用户名: 密码: 验证码:
燃气轮机湿压缩性能与水滴运动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃气轮机广泛应用于动力和能源行业,其压气机耗功通常会占到燃机涡轮膨胀功的1/2-2/3,因此降低压气机耗功成为提高燃机输出功的最有效措施之一。燃气轮机湿压缩近年来受到关注,因为湿压缩不但可以通过压气机蒸发内冷降低压缩功,大幅增加燃机功率输出,而且可以提高热效率,是效费比较高的技术。同时,湿压缩还可以有效抑制燃烧室内NOx生成,降低燃机污染物的排放。因此,本文利用数值模拟方法对燃气轮机湿压缩过程的机理展开深入的研究。
     压气机湿压缩过程是包含水滴蒸发相变的复杂两相流动,水滴颗粒的运动和蒸发过程是该项技术的关键。为此,论文首先对压气机内水滴的气动破碎和水滴/叶片撞击行为进行了研究。基于Bai和Gossman喷雾撞壁理论,分析了水滴撞击叶片可能发生的形态,根据撞击情况分为粘附、反弹、铺展和喷溅,并且按照压气机内流动特点,论证了水滴撞击叶片后主要发生铺展和喷溅两种类型。然后结合跨音速静叶栅的湿压缩试验,提出了压气机湿压缩水滴撞击破碎模型,并将其嵌入湿压缩数值模拟中,有效提高了软件湿压缩数值模拟的准确性。本文还从数值模拟和理论方面分析了湿压缩压气机叶栅具有较大相间滑移的水膜从动、静叶尾缘的脱落和破碎。
     本文利用所建立的模型,研究和分析了多级轴流压气机湿压缩过程。给出了多级压气机内不同直径水滴的破碎和径向迁移规律。并分析了多级压气机湿压缩特性,多级压气机湿压缩过程的流量变化特点和负荷分配特点。
     湿压缩效应不仅体现在压缩过程,还会影响到燃烧过程和排放,以及通过工质质量流量和成分变化增加涡轮输出功。因此,本文在一台小型涡喷发动机上进行了整机数值模拟,研究了湿压缩条件下燃气轮机整体性能、部件性能,以及燃烧室内污染物生成和排放。在保持比油耗不变条件下,得出了不同直径喷雾颗粒在压气机及燃烧室内的蒸发量,及其湿压缩对燃机整机性能的影响。并且给出了湿压缩多级压气机体积流量变化趋势及动叶片负荷的变化规律,分析了湿压缩对压气机流动分离的影响机理。最后,研究了湿压缩对燃烧室主要污染物NO和CO生成和排放的影响,并建立了NO生成量与蒸发量的指数关系式。
     通过本文的研究,水滴/叶片撞击机理得到清晰解释,湿压缩对压气机流场影响的本质得到更深刻认识,湿压缩对燃机污染物排放的影响也得到深入的分析。
Gas turbines have been widely used in power and energy industries, but the compressorof a gas turbine consumes as a rule of thumb about1/2-2/3of useful turbine expansion work,which decreases the output of power turbine. Therefore, to reduce the compressor workbecomes one of the most effective ways to increase the gas turbine output power. Wetcompression within gas turbines becomes the most popular technique in recent years, whichcan decrease the compression work through internal evaporative cooling in compressor,increase evidently the power output of the engine, promote the thermal efficiency, and isconsidered as a cost-effective technique of relatively easy to implement. Wet compressiontechnique can also restrain NOxproduction in combustion resulting in low pollutant emission.Therefore, a comprehensive and thorough numerical investigation on wet compression withgas turbines is carried out in this dissertation.
     Wet compression process in compressors consists of complicated two-phase flows withphase change and the key points of this technique involve the studies of droplet motion andevaporation processes. In this study, aerodynamic secondary breakup of big moving dropletsand droplet/blade impingement in compressors are investigated. And droplet/wallimpingement theory proposed by Bai and Gossman is used to analyze droplet/bladeimpingement phenomenon resulting in four regimes as stick, rebound, spread and splash,according to droplet Weber number. Depending on the flow character in compressors, it’spredicted and demonstrated that spread and splash are the two dominant regimes whendroplet/blade impingement takes place. Based on the theoretical analysis and experimentalobservations in wet compression test on a transonic stator, one simplified breakup model isassumed to simulate droplet/blade impingement in compressors to get a more reasonablenurerical solution. Numerical and theoretical methods are used to analyze the differences ofwater film breakup after shedding from the trailing edges of fast-moving rotor and stationarystator respectively.
     The established model was applied to study and analyse the wet compression progress ina multistage axial compressor. And the breakup and radial moving of drplets with diversediameters injected from the mid-inlet is investigated. Based on this compressor, the study of wet compression performance of multistage compressor is carried out which involvescharacteristics of volume flowrate variation and blade load distribution.
     Wet compression influences not only the compression process in compressor, but also thecombustion process and emissions in combustor, and the change of mass flowrate andcompositions of the working fluid. Entire flow simulation of a small turbojet engine withwater injection from its inlet has been implemented to predict the effect of wet compressionon the performances of the full engine and its components, and the main pollutant emissionsof combustor. Under the condition of keeping the constant fuel rate with respect the inlet airflowrate, water injection with different droplet diameter results in different evaporationproportion of droplets in compressor and in combustor which evidently can influence theengine performance. Through analyzing the volume flowrate change in each blade passageand the load distribution of each blade, the effect of wet compression on flow separation incompressor is well interpreted. Last, detailed analysis of wet compression effect on the mainpollutants NO and CO in combustion is carried out, and the exponential correlation of NOproduction against evaporation rate is set up.
     In this study, the mechanism of droplet/blade impingement in compressor is wellinterpreted, profound understanding of some essential points in the effect of wet compressionon flow field is made, and the effect of wet compression on pollutant emission of combustoris well analyzed. All the work here can contribute a lot to the theoretical and practical studyon wet compression of gas turbines.
引文
[1] Day J. Engines: the Search for Power.1980,7-13P
    [2] Gunston B. The Development of Jet and Turbine Aero Engines.1995,5-8P
    [3] Rolls-Royce Corporation. Next generation turbine system study [R].2002
    [4] Zheng Q, Sun Y, Li S, and Wang Y. Thermodynamic analyses on wet compressionprocess in the compressor of gas turbine [C]. ASME Paper No: GT2002-30590,2002
    [5] Meher-Homji C B and Mee T R. Gas turbine power augmentation by fogging of inletair [C]. Proceedings of28th Turbomachinery Symposium.1999
    [6] Bhargava R, Meher-Homji C B. Parametric analysis of existing gas turbines with inletevaporative and overspray fogging [C]. ASME Paper No: GT2002-30560,2002
    [7] LM6000Sprint Design Enhanced to Increase Power and Efficiency. Gas Turbine World:July-August2000,16-19P
    [8] De Lucia M, Lanfranchi C, and Boggio V, Benefits of compressor inlet air cooling forgas turbine cogeneration Plants [C]. ASME Paper No: GT1995-311,1995
    [9] Sexton W R, Sexton M R. The effects of wet compression on gas turbine engineoperating performance [C]. ASME Paper No: GT2003-38045,2003
    [10] Giampaolo T. Gas turbine handbook: principles and practices.3rd Edition.2006
    [11] Johnson D gidius Elling. Teknisk Ukeblad [J].1961,108(47):1165–74P
    [12] Kleinschmidt R V. Value of wet compression in gas-turbine cycles [J]. MechanicalEngineering.1947,69(2):115-116P
    [13] Wetzel I T and Jennings B H. Water spray injection of an axial flow Compressor [C].Proceedings of the Midwest Power Conference,1949.Vol. XI,376-380P
    [14] Hill P G. Aerodynamic and thermodynamic effects of coolant injection on axialcompressors [J]. The Aeronautical Quarterly.1963,331-348P
    [15] Poletavkin P. Cycles and thermal circuits of steam-gas turbine installations, with coolingof the gas during compression by the evaporation of injected water [J]. Institute of HighTemperature.1970,8(3):662-628P
    [16] Slobodyanyuk L I. Effect of water spraying on operation of the compressor of a gasturbine engine [J]. Energeticka,1973(1):92-95P
    [17] Gasparovic I N and Hellemans J G. Gas turbines with heat exchanger and waterinjection in the compressed air [J]. Journal of Combustion,1972,44(6):32-40P
    [18] Bardon M F. Modified Brayton cycles utilizing alcohol fuels [J]. Journal of Engineeringfor Power.1982, vol.104, Apr.:341-348P
    [19] Bardon M F and Fortin J A C. Methanol dissociative intercooling in gas turbines [C].ASME Paper No: GT1982-176,1982
    [20] Murthy S N B, Ehresman C M and Haykin T. Direct and system effects of wateringestion into jet engine compressors [C]. Presented at AIAA/ASME4.sup.th JointFluid Mechanics, Plasma Dynamics and Lasers Conference, May12-14,1986
    [21] Nolan J P and Twombly V J. Gas turbine performance improvement direct mixingevaporative cooling system American Atlas Cogeneration Facility Rifle, Colorado [C].ASME Paper No: GT1990-368,1990
    [22] Meher-Homji C B and Mee T R. Gas turbine power augmentation by fogging of inlet air
    [C]. Proceedings of28th Turbomachinery Symposium, Houston, Texas, USA,September1999
    [23] Horlock J H. Compressor performance with water injection [C]. ASME Paper No:GT2001-0343,2001
    [24] Bhargava R and Meher-Homji C B. Parametric analysis of existing gas turbines withinlet evaporative and overspray fogging [C]. ASME Paper No: GT2002-30560,2002
    [25] Willems D E and Ritland P D. A pragmatic approach to evaluation of inlet foggingsystem effectiveness [C]. IJPGC Paper No: IJPGC2003-40075,2003
    [26] Bhargava R, Bianchi M, Melino F and Peretto A. Parametric analysis of combinedcycles equipped with inlet fogging [C]. ASME Paper No: GT2003-38187,2003
    [27] Sexton W R, Sexton M R. The effects of wet compression on gas turbine engineoperating performance [C]. ASME Paper No: GT2003-38045,2003
    [28] H rtel C, Pfeiffer P. Model analysis of high-fogging effects on the work of compression
    [C]. ASME Paper No: GT2003-38117,2003
    [29] Bagnoli M, Bianchi M, Melino F, Peretto A, Spina P R, Bhargava R and Ingistov S. Aparametric study of interstage injection on GE frame7EA gas turbine [C]. ASME PaperNo: GT2004-53042,2004
    [30] Chaker M, Meher-Homji C B, Mee T R. Inlet fogging of gas turbine engines Part I:fog droplet thermodynamics, heat transfer and practical considerations [J]. ASMEJournal of Engineering for Gas Turbine and Power, July,2004, Vol.126:545-558P
    [31] Chaker M, Meher-Homji C B, Mee T R. Inlet fogging of gas turbine engines PartII:fog droplet sizing analysis, nozzle types, measurement and testing [J]. ASME Journal ofEngineering for Gas Turbine and Power, July,2004, Vol.126:559-570P
    [32] Chaker M, Meher-Homji C B, Mee T R. Inlet fogging of gas turbine engines PartIII:fog behavior in inlet ducts, computational fluid dynamics analysis, and wind tunnelexperiments [J]. ASME Journal of Engineering for Gas Turbine and Power, July,2004,Vol.126:571-580P
    [33] White A J, Meacock A J., An evaluation of the effects of water injection on compressorperformance [J]. ASME Journal of Engineering for Gas Turbines and Power,2004, Vol.126,748-754P
    [34] Wang T, Li X and Pinninti V. Simulation of mist transport for gas turbine inlet aircooling [J]. Numerical Heat Transfer,2008, Part A,53:1013-1036P
    [35] Roumeliotis I, Aretakis N and Mathioudakis K. Performance analysis of twin-spoolwater injected gas turbines using adaptive modeling [C]. ASME Paper No:GT2003-38516,2003
    [36] Jonsson M, Yan J. Humidified gas turbine-a review of proposed and implemented cycles[J].2005, Energy (30):1013-1078P
    [37] Shepherd D W and Fraser D. Impact of heat rate, emissions and reliability from theapplication of wet compression on combustion turbines [C]. Power-Gen International,Las Vegas, Nevada, USA, Nov28-30,2006
    [38] Abdelwahab A. An Investigation of The use of wet compression in industrial centrifugalcompressors [C]. ASME Paper No: GT2006-90695,2006
    [39] Sanaye S, Rezazadeh H and Aghazeynali M. Effects of inlet fogging and wetcompression on gas turbine performance [C]. ASME Paper No: GT2006-90719,2006
    [40] Kim K H and Perez-Blanco, H. An assessment of high-fogging potential for enhancedcompressor performance [C]. ASME Paper No: GT2006-90482,2006
    [41] Bagnoli M, Bianchi M, Melino F and Spina P R. Development and Validation of aComputational Code for Wet Compression Simulation of Gas Turbines [J]. ASMEJournal of Engineering for Gas Turbines and Power, January2008, Vol.130,012004/1-8P
    [42] Bagnoli M, Bianchi M, Melino F, Peretto A, Spina P R, Ingistov S and Bhargava R K.Application of a computational code to simulate interstage injection effects on GEFrame7EA gas turbine [J]. ASME Journal of Engineering for Gas Turbines and Power,January2008, Vol.130,012001/1-10P
    [43] Beede W L. Performance of J-33-A-21and J-33-A-23Compressors with WaterInjection [R]. NACA-RM-SE8A19, January28,1948
    [44] Beede W L, Withee J R. Performance of J33-A-21and J33-A-23Turbojet-Engjine withand without Water Injection [R]. NACA-RM-SE9G13, August03,1949
    [45] Withee J R, Beede W L, Ginsburg A. Performance of J33-A-27Turbojet-EngjineCompressor III Over-All Performance Characteristics of Modified Compressor withWater Injection at Design Equivalent Speed of11,800RPMV [R].NACA-RM-SE50F14,1950
    [46] Useller J W, Auble C M, Harvey R W. Thrust augmentation of a turbojet engine atsimulated flight conditions by introduction of a water-alcohol mixture into thecompressor [R], NACA-RM-E52F20, August18,1952
    [47] Harp J L, Useller J W, Auble C M. Thrust augmentation of a turbojet engine by theintroduction of liquid ammonia into the compressor inlet [R], NACA-RM-E52F18,August13,1952
    [48] Stroub R H. Helicopter payload gains utilizing water injection for hot day poweraugmentation [R], NASA-TM-X-62195,1972
    [49] Balepin V, Ossello C, Snyder C. NOXEmission Reduction in Commercial Jets throughWater Injection [C]. AIAA-2002-3623,2002
    [50] Daggett D L, Fucke L, Hendricks R C, Eames D J H. Water injection on commercialaircraft to reduce airport NOx[C]. AIAA-2004-4198,2004
    [51] Daggett D L. Water Misting and Injection of Commercial Aircraft Engines to ReduceAirport NOx[R]. NASA CR-2004-212957,2004
    [52] Daggett D L. Water Injection Feasibility for Boeing747Aircraft [R]. NASACR-2005-213656,2005
    [53] Becker A. Engine Company Evaluation of Feasibility of Aircraft Retrofit Water-InjectedTurbomachines [R]. NASA CR-2006-213871,2006
    [54] Hendricks R C, Daggett D L, Shouse D T, Roquemore W M, Brankovic A and Jr. RyderR C. Can Water-Injected Turbomachines Provide Cost-Effective Emissions andMaintenance Reductions?[R]. NASA TM-2011-214039,2011
    [55]石华鑫,杨绍侃,朱瑞琪.活塞式压缩机喷水蒸发冷却中液滴雾化的研究[J].流体工程.1984(2):5~13,19页
    [56]林莘.活塞式压缩机喷水蒸发内冷却过程的热力学研究[D].西安交通大学硕士论文.1985
    [57]薛莉.喷水螺杆压缩机的研究[J].流体工程.1987(6):11~15页
    [58]李敏.活塞式压缩机喷水内冷却的实验研究[J].流体工程.1993(7):10~13页
    [59]李淑英,郑群,孙聿峰,王国学.压缩过程喷水蒸发内冷燃气轮机循环分析[J].船舶工程.1998(3):36-37页
    [60]李淑英.压气机级间喷水湿压缩燃气轮机原理研究[D].哈尔滨工程大学博士论文.1999
    [61]孙聿峰,周杰.试论级间喷水湿压缩技术的应用[J].哈尔滨工程大学学报.1999,2(4):85-89页
    [62]李淑英,张正一,孙聿峰等.压气机级间喷水燃气轮机的实验研究[J].热能动力工程.2002,17(2):143-146页
    [63]李淑英,戴景民.湿压缩燃气轮机热力循环的特点与机理分析[J].燃气轮机技术.2001,14(4):20-22页
    [64]李淑英,郑群,周杰,孙聿峰.压气机级间喷水燃气轮机循环分析[J].船舶工程.2001(3):28-32页
    [65]王云辉.湿压缩及湿压缩系统性能研究[D].哈尔滨工程大学博士学位论文.2002.
    [66]王云辉,刘敏,孙聿峰,刘子亘.湿压缩对压缩系统失速后瞬态响应的影响分析[J].热能动力工程.2003.18(1):67-70页
    [67]李淑英,祝剑虹,卢伟.湿压缩压气机特性的研究.热能动力工程[J].2003.18(6):600-604页
    [68] Zheng Q, Sun Y, Li S and Wang Y. Thermodynamic analysis of wet compressionprocess in the compressor of gas turbine [J]. ASME Journal of Engineering for GasTurbines and Power,2003, vol.125, July:489-496P
    [69] Zheng Q, Li M, Sun Y.2003. Thermodynamic analysis of wet compression andregenerative (WCR) gas turbine [C]. ASME Paper No: GT2003-38517,2003
    [70] Li M and Zheng Q. Wet compression system stability analysis Part I Wet CompressionMoore Greitzer Transient Model [C]. ASME Paper No: GT2004-54018,2004
    [71] Li M and Zheng Q. Wet compression system stability analysis Part II Simulations andBifurcation Analysis [C]. ASME Paper No: GT2004-54020,2004
    [72]李明宏.湿压缩燃气轮机稳定性研究[D].哈尔滨工程大学硕士学位论文.2005
    [73]李淑英,卢伟,张伟,孙聿峰,戴景民.压气机饱和湿压缩过程的分析[J].哈尔滨工业大学学报.2004,36(12):1635-1637,1640页
    [74]张正一,由雪琴,张伟,孙聿峰.湿压缩压气机及压缩系统性能的理论研究[J].燃气轮机技术.2004,17(3):40-44页
    [75]李淑英,谭美苓,孙聿峰.小型离心式压气机的湿压缩特性研究[J].燃气轮机技术.2005,18(1):43-46页
    [76]李淑英,魏青政,王云辉,孙聿峰.模拟舰船燃机压气机级间流场的喷水雾化实验研究[J].哈尔滨工程大学学报.2002,23(2):13-16页
    [77]马同玲,孙聿峰,李淑英.增压柴油机进口加湿压气机性能研究[J].哈尔滨工程大学学报.2002,23(4):44-47,76页
    [78]张伟.单级增压器的湿压缩系统性能研究[D].哈尔滨工程大学硕士论文.2004
    [79]谭美苓.小型离心式压气机湿压缩特性研究[D].哈尔滨工程大学硕士学位论文.2005
    [80]王新年,由雪琴,孙聿峰,李淑英.直流闪蒸技术在湿压缩实验装置中的适用性研究[J].燃气轮机技术,2005,18(4):47-49页
    [81]卫星云,史玉恒,李淑英.喷水压气机特性的实验研究[J].应用科技.2006,33(7):64-67页
    [82]李淑英,王新年,孙聿峰,由雪琴.燃气轮机湿压缩试验与应用研究[J].航空发动机.2006,32(1):21-24页
    [83]王新年,由雪琴,李淑英,孙聿峰.两级离心式压气机湿压缩实验台系统改进设计与实验研究[J].热力透平.2006,35(1):18-22页
    [84]由雪琴.湿压缩技术的理论研究与实验[D].哈尔滨工程大学硕士学位论文.2006
    [85]王新年.离心压气机湿压缩实验研究及数值模拟[D].哈尔滨工程大学硕士学位论文.2006
    [86]史玉恒.两级离心式压气机湿压缩特性的实验研究[D].哈尔滨工程大学硕士学位论文.2007
    [87] Shao Y, Zheng Q.2005. The entropy and exergy analyses of wet compression gasturbine [C]. ASME Paper No: GT2005-68649,2005
    [88]邵燕.湿压缩燃气轮机气动热力学研究[D].哈尔滨工程大学硕士学位论文.2006
    [89] Shao Y, Zheng Q and Zhang Y.2006. Numerical Simulation of AerodynamicPerformances of Wet Compression Compressor Cascade [C]. ASME Paper No:GT2006-91125,2006
    [90] Sun L, Li Y, Zheng Q and Bhargava R.2008. The Effects of Wet Compression on theSeparated Flow in a Compressor Stage [C]. ASME Paper No: GT2008-50920,2008
    [91] Sun L, Li Y, Zheng Q and Bhargava R. Understanding Effects of Wet Compression onSeparated Flow Behavior in an Axial Compressor Stage Using CFD Analysis [J].Journal of Turbomachinery,2011(133):031026-1-14P
    [92]孙兰昕,郑群,李义进.两级低压压气机湿压缩数值研究[J].中国电机工程学报.2009,29(32):76-82页
    [93] Sun L, Zheng Q, Luo M, Li Y and Bhargava R.2010. Understanding Behavior of WaterDroplets in a Transonic Compressor Rotor with Wet Compression [C]. ASME Paper No:GT2010-23141,2010
    [94] Sun L, Zheng Q, Luo M, Li Y and Bhargava R. On the Behavior of Water DropletsWhen Moving Onto Blade Surface in a Wet Compression Transonic Compressor [J].Journal of Engineering for Gas Turbines and Power,2011(133):082001-1-10P
    [95] Luo M, Zheng Q, Sun L, Deng Q, Li S, Liu C and Bhargava R. The NumericalSimulation of Inlet Fogging Effects on the Stable Range of a Transonic CompressorStage [C]. ASME Paper No: GT2011-46124,2011
    [96] Yang H, Zheng Q, Luo M, Sun L and Bhargava R. Wet Compression Performance of aTransonic Compressor Rotor at its Near Stall Point [J]. Journal of Marine Science andApplication,2011(10):49-62P
    [97]林枫,闻雪友,栾坤.压气机的湿压缩特性及计算模型初步研究[J].热能动力工程.1998,13(6):402-405页
    [98]林枫.改善进气条件提高燃汽轮机性能的新技术研究[D].中国舰船研究院博士学位论文.1999
    [99]林枫. GT25000燃气轮机喷水中冷性能分析[C].中国工程热物理年会工程热力学与能源利用学术会议.1999:171-176页
    [100]刘建成.燃汽轮机喷水中冷及湿压缩过程的数值模拟[C].中国电机工程学会燃气轮机发电专委会2000年年会
    [101]刘建成,闻雪友.压气机湿压缩研究的发展[J].热能动力工程.2000,15(2):87-90页
    [102]王永峰.加入水工质的燃气轮机循环的性能研究[D].哈尔滨船舶锅炉涡轮机研究所硕士学位论文.2007
    [103]王永青,陈安斌,严家騄,闻雪友.压气机进气通道喷水冷却的理论研究[J].工程热物理学报.1998,19(1):17-20页
    [104]王永青,刘铭,严家騄,何健勇,廉乐明.燃气轮机装置中湿压缩过程的数学模型[J].热能动力工程.2001,16(2):129-132页
    [105]王永青,刘铭,严家騄,何健勇,廉乐明.燃气轮机装置中湿压缩过程的一般规律及性能[J].热能动力工程.2001,16(3):282-310页
    [106]王永青,刘铭,廉乐明,严家騄.湿压缩过程的热力学指标及湿压缩燃机循环性能分析[J].热能动力工程,2002,17(3):241-243页
    [107]王永青,王滨,严家騄.湿压缩HAT循环的热力学分析[J].燃气轮机技术.2002,15(1):45-48,65页
    [108]王永青,李炳熙.燃气轮机装置湿压缩技术的研究发展状况[J].热能动力工程.2004,19(2):111-115页
    [109]杨磊,许广宇.离心气体压缩机湿压缩与喷水冷却技术在乙稀裂解生产中的实际应用[J].流体机械.2006,34(10):49-52页
    [110]王树术.喷水湿压缩技术在裂解气压缩机上的应用[J].石化技术与应用.2007,25(1):35-39页
    [111] CITS Annual Technical Report2000~2005[R]. Center for Integrated TurbulenceSimulations, Stanford University,2000~2005
    [112] Shankaran S, Liou M F., Liu N S, Davis R and Alonso J J. multi-code-coupling interfacefor combustor/turbomachinery simulations [C]. AIAA-2001-0974,2001
    [113] Davis R L, Yao J, Clark J P, Stetson G, Alonso J J, Jameson A, Haldeman C W andDunn M G. Unsteady interaction between a transonic turbine stage and downstreamcomponents [C]. ASME Paper No: GT2002-30364,2002
    [114] Schlüter J, Shankaran S, Kim S, Pitsch H and Alonso J J. Integration of RANS and LESflow solvers for simultaneous flow computations [C]. AIAA-2003-0085,2003
    [115] Schlüter J, Shankaran S, Kim S, Pitsch H and Alonso J J. Towards multi-componentanalysis of gas turbines by CFD: Integration of RANS and LES flow solvers. ASMEGT2003-38350
    [116] Constantinescu G, Mahesh K, Apte S, Iaccarino S, Ham F and Moin P. A new paradigmfor simulation of turbulent combustion in realistic gas turbine combustors using LES
    [C]. ASME Paper No: ASME GT2003-38356,2003
    [117] Kim S, Schlüter J, Wu X, Pitsch H and Alonso J J. Integrated simulations formulti-component analysis of gas turbines: RANS boundary conditions [C].AIAA-2004-3415,2004
    [118] Schlüter J, Pitsch H and Moin P. Large-eddy simulation inflow conditions for couplingwith Reynolds-averaged flow solvers [J].2004, AIAA J., Vol.42,478-484P
    [119] Schlüter J, Pitsch H and Moin P. Outflow conditions for integrated large-eddysimulation/Reynolds-averaged Navier-Stokes simulations [J],2005, AIAA J., Vol.43,156-164P
    [120] Schlüter J, Wu X, Shankaran S, Kim S, Pitsch H and Alonso J J. A framework forcoupling Reynolds-averaged with large-eddy simulations for gas turbine applications [J].2005, ASME J. Fluids Eng.,127,806-815P
    [121] Schlüter J, Wu X, Kim S, Pitsch H and Alonso J J. Integrated simulations of acompressor/combustor assembly of a gas turbine engine [C]. ASME Paper No: ASMEGT2005-68204,2005
    [122] Schlüter J, and Pitsch H. Anti-aliasing filters for coupled Reynolds-averaged/large-eddysimulations [J],2005AIAA J., Vol.43,608-616P
    [123] Schlüter J, Wu X, Weide E v d, Hahn S, Herrmann M, Alonso J J and Pitsch H. Apython approach to multi-code simulations: CHIMPS. CITS Annual Research Briefs2005[R]. Center for Integrated Turbulence Simulations, Stanford University,2005
    [124] Alonso J J. et al. CHIMPS: A high-performance scalable module for multi-physicssimulations [C]. AIAA-2006-5274,2006
    [125] Mahesh K, Constantinescu G, Apte S, Iaccarino G, Ham F and Moin P. Large-eddysimulation of reacting turbulent flows in complex geometries [J]. Journal of AppliedMechanics,2006, Vol.73,374-381P
    [126] Schlüter J, Apte S, Kalitzin G, Pitsch H, Weide E van der and Alonso J. Unsteady CFDSimulation of an Entire Gas Turbine High-Spool [C]. ASME Paper No: ASMEGT2006-90090,2006
    [127] Medic G, Kalitzin G, You D, Herrmann M, Ham F, Weide E van der, Pitsch H andAlonso J. Integrated RANS/LES computations of turbulent flow through a turbofan jetengine [R]. CITS Annual Research Briefs2006. Center for Integrated TurbulenceSimulations, Stanford University,2006
    [128] Medic G, You D and Kalitzin G. An approach for coupling RANS and LES in integratedcomputations of jet engines [R]. CITS Annual Research Briefs2006. Center forIntegrated Turbulence Simulations, Stanford University,2006
    [129] Hall E J. Aerodynamic Modeling of Multistage Compressor Flow Fields-Part1:Analysis of Rotor/Stator/Rotor Aerodynamic Interaction [C]. ASME Paper No: GT97--344,1997
    [130] Hall E J. Aerodynamic Modeling of Multistage Compressor Flow Fields-Part2:Analysis of Rotor/Stator/Rotor Aerodynamic Interaction [C]. ASME Paper No: GT97--GT-345,1997
    [131] Evans A L, Naiman C G, Lopez I, and Follen G J., Numerical Propulsion SystemSimulation's National Cycle Program [C].34th AIAA/ASME/SAE/ASEE; JointPropulsion Conference&Exhibit, Cleveland, OH, July13-15,1998
    [132] Lytle J K. The Numerical Propulsion System Simulation: A Multidisciplinary designSystem for Aerospace Vehicles [R]. NASA/TM-1999-209194,1999
    [133] Adamczyk J J. Aerodynamic Analysis of Multistage Turbomachinery Flows in Supportof Aerodynamic Design, J. Turbomach.,2000,122(2), pp.189-217P
    [134] Ryder R C and McDivitt T. Application of the National Combustion Code towardsIndustrial Gas Fired Heaters [C]. AIAA-2000-0456,2000
    [135] Follen G J, and auBuchon M. Numerical Zooming between a NPSS Engine SystemSimulation and a1-Dimensional High Compressor Analysis Code [R]. NASATM-2000-209913,2000
    [136] Lytle J K. The Numerical Propulsion System Simulation: An Overview [R].NASA/TM-2000-209915,2000
    [137] Turner M G. Full3D Analysis of the GE90Turbofan Primary Flowpath [R].NASA/CR-2000-209951,2000
    [138] Ebrahimi H B, Ryder R C, Brankovic A and Liu N S. A Measurement Archive forValidation of the National Combustion Code [C]. AIAA-2001-0811,2001
    [139] Turner M G, Ryder R, Norris A, Celestina M, Moder J, Liu N S, Adamczyk J and VeresJ. High Fidelity3D Turbofan Engine Simulation with Emphasis on Turbomachinery-Combustor Coupling [C]. AIAA-2002-3769,2002
    [140] Turner M G, Norris A and Veres J. P. High Fidelity3D Simulation of the GE90[C].AIAA2002-3996,2002
    [141] Veres J P. Overview of High-Fidelity Modeling Activities in the Numerical PropulsionSystem Simulations (NPSS) Project [R]. NASA TM-2002-211351,2002
    [142] Reed J A, Turner M G, Norris A, Veres J P. Towards an Automated Full-TurbofanEngine Numerical Simulation [R]. NASA TM-2003-212494,2003
    [143] Turner M G, Reed J A, Ryder R, Veres J P. Multi-Fidelity Simulation of a TurbofanEngine with Results Zoomed into Mini-Maps for a Zero-D Cycle Simulation [C].ASME Paper No: GT2004-53956,2004
    [144] List M G, Turner M G, Chen J P, Remotigue M G and Veres J P. Unsteady, CooledTurbine Simulation Using a PC-Linux Analysis System [C]. AIAA2004-0370,2004
    [145] McBride B J, Gordon S and Reno M A. Coefficients for Calculating Thermodynamicand Transport Properties of Individual Species [R]. NASA TM-4513,1993
    [146] Launder B E and Spalding D B. Lectures in Mathematical Models of turbulence.Academic Press, London, England,1972
    [147] Poling B E, Prausnitz J M and O’Connell J P. The Properties of Gases and Liquids.McGraw-Hill, New York,2001
    [148] O'Rourke P J and Amsden A A. The TAB Method for Numerical Calculation of SprayDroplet Breakup [R], SAE Technical Paper,872089,1987
    [149] Miller A and Gidaspow D. AIChE Journal,1992,38(11),1811P
    [150] Tanner F X. Liquid Jet Atomization and Droplet Breakup Modeling of Non-EvaporatingDiesel Fuel Sprays [R], SAE Technical Paper Series,970050,1997
    [151] Reitz R D and Diwakar R, Structure of High-Pressure Fuel Sprays [R], SAE TechnicalPaper,870598,1987
    [152] Schmehl R, Maier G and Wittig S, CFD Analysis of Fuel Atomization, SecondaryDroplet Breakup and Spray Dispersion in the Premix Duct of a LPP Combustor [R],Proc. of8th Int. Conf. on Liquid Atomization and Spray Systems, Pasadena, CA, USA,2000
    [153] Pilch M and Erdman C A. Use of Breakup Time Data and Velocity History Data toPredict the Maximum Size of Stable Fragments for Acceleration-Induced Breakup of aLiquid Drop [J], Int. J. Multiphase Flow,1987,13(6),741-757P
    [154] Hsiang L P and Faeth G M. Near Limit Drop Deformation and Secondary Breakup [J],Int. J. of Multiphase Flow,1992,18(5)71-77P
    [155] Reid L and Moore R D. Design and Overall Performance of Four Highly-Loaded,High-Speed Inlet Stages for an Advanced, High-Pressure-Ratio Core Compressor [R].NASA TP-1337,1978
    [156] Moore R D and Reid L. Performance of Single-stage Axial-flow Transonic Compressorwith Rotor and Stator Aspect Ratios of1.19and1.26Respectively, and with DesignPressure Ratio of2.05[R]. NASA TP-1659,1980
    [157] Ulrichs E and Joos F. Experimental Investigations of the Influence of Water Droplets inCompressor Cascades [C]. ASME Paper No: GT-2006-90411,2006
    [158] Eisfeld T and Joos F. Experimental Investigation of Two-Phase Flow Phenomena inTransonic Compressor Cascades [C]. ASME Paper No: GT-2009-59365,2009
    [159] Naber J D, Reitz R D. Modeling Engine Spray/Wall Impingement [R]. SAE TP-880107,1988
    [160] Bai C and Gossman A D. Development of Methodology for Spray ImpingementSimulation [R]. SAE TP-950283,1995
    [161] Stanton D and Rutland C J. Multi-Dimensional Modeling of Heat and Mass Transfer ofFuel Films Resulting From Impinging Sprays [R]. SAE TP-980132,1998
    [162] Schmehl R, Rosskamp H, Willmann M and Wittig S. CFD analysis of spray propagationand evaporation including wall film formation and spray/film interactions [J]. Int. J.Heat and Fluid Flow,1999, Vol.20,520-529P
    [163] Shim Y S, Choi G M, Kim D J. Numerical and experimental study on effect of wallgeometry on wall impingement process of hollow-cone fuel spray under variousambient conditions [J]. Int. J. Multiphase Flow,2009, Vol.35,885-895P
    [164] AGARD Advisory Report (AGARD-AR-332). Recommended Practices for theAssessment of the Effects of Atmospheric Water Ingestion on the Performance andOperability of Gas Turbine Engines,1995
    [165] Williams J and Young J B. Movement of Deposited Water on Turbomachinery RotorBlade Surfaces [C]. ASME Paper No. GT2006-90792,2006
    [166] Kirillov I I and Yablonik R M. Fundamentals of the Theory of Turbines Operating onWet Steam.1968, Mashinostroyeniye Press, Leningrad
    [167] Rosin P and Rammler E. The Laws Governing the Fineness of Powdered Coal [J]. Fuel,1933,7(1),29-36P
    [168] Krain H and Hoffman W. Verification of an Impeller Design by Laser Measurementsand3D-Viscous Flow Calculations [C]. ASME Paper No: GT89-159,1989
    [169] Hah C and Krain H. Secondary flows and vortex motion in a high-efficiency backsweptimpeller at design and off-design conditions [J]. ASME Journal of Turbomachinery,1990, Vol.112,7-13P
    [170]郑严. TRI60系列弹用涡轮喷气发动机剖析[J].飞航导弹.2001(1):34-42页
    [171] Kyprianidis K G, Gr nstedt T, Ogaji S.O.T., Pilidis P, Singh R. Assessment of futureaero engine designs with intercooled and intercooled recuperated cores [C]. ASMEPaper No: GT-2010-23621,2010
    [172] Marchionna N R, Diehl L A and Trout A M. The effect of water injection on nitric oxideemissions of a gas turbine combustor burning ASTM Jet-A fuel [R]. NASA TM-X-2958,1973
    [173] Marchionna N R, Diehl L A and Trout A M. Effect of inlet-air humidity, temperature,pressure, and reference mach number on the formation of oxides of nitrogen in a gasturbine combustor [R]. NASA TN D-7396,1973

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700