors and applications [J]. Progress in Energy and Combustion Science,2004,30(3):231-95.
    [204]DUFFIE J A, BECKMAN W A. Solar engineering of thermal processes [M]. Wiley-Interscience,2006.
    [205]COVENTRY J S. A solar concentrating photovoltaic/thermal collector [D]; Australian National University,2004.
    [206]COVENTRY J. Performance of a concentrating photovoltaic/thermal solar collector [J]. solar energy,2005,78(2):211-22.
    [207]HOWELL J R, BANNEROT R B. Optimum solar collector operation for maximizing cycle work output [J]. solar energy,1977,19(2):149-53.
    [208]李亚奇,何雅玲,王巍巍.碟式集热器驱动斯特林热机系统(火用)效率分析[J].工程热物理学报,2009,06):911-4.
    [209]YAQI L, YALING H, WEIWEI W. Optimization of solar-powered Stirling heat engine with finite-time thermodynamics [J]. Renewable energy,2010,
    [210]KAUSHIK S, KUMAR S. Finite time thermodynamic evaluation of irreversible Ericsson and Stirling heat engines [J]. Energy Conversion and Management,2001,42(3):295-312.
    [211]SHENDAGE D, KEDARE S, BAPAT S. An analysis of beta type Stirling engine with rhombic drive mechanism [J]. Renewable energy,2010,
    [212]ARINGHOFF R, ASSOCIATION E S T P I, AGREEMENT I E A S I, et al. Concentrated Solar Thermal Power-Now! [M]. Greenpeace,2005.
    [213]KALOGIROU S. Solar energy engineering:processes and systems [M]. Academic Press,2009.
    [214]ROTTMAN G J, WOODS T, GEORGE V. The solar radiation and climate experiment (SORCE):mission description and early results [M]. Springer Verlag,2005.
    [215]SHETTLE E P, FENN R W. Models of the atmospheric aerosols and their optical properties, F,1976 [C].
    [216]P. RICCHIAZZI S Y, C. GAUTIER, D SOWLE. SBDART:a Research and Teaching Software Tool for Plane-parallel Radiative Transfer in the Earth's Atmosphere [M]. Bulletin of the American Meteorological Society,1998.
    [217]A. BERK G P A, P. K. ACHARYA, J. H. CHETWYND, L. S. BERNSTEIN, E. P., SHETTLE. MODTRAN4 User's Manual [M].1999.
    [218]B. MAYER A K. Technical note:the Libradtran Software Package for Radiative Transfer Calculations—Description and Examples of Use. [J]. Atmospheric Chemistry and Physics Discussions,2005,5(1319-81.
    [219]GUEYMARD C A. Parameterized transmittance model for direct beam and circumsolar spectral irradiance [J]. solar energy,2001,71(5):325-46.
    [220]GUEYMARD C A, MYERS D, EMERY K. Proposed reference irradiance spectra for solar energy systems testing [J]. solar energy,2002,73(6):443-67.
    [221]GUEYMARD C A. Direct solar transmittance and irradiance predictions with broadband models. Part I:detailed theoretical performance assessment [J]. solar energy,2003,74(5):355-79.
    [222]GUEYMARD C A. Direct solar transmittance and irradiance predictions with broadband models. Part Ⅱ:validation with high-quality measurements [J]. solar energy,2003,74(5):381-95.
    [223]GUEYMARD C A. The sun's total and spectral irradiance for solar energy applications and solar radiation models [J]. solar energy,2004,76(4):423-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700