用户名: 密码: 验证码:
微观尺度下核电结构材料应力腐蚀裂纹断裂参量分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于奥氏体不锈钢和镍基合金具有良好的耐腐蚀性能和力学性能而被广泛应用于核电设备的结构材料,但是这些材料在轻水反应堆的高温水环境中发生的应力腐蚀开裂(SCC)却成为影响核电站长期安全运行和寿命的关键问题之一。现已知道,应力腐蚀裂纹尖端微观区域的力学状态是影响裂纹扩展速率的三大因素之一,利用多尺度方法研究see裂尖断裂过程区环境、材料和力学氛围是深入了解应力腐蚀开裂机理和扩展速率的重要手段之一。本论文借助数值模拟分析方法,利用宏观和微观尺度相结合的手段对镍基合金应力腐蚀裂纹尖端区域的应力应变和断裂参量进行了分析和研究。完成的主要研究工作如下:
     (1)借助数值模拟方法,以标准紧凑拉伸试样为研究对象,利用有限元软件ABAQUS建立宏观全局模型及裂纹断裂过程区的微观子模型,重点研究了由氧化膜及基体金属构成的氧化膜模型应力腐蚀裂纹尖端区域的相关断裂参量。研究在外载K恒定的情况下,分别以基体金属材料和氧化膜材料力学参量为影响因素,裂尖区域断裂参量变化情况;以氧化膜厚度为影响因素,研究在外载K恒定的情况下,裂尖区域断裂参量变化情况。
     (2)在氧化膜模型的研究基础上,结合电化学理论,提出了沟形裂纹的概念。在宏观模型分析的基础上,利用有限元软件ABAQUS子模型技术,重点研究含沟形裂纹模型中由氧化膜及基体金属构成的应力腐蚀裂纹尖端区域的应力应变场和裂尖应变率。由于沟形裂纹在形成过程中是一个动态的过程,研究在外载K值恒定的情况下,沟形裂纹长度变化对裂尖区域断裂参量的影响;核电材料在应力腐烛状态下容易发生分叉裂纹,研究在外载K值恒定的情况下,沟形裂纹分叉对裂尖区域断裂参量的影响;在应力腐蚀裂纹金相分析的基础上,发现核电材料易发生沿晶扩展,扩展方向将不断变化,研究在K值恒定情况下,裂纹扩展方向对裂尖区域断裂参量的影响。
     (3)鉴于SCC裂纹在实际扩展中是动态连续的复杂过程,建立了对含氧化膜应力腐蚀裂纹动态扩展模型,并在此基础上对裂纹动态过程中的裂尖断裂参量进行了专门的研究。
     (4)分别研究了 K值恒定和变化情况下静态裂纹裂尖区域塑性应变率;研究了裂纹在动态过程中的裂尖区域塑性应变率。
     本研究结果为定量预测轻水反应堆的高温水环境下奥氏体不锈钢和镍基合金应力腐蚀裂纹扩展速率提供了依据。
Austenitic stainless steel and nickel-based alloy have been widely used in structuralmateirals of nuclear power plant, due to their good corrosion resistance and mechanicalproperties. However, the stress corrosion cracking (SCC) in these mateirals in hightemperature water environments of nuclear pressure vessels and piping is a key issue of safetyand life in nuclear power plant. Recently the stress corrosion crack tip mechanical state of themicro-region is considered as one of the three major factors affecting the crack growth rate,and study of SCC crack tip rfacture process zone environment, material and mechanicalatmosphere using multi-scale methods is one of the important tools to the furtherunderstanding of the mechanism and propagation rate of stress corrosion cracking. Based onthe numerical simulation method,combined macro with micro scale model, the stress andstrain at the SCC tip in structural materials of nuclear power plant was analyzed in thisdissertation.
     Main research work completed are as follows:
     (1)Based on the numerical simulation method, the global macro model of standardcompact tension specimen and micro sub-model of fracture process zone were constructed byfinite element sotfware ABAQUS. The research focused on the stress and strain at the SCC tipcomposed by oxide film and base metal. Under the condition of constant k,the base metalmateiral and the oxide iflm material were respectively taken as the affecting factor,thevairation of fracture parameters at a crack tip region was analyzed; under the condition ofconstant k,oxide film thickness was taken as the affecting factor,the variation of rfactureparameters at a crack tip region was analyzed.
     (2)On the basis of oxide film model, combined with the theory of electrochemistry, theconcept of groove-shaped crack was proposed. In the macroscopic model analysis foundation, using finite element software ABAQUS sub-model technology, stress and strain field andstrain rate of SCC crack tip,which is composed by oxide iflm and base metal, were mainlystudied in groove-shaped crack model. As groove-shaped crack in the formation process is adynamic process,on the condition of constant load K,the effect of groove-shaped cracklength changing on the rfacture parameters in crack tip zone was analyzed. Due to nuclearmateiral prone to split under stress corrosion crack,on the condition of constant load K,theeffect of groove-shaped crack bifurcation on the rfacture parameters in crack tip zone wasanalyzed. On the basis of the metallographic analysis of stress corrosion cracking,nuclearmateiral is prone to propagate along crystal, and its direction will constantly change. On thecondition of constant K,the effect of crack propagation direction on rfacture parameters incrack tip zone was analyzed.
     (3) Actually,SCC crack propagation process is dynamic and very complex, which is thebase to establish a dynamic propagating model of SCC crack with oxide film. And on thisbasis, the fracture parameters in crack tip of this dynamic propagating process were speciallyanalyzed.
     (4) On the condition of constant and varying K, the crack tip plastic strain rate in thestationary crack tip zone was analyzed respectively. Similarly, the crack tip plastic strain ratein the dynamically propagating crack tip zone was analyzed.
     The results and conclusions in this dissertation provide a base for quantitative predictionof SCC growth rate in austenitic stainless steel and nickel-based alloy in high temperatureenvironments of the nuclear power plant.
引文
[1] 国家发展和改革委员会.国家核电中长期规划(2005?2020年)[Z].北京,2006,3-4
    [2] 张国宝.科学发展:电力工业赢得挑战的根本路径[J].求是,2009,500:25-27
    [3] 李晓刚,郭兴蓬.材料腐蚀与防护[M].长沙:中南大学出版社,2009
    [4] 张征,刘更,刘天祥,崔俊芝.计算材料科学中桥域多尺度方法的若干进展[J].计算力学学报,2006,23(6):654-658
    [5] Saxena S.,Ramakrishnan N. A compairson of micro,meso and macro scale FEManalysis of ductile rfacture in a CT specimen (mode I)[J]. Computational MateiralsScience,2007,39:1-7
    [6] Xiao S.P” Belytschko T. A birdging domain method for coupling continua withmolecular dynamics[J], Computer Methods in Applied mechanics and Engineering,2004,193:1645-1669
    [7] Dumoulin S” Busso E.P., Dowd N.P.O. A multiscale approach for coupled phenomenonin FCC mateirals at high temperatures[J]. Philosophical Magazine,2003,83(31-34):3895-3916
    [8] Jivkov A.P.,Stevens N.P_C.,Marrow T.J. A three-dimensional computational model forintergranular cracking[J]. Computational Mateirals Science,2006,38(2):442-453
    [9] Spence J.,Nash D.H. Milestones in pressure vessel technology [J], International Journalof Pressure Vessels and Piping.2004,81:89-118
    [10]彭俊,俞军.世界核电现状和发展趋势[J].核安全,2007,4:56-58
    [11]伍浩松.世界核电现状.世界核电协会网站与经济合作组织核能机构年报.2008
    [12]鲍云樵.我国核电在充满期盼中加速发展[J].中外能源,2007, 12(4):19-23
    [13]藏明昌.第三代核电和西屋公司AP1000评述[J].核科学与工程,2005,25(2):106-115
    [14]中国广东核电集团有限公司.中国改进型压水堆核电站CPR1000简介.2006,23(5):36-38
    [15]温鸿钧.如何加快中国核电的发展[J].核科学与工程,2006, 26(1):1-8
    [16]郑健超,杜祥碗.竞争性电力市场环境中核电发展战略研究.中国工程院咨询报告.2004,63-84
    [17] OECD/IEA. Energy technology perspectives-scerarios&strategies to2050.USA,OECD/IEA.2006,223-246
    [18]景继强,奕洪卫.世界核电历程和中国核电发展之路[J].东北电力技术,2008,(2):48-52
    [19]Song T.K?,Kim J.,Chun Y.B. et al. Effect of adjacent safe end to piping weld andpreemptive weld overlay repair on residual stresses on nozzle to safe end weld[C],PVP2009, July26-30,2009,Prague, Czech Republic
    [20]闫红彦,许艺萍.焊接接头的应力腐蚀开裂及防护[J].洛阳工业高等专科学校学报,2007,17(2):16-19
    [21]沈长斌,陶晓杰,杨怀玉等.高温高压水环境下传热管失效形式及防腐措施研究进展[J].腐蚀科学与防护技术,2003,15(4):223-227
    [22]卢建树,王保峰,张九渊?高温水中不锈钢和镍基合金应力腐蚀破裂研究进展[J].核动力工程,2001,22(3):259-263
    [23]Lu Z.P.,Shoji T.,Takeda Y. et al. Transient and steady state crack growth kinetics forstress corrosion cracking of a cold worked316L stainless steel in oxygenated purewater at different temperatures [J]. Corrosion Science,2008,50:561-575
    [24]Seo D?,Ogawa K., Nakao Y. et al. Inlfuence of high-temperature creep stress on growthof thermally grown oxide in thermal barirer coatings[J]. Surface&CoatingsTechnology,2009,203:1979-1983
    [25]Peng Q.J” Kwon J.,Shoji T. Development of a fundamental crack tip strain rateequation and its application to quantitative prediction of stress corrosion cracking ofstainless steels in high temperature oxygenated water[J]. Journal of Nuclear Mateirals,2004,324:52-61
    [26]Xue H.,Li Z.J., Lu Z.P. et al. The effect of a single tensile overload on stress corrosioncracking growth of stainless steel in a light water reactor environment[J], NuclearEngineering and Design,2011,241(3):731-738
    [27]Lu Z.P., Shoji T.,Takeda Y. et al. The dependency of the crack growth rate on theloading pattern and temperature in stress corrosion cracking of strain-hardened316Lstainless steels in a simulated BWR environment[J]. Corrosion Science,2008,50:698-712
    [28]Yamazaki S.,Lu Z.P., Ito Y. et al. The effect of prior deformation on stress corrosioncracking growth rates of Alloy600mateirals in a simulated pressuirzed water reactorprimary water[J]. Corrosion Science,2008,50:835-846
    [29]Houa J.,Shoji T.,Lu Z.P. et al. Residual strain measurement and grain boundarycharacterization in the heat affected zone of a weld joint between Alloy690TT andalloy52[J], Journal of Nuclear Mateirals,2010,397(1-3):109-115
    [30]Yi Y.S.,Shoji T. Quantitative evaluation of mateiral degradation of thermally agedduplex stainless steels using chemical immersion test[J]. Jounral of Nuclear Mateirals,1996,240(1):62-69
    [31]Lu Z.R,Shoji T., Takeda Y. et al. Effects of loading mode and water chemistry on stresscorrosion crack growth behavior of316L HAZ and weld metal mateirals in hightemperature pure water[J], Corrosion Science,2008,50:625-638
    [32]Lu Y.H.,Peng Q.J., Sato T. et al. An ATEM study of oxidation behavior of SCC cracktips in304L stainless steel in high temperature oxygenated water[J]. Journal of NuclearMateirals,2005,347:52-68
    [33]Das N.K” Suzuki K” Takeda Y. et al. Quantum chemical molecular dynamics study ofstress corrosion cracking behavior for fee Fe and Fe-Cr surfaces[J]. Corrosion Science,2008,50:1701-1706
    [34]Peng Q.J., Shoji T” Yamauchi H. et al. Intergranular environmentally assisted crackingof Alloy182weld metal in simulated normal water chemistry of boiling waterreactor[J]. Corrosion Science,2007,49:2767-2780
    [35]Seifert H.R, Ritter S” Shoji T. et al. Environmentally-assisted cracking behavior in thetransition region of an Alloy182/SA508C1.2dissimilar metal weld joint in simulatedboiling water reactor normal water chemistry environment[J]. Jounral of NuclearMateirals,2008,378:197-210
    [36]Dan T.,Shoji T” Lu Z.R et al. Effects of hydrogen on the anodic behavior of Alloy690at60°C [J]. Corrosion Science,2010,52(4):1228-1236
    [37]Hou J.,Peng Q.J.,Sakaguchi K. et al. Effect of hydrogen in Inconel Alloy600oncorrosion in high temperature oxygenated water[J], Corrosion Science,2009,52(3):1098-1101
    [38]Watanabe Y.,Kain V., Tonozuka T. et al. Effect of ce addition on the sensitizationproperties of stainless steels[J], Scirpta Mater,2000,42(3):307-312
    [39]Satoh T.,Nakazato T., Moirya S. et al. Quantitative prediction of environmentallyassisted cracking based on a theoretical model and computer simulation [J], Journal ofNuclear Mateirals,1998,258:2054-2058
    [40]Shoji T.,Lu Z.R, Murakami H. Formulating stress corrosion cracking growth rates bycombination of crack tip mechanics and crack tip oxidation kinetics[J]. CorrosionScience,2010,52(3):769-779
    [41]Das N.K.,Suzuki K.,Ogawa K.et al. Early stage SCC initiation analysis of feeFe-Cr-Ni ternary alloy at288°C: A quantum chemical molecular dynamics approach [J],Corrosion Science,2009,51:908-913
    [42]Sato Y.,Atsumi T.,Shoji T. Continuous monitoring of back wall stress corrosioncracking growth in sensitized type304stainless steel weldment by means of potentialdrop techniques [C]. International Journal of Pressure Vessels and Piping,2007,84:274-283
    [43]束国刚,陆念文.压水堆核电厂关键金属部件的老化和寿命评估[J].中国电力,2006,39(5):53-58
    [44]杨武.核电工程材料的应力腐蚀破裂研究[lf.腐蚀科学与防护技术,1995,7(2):87-92
    [45]褚武扬,谷飚.应力腐蚀机理研究的新进展[J].腐蚀科学与防护技术,1995,7(2):97-101
    [46]陆永浩,褚武扬,高克玮,乔利杰,T.Shoji.304L不锈钢在高温水中的应力腐蚀裂纹扩展[JL金属学报,2004,40(7):763-767
    [47]张志明,王俭秋,韩恩厚,柯伟.表面状态对690TT合金腐蚀及盈利腐蚀行为的影响.中国腐蚀与防护学报,2011,31(6):441-445
    [48]刘侠和,吴欣强,韩恩厚.轻水堆结构材料在加锌水中的腐蚀行为研究现状与进展[J].腐蚀科学与防护技术,2011,23(4):287-292
    [49]Ford F.P. Quantitative prediction of environmentally assisted cracking[J]. Corrosion,1996,52:375-395
    [50]Chopra K., Chung H.M. Current research on environmentally assisted cracking in lightwater reactor environments[J]. Nuclear Engineeirng and Design,1999,194:205-223
    [51]陆新征,林旭川,叶列平.多尺度有限元建模方法及其应用[J].华中科技大学学报,2008,25(4):76-79
    [52]郭雅芳,王崇愚.多尺度材料模型研究及应用[J].材料导报,2001,15(7):9-11
    [53]Kovac M.,Cizelj L. Mesoscopic approach to modeling elastic-plastic polycrystallinematerial behavior[A], Proceedings of International Conference of Nuclear Energy inCentral Europe, Portoroz, Slovenia,2001
    [54]Dao M.,Li M. A micromechanics study on strain-localization-induced rfactureinitiation in bending using crystal plasticity models[J]. Philosophical Magazine A,2001,81(8):1997-2020
    [55]Kwon Y.W. Multi-scale modeling of mechanical behavior of polycrystallinematerials [J], Journal of Computer Aided Mateirals Design,2004,11:43-57
    [56]Ding R.,Guo Z.X.,Qian M. Coupled mesoscopic constitutive modeling and finiteelement simulation for plastic lfow and microstructure of two-phase alloys [J],Computational Mateirals Science,2007,40(2):201-212
    [57]孟庆国,靳征谟."材料损伤断裂机理和宏微观力学理论"研究获硕果[lf.中国科学基金,1998,12(4):258-260
    [58]黄克智,肖纪美.材料的损伤断裂机理和宏微观力学理论[M].北京:清华大学出版社,1999
    [59]龚敏,余祖孝,陈琳.金属腐蚀理论及腐烛控制[M].北京:化学工业出版社,2009
    [60]Xue H., Sato Y., Shoji T. Quantitative estimation of the growth of environmentallyassisted cracks at flaws in light water reactor components [J]. Transactions of theASME-Journal of Pressure Vessel and Technology,2009,131(1):61-70
    [61]Kim Y.J. Characteirzation of the oxide iflm formed on type316stainless steel in288°Cwater cclic normal and hrogen water chemistires [J]. Corrosion,1995,51(11):849-860
    [62]丁遂栋.断裂力学[M].北京:机械工业出版社,1997
    [63]赵建生.断裂力学及断裂物理[M].武汉:华中科技大学出版社,2003
    [64]黎在良,王元汉,李廷芥.断裂力学中的边界数值方法[M].北京:地震出版社,1996
    [65]王自强,陈少华.高等断裂力学[M].北京:科学出版社,2009
    [66]赵腾伦.ABAQUS6.6在机械工程中的应用[M].北京:中国水利水电出版社,2007
    [67]庄苗,张帆,岑松等.ABAQUS非线性有限元分析与实例[M].北京:科学技术出版社,2005
    [68]陆新征,林旭川,叶列平.多尺度有限元建模方法及其应用[J].华中科技大学学报,2008,25(4):76-79
    [69]郭雅芳,王崇愚.多尺度材料模型研究及应用[J].材料导报,2001,15(7):9-11
    [70]王博.硝酸盐复杂环境中X70钢的应力腐蚀试验研究[D].杭州:浙江工业大学,2009
    [71]Mullins M.,Dokainish M. Simulation of the (001) plane crack in alpha-iron employinga new boundary scheme[J], Philosophical Magazine A (SO141-8610),1982,46:771-787
    [72]Khlhoff S.,Gumbsch P.,Fischmeister H F. Crack popagation in b.b.c crystals studiedwith a combined finite-element and atomistic model[J].(SO141-8610),1991,64:851-878
    [73]Tadmor E.B.,Ortiz M” Phillips R. Quasicontinuum analysis of defects in Solids [J],Philosophical Magazine A.(S0141-8610),1996,73(6):1529
    [74]Eircksen J丄.Phase transformations and material instabilities in solids[M]. New York,Academic Press,1984
    [75]Broughton J.Q.,Abraham F_F.,Bernstein N. et al. Concurrent coupling of length scales:methodology and application[J]. Physical Review B.(SO163-1829),1999,60(4):2391-2403
    [76]Abraham F_F.,Broughton J.Q” Bernstein N. Spanning the continuum to quantum lengthscales in a dynamic simulation of brittle fracture[J]. Europhysics Letters.(S0295-5075),1998,44(6):783
    [77]Abraham F.F.,Broughton J.Q.,Bernstein N. Spanning the length scale in dynamicsimulation[J]. Computer Physical.(S0894-1866),1998,12:538-546
    [78]Stillinger F.H., Weber T.A. Computer simulation of local order in condensed phases ofsilicon[J]. Physical Review B.(S0163-1829),1985,31(8):5262-5271
    [79]Rudd R.E” Broughton J.Q. Coarse-grained molecular dynamics and atomic limit offinite elements[J], Physical Review B.(S0163-1829),1998,58(10):5893-5896
    [80]Parkins R.N” Greenwell B.S. Interface between corrosion fatigue and stress-corrosioncracking[J], Material Science,1977,11(8):405-413
    [81]潘保武.低合金髙强度钢应力腐烛研究[D].太原:中北大学,2008
    [82]刘道新.材料的腐蚀与防护[M].西安:西北工业大学出版社,2005
    [83]陈冰川.核电用奥氏体不锈钢应力腐蚀破裂预测模型中电化学和力学性能的研究
    [D].上海:上海材料研究所,2009
    [84]Ford P. Mechanisms of environmentally-assisted cracking[J]. International Journal ofPressure Vessels and Piping,1989,40(55):343-362
    [85]Andresen RL■,Ford F.P. Life prediction by mechanistic modeling and systemmonitoring of environmental cracking of iron and nickel alloys in aqueous systems[J].Mateirals Science and Engineeirng,1988,A103:167-184
    [86]Gao Y.C., Hwang K.C. Elastic-plastic ifelds in steady crack growth in a strainhardening mateiral[A]. Proceedings of Fitfh International Conference on Fracture,1981:669-682
    [87]Chopra K., Chung H.M. Current research on environmentally assisted cracking in lightwater reactor environment[J]. Nuclear Engineeirng and Design,1999,194:205-223
    [88]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,1984
    [89]Xue H., Ogawa K.,Shoji T. Effect of welded mechanical heterogeneity on local stressand strain in stationary and growing crack tips [J], Nuclear Engineeirng and Design,2009,236(5):628-640.
    [90]Wang S.C.,Takeda Y” Shoji T. Observation of the oxide film formed in hightemperature water by applying electroless Ni-P coating [J]. Journal of Nuclear Scienceand Technology,2004,41(7):777-781
    [91]Terachi T.,Fuji K.,Airoka K. Micro-structural characteirzation of SCC crack tip andoxide iflm for SUS316stainless steel in simulated PWR pirmary water at320°C[J],Journal of Nuclear Science and Technology,2005,42(2):225-228
    [92]Machet A.,Galtayries A.,Zanna S. et al. XPS study of oxides formed on nickel basealloys in high-temperature and high pressure water[J]. Surface and Interface Analysis,2002,34:197-200
    [93]高欣,吴欣强,关辉,韩恩厚.高温高压水环境中腐蚀产物膜的研究现状[J].腐蚀科学与防护技术,2007,27(2):110-113
    [94]Gao X.,Wu X.Q., Zhang Z.E. et al. Characteirzation of oxide films on316L stainlesssteel exposed to H202-containing supercirtical water[J]. Supercritical fluids,2007,42:157-163
    [95]Kumar V” German M.D.,Shih C.F. An engineering approach for elastic-plastic rfactureanalysis [A], EPRI/NP1931[R],California: Electric Power Research Institute,1981
    [96]Lagoudas D.C.,Entchev P.,Tirhaijanto R. Modeling of oxidation and its effect on crackgrowth in titanium alloys [J], Computer Methods in Applied Mechanics andEngineeirng,2000,183(1-2):35-50
    [97]王强.铸造AZ91D镁合金腐蚀动态力学性能评价及防护研究[D].长春:吉林大学,2010
    [98]Xue H.,Sato Y_, Shoji T. Quantitative estimation of the growth of environmentallyassisted cracks at flaws in light water reactor components [J]. Transactions of theASME-Joumal of Pressure Vessel and Technology,2009,131(1):61-70
    [99]Kritzer P.,Boukis N.,Dinjus E. The corrosion of nickel-base Alloy625in sub-andsupcritical aqueous solutions of oxygen: A long tine study [J], Journal of MaterialsScience Letters,1999,18:1845
    [100]张丽.超临界水氧化试验系统的研制及材料在该环境中的腐蚀研究[D].北京:中国科学院研究生院博士学位论文.2003
    [101]M.G.方坦纳,N.D.格林著,左景伊译.腐蚀工程(第二版)[M].北京:化学工业出版社,1983
    [102]Takumi T.,Nobuo T.,Takuyo Y.et al. Influence of dissolved hydrogen on structure ofoxide iflm on Alloy600formed in pirmary water of pressurized water reactors [J].Jounral of Nuclear Science and Technology,2003,40(7):509-516
    [103]King P.J. Investigations into the oxidation of Alloy600and Alloy690in secondary sidewater[C]. Proceeding11th International Symposium on Environmental Degradation ofMateirals in Nuclear Systems, Steven-son: American Nuclear Society,2003
    [104]Xue H.,Shoji T. Quantitative prediction of EAC crack growth rate of sensitized type304stainless steel in boiling water reactor environments based on EPFEM.ASMETransactions-Journal of Pressure Vessel and Technology[J],2007,129(3):460-467
    [105]杨卫?宏微观断裂力学[M].北京:国防工业出版社,1995
    [106]Scott P. M.,Benhamou C. An overview of recent observation and interpretation of SCCin nickel base alloys in PWR primary water[C], Proceeding10th IntenrationalSymposium on Environmental Degradation Mateirals in Nuclear Power Systems-WaterReactors,NACE,CDROM,2001
    [107]Scott P. M.,Combrade P. On the mechanism of stress corrosion crack initiation andgrowth in Alloy600exposed to PWR primary water[C]. Proceeding11th InternationalSymposium on Environmental Degradation Mateirals Nuclear Power Systems-WaterReactors,ANS,2003:29-38
    [108]Shoji T. Progress in the mechanistic understanding of PWR SCC and its implication tothe prediction of SCC growth behavior in plants[C]. Proceedings11th InternationalSymposium Environmental Degradation of Materials in Nuclear Power Systems-WaterReactors,ANS,2003:588-598
    [109]Suzuki S.,Kumagayi K.,Kumaga Y. et al. Damage evaluation of PWR pipe in nuclearpower plant[J]. Maintenology.2004,3(2):65-70
    [110]Suzuk.i S” Kumagayi K.,Okamura Y. et al. Core shroud codess[J]. Maintenology,2004,3(2):59-64
    [111]NISA. Documents presented at fitfh structural integrity evaluation committee[M].2003
    [112]NISA. Cracks on the inner surface of the welds at primary water inlet and outlet nozzleto steam generators[M],2008
    [113]Staehle R. W., Gorman J. A. Quantitative assessment of submodes of stress corrosioncracking on the secondary side of steam generator tubing in pressuirzed water reactors:part1[J]. Corrosion,2003,59(11):931-994
    [114]Igarashi T.,Miwa Y” Kaji Y. et al. Two-dimensional stress corrosion cracking model forreactor structural mateirals[J]. Journal of Power Energy Systems,2008,2(4),1188-1196
    [115]Magdowski R. M” Uggowitzer P. J., Speidel M. O. The effect of crack branching onthe residual lifetime of machine components containing stress-corrosion cracks [J].Corrosion Science,1985,25(8-9):745-756
    [116]Arioka K.5Yamada T.,Terachi T. et al. Dependence of stress corrosion cracking forcold-worked stainless steel on temperature and potential, and role of diffusion ofvacancies at crack tips[J]. Corrosion science,2008,64(9):691-706
    [117]Lu Z. P.,Sakaguchi K.5Negishi K. et al. Quantiyfing the effects of strain-hardening andwater chemistry on crack growth rates of3161SS welds in high temperature water[C]_Proceeding14th International Symposium on Environmental Degradation of Mateiralsin Nuclear Power Systems-Water Reactors.2009
    [118]Vitek V. Plane strain stress intensity factors for branched cracks[J]. InternationalJournal of Fracture,1977,13(4):481-501
    [119]Ford F.P. Overview of collaborative research into the mechanisms of environmentallycontrolled cracking in the low alloy pressure vessel steel/water system[C]. Proceedingsof the second international atomic energy agency specialists' meeting an subcirticalcrack growth. Sendai, Japan, Washington,D.C,1986:63-72
    [120]Andresen P.L. Discussion on determination of the fate of the current in the SCC ofsensitized type304SS in high temperature aqueous systems[J]. Corrosion Science,1995,37:2087-2097
    [121]Ford F.P. Quantitative prediction of environmentally assisted cracking[J], Corrosion,1996,52:375-395
    [122]Andresen P.L. SCC mitigation strategies in hot water[C]. Proceedings of Corrosion97conference,NACE International,1997:102
    [123]Shoji T.,Lu Z.P.,Murakami H. Formulating stress corrosion cracking growth rates bycombination of crack tip mechanics and crack tip oxidation kinetics [J]. CorrosionScience,2010,52:769-779

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700