用户名: 密码: 验证码:
秸秆生物质高温空气燃烧研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
秸秆的低散装密度、低热值和独特的灰分特性,使其燃烧装置中存在运输成本高、进料单元复杂、热功率小、蒸汽参数低、燃烧效率低和严重的灰分问题等。考虑到高温空气燃烧技术的高燃烧效率和低污染物排放等优势,在此提出了秸秆高温空气燃烧器的设计方案,并对其进行了冷态和热态研究。此外,鉴于着火对装置安全的重要影响,同时对秸秆挥发份的着火进行了研究。
     首先,从定性和定量的角度分析对比了秸秆与燃煤的燃烧特性。结果表明,秸秆散装密度远低于燃煤;秸秆中固定碳远低于燃煤;秸秆中Vdaf/FCdaf较高,着火特性较好;秸秆燃烧的空气量和烟气量均低于燃煤;秸秆燃烧的NOx生成量低于燃煤,且主要通过NH3途径,不能简单将燃煤装置中的脱硝措施用于秸秆;相对热值灰分量、硅铝比、碱性指标等更适合于衡量秸秆的灰分特性。
     其次,通过热重法分析了麦秆和玉米秆的热解失重行为,并结合模式函数和无模式函数、并借鉴双外推法思想,对其热解动力学进行了研究。热重实验采用N2气氛和四种加热速率条件。结果表明,随着加热速率增加,秸秆中水分和挥发份析出的峰值温度、峰值失重速率、终了温度等增加;炭化阶段存在复杂的物理化学过程。动力学研究结果表明,玉米秆和麦秆热解分别服从简单2.5级和2级机理,模型计算结果与实测值之间符合较好
     第三,针对秸秆燃烧装置中存在的主要问题,提出了秸秆高温空气燃烧器设计方案。燃烧器设计按照平行射流思想和燃烧-传热分离原则进行,设计热功率为50kW,燃料为粉状麦秆,操作压力为1atm,容积热强度为135W/(N·m),截面热强度为100W/N,过量空气系数为1.3。在燃烧器出口位置设置混流锥,以获得高温低氧二次风;借助旋风气流和液态排渣,以提高出口烟气洁净度和减小固体不完全燃烧损失;借助低氧燃烧环境和烟气再燃抑制NOx生成。
     第四,为了解燃烧器内的流场信息、分析混流锥角度对燃烧器性能的影响和为热态模拟选择合适的湍流模型,进行了冷态研究,包括实验研究和数值模拟。实验研究包括九种工况,模拟研究则分别采用标准k-e和RNG k-ε湍流模型。结果表明,两种模型均成功预测了燃烧器中的Rankine涡结构;模拟得到的速度值和旋流中心与实测值之间符合较好,且RNG k-e模型优于标准k-ε模型;随着混流锥角度增加,环形区内的峰值负轴向速度增加、负轴向速度分布范围扩大;对应50kW热功率的燃烧器气动性能较好。
     第五,为了了解燃烧器的热态性能,对燃烧器进行了热态实验和数值研究。热态实验中采用的燃烧器混流锥角度为10°,过量空气系数为1.3,一次风率为0.1。数值模拟基于Linux64平台、采用FLUENT软件。使用非结构网格,单元数量约为30万,连续相采用欧拉描述,离散相采用拉格朗日描述,湍流模型为RNG k-ε,挥发分燃烧为两步机理、ED-FR模型,焦炭燃烧为两步机理、本质活化能模型,辐射换热为P-1辐射模型,速度场与压力场之间的耦合为Simple算法,压力梯度项为PREST0离散格式,对流项为二阶迎风格式。结果表明,随着二次风量逐渐增加到额定工况,火焰容积增加,火焰中明亮部分减少,高温区基本位于燃烧器圆筒与圆锥部分的交界区域;模拟预测温度高于实测温度,但二者之间变化趋势相同;热态时的切向速度分布与冷态相似,也呈现M分布;与冷态相比,环形区域内的正负轴向速度相间的流场结构得到了强化;随着热功率增加,燃烧器内峰值温度先增加后减小。
     最后,考虑到着火对燃烧装置运行安全性的影响,采用CHEMKIN程序的PSR模型和GRI-3.0机理,对低氧条件下的秸秆挥发份着火进行了研究,并进行了局部敏感性分析。结果表明,在低氧条件下,着火延迟迅速增加;H2的相关反应在秸秆挥发份着火过程中具有重要地位:氧气浓度越低,H+O2(?)OH+O反应在着火过程中的支配地位越强。
Because of the low bulk density, caloric value and the unique ash properties, there are problems in combustion chamber firing straw, including the higher investment for transport, more complex structure of unit to prepare stock, lower heat output, lower stream parameters, lower combustion efficiency and more severe problems relevant to ash. Hereby a scheme was provided to apply High Temperature Air Combustion (HiTAC) to straw in view of its high combustion efficiency and low pollution emissions. And then research was implemented under both cold and thermal condition. Furthermore, ignition was investigated to identify the dominant factors in the start of combustion of volatile composition in straw.
     Firstly, a comparison concerning the combustion properties between straw and coal was made by quality and by quantity respectively. It is resulted that the bulk density of straw is much lower than coal and the higher ratio of volatile to fixed carbon, the lower demand for combustion air and yield of flue gases, the lower yield of NOx. However, the measures of De-NOx in combustor fired coal is unfit for straw because of them different formation path to NOx, which mainly follows NH3path in straw. Furthermore, it is better to reflect ash properties of straw according to the index such as ash component based on heat value, ratio of elements Si to Al and alkali index, etc.
     Secondly, the thermal events were investigated by means of thermogravimetric (TG) method during pyrolysis of both wheat straw and corn stalk, and its kinetics was investigated at the same time. The TG experiment was carried out in N2environment and4kinds of heating rate. According to the data from TG, the key parameters, including the onset, the final and the peak temperature, all increase along with increase of the heating rate. The kinetic research was conducted by means of combining the model method with the model-free method, and referring to the idea of dual extrapolation method as well. It is concluded that the mechanisms of pyrolysis follow2-order reaction for wheat straw and2.5-order for corn stalk. Moreover, the results from model accord with them from TG in general.
     Thirdly, a conceptual design of combustor firing pulverized straw based on HiTAC idea was put forward in view of the problems in existing combustion chamber firing straw. The design is based on the fuel/air parallel flow, a significant method to realize HiTAC, and the principle to separate combustion and heat transfer. Firstly, a pilot cone is located in the output to obtain the secondary combustion air with high temperature and low oxygen concentration. Secondly, the measures of cyclone and liquid slagging are taken to purify the exhaust gases and lower char loss. Finally, the measures of the low oxygen concentration and the rebuming are taken to suppress the formation of NOx. The main parameters for the combustor are chosen as follows, thermal output50kW, operation pressure1atm, the combustion intensities135W/(N-m) per volume and100W/N per section area and the global excess air ratio1.3.
     Fourthly, the cold investigation, including experiment and computer modeling, was carried out to know the flowing field, analyze the influence of the degree of the pilot cone and provide evidence for choosing appropriate turbulence model for thermal modeling. There are9working conditions in experiment and both standard k-ε and RNG k-ε are taken in simulation. The results indicate several conclusions as follows.(1), the Rankine vortex is predicted from the2turbulence models.(2), the velocity and vortex center predicted from the2turbulence models are all in accord with the metrical to a great extent, and the results from RNG k-ε excel standard k-s in precision.(3), the maximum of minus axial velocity increase and its range enlarge along with increase of the degree of the pilot cone in the ring region.(4), the comprehensive dynamics performances are optimized under working conditions corresponding to the thermal out kept in50kW, where the global excess air ratio1.3and degree of the pilot cone10°.
     Fifthly, the thermal experiment and CFD-based simulation have been carried out to know performances of the combustor and optimize its operation parameters. The scaled combustor has the degree of pilot cone10°, primary excess air ratio0.1and global excess air ratio1.3. The simulation has been performed using FLUENTcode. It is mainly resulted as follows. Firstly, the flame volume increase, its luminescent part reduce, the high temperature region locate in the intersection between the cylinder part and the cone part, along with the input of secondary air approaching to the rating value gradually. Secondly, the predicted temperature accords with the metrical in general, though the former is overestimated to some extent. Thirdly, the tangential velocity demonstrates M shape similar to the cold condition. Fourthly, the axial velocity demonstrates alternate minus value with plus value, which is similar to the cold and strengthened further in thermal condition in the ring region. At last, the maximum temperature increases at first and then reduces along with increase of the thermal output.
     Finally, the ignition of volatiles from straw has been investigated under condition of lower oxygen concentration. It was carried out through the PSR of CHEMKIN4.0code and the mechanisms GRI3.0, and a sensitivity analysis was made at the same time. The results indicate the the ignition delay increases exponentially with respect to the decrease of concentration of oxygen. Furthermore, the composition, H2, is of importance in determining the start of combustion of the volatiles. Especially, the reaction, H+O2(?) OH+O, play a more dominant role along with the oxygen concentration becoming lower.
引文
[1]吴承康,徐建中,金红光等.能源发展战略研究[J],世界科技研究与发展,22(4):1-6.
    [2]2010 BP世界能源统计年鉴[R].
    [3]Arghode, Ashwani K. Gupta. Development of high intensity CDC combustor for gas turbine engines [J]. Applied Energy,2011,88:963-973.
    [4]A. WILLIAMS, M. POURKASHANIAN, J. M. JONES. THE COMBUSTION OF COAL AND SOME OTHER SOLID FUELS[J]. Proceedings of the Combustion Institute,2000, 28:2141-2162.
    [5]田宜水,赵立欣,孙丽英,等.农业生物质能资源分析与评价[J].中国工程科学,2011,13(2):24-28.
    [6]石元春.中国生物质原料资源[J].中国工程科学,2011,13(2):16-23.
    [7]李静,余美玲,方朝君,等.基于中国国情的生物质混燃发电技术[J].可再生能源,2011,29(1):124-128.
    [8]雷廷宙.秸秆干燥过程的实验研究与理论分析[D].辽宁大连:大连理工大学,2006.
    [9]陆炳,韩斌,孔少飞.2007年中国大陆地区生物质燃烧排放污染物清单[J].中国环境科 学,2011,31(2):186-194.
    [10]A. WILLIAMS, M. POURKASHANIAN, J. M. JONES. THE COMBUSTION OF COAL AND SOME OTHER SOLID FUELS [J]. Proceedings of the Combustion Institute,2000, 28:2141-2162.
    [11]车长波,袁际华.世界生物质能源发展现状及方向[J].天然气工业,2011,31(1):104~120.
    [12]Carolyn J. Roos. Clean Heat and Power Using Biomass Gasification for Industrial and Agricultural Projects [R]. Report from U. S. Department of Energy,2010.
    [13]A.V. Bridgwater, D. Meier, D. Radlein. An overview of fast pyrolysis of biomass [J]. Organic Geochemistry,1999,30:1479-1493.
    [14]Haiping Yang, Rong Yan b, Hanping Chen,et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel 2007,86:1781-1788.
    [15]Toft, A.J.,1996. Ph.D. thesis, Aston University, Birmingham,UK.
    [16]Ayhan Demirbas. Combustion characteristics of different biomass fuels[J]. Progress in Energy and Combustion Science,2004,30:219-230.
    [17]A. Williams, M. Pourkashanian, J. M. Jones. Combustion of pulverized coal and biomass[J]. Progress in Energy and Combustion Science,2001,27:587-610.
    [18]杜成华,陆广发.工业锅炉生物质燃烧技术[J].节能技术,2010,《资源与发展》2010年节能宣传周专刊:30-31.
    [19]INGWALD OBERNBERGER. DECENTRALIZED BIOMASS COMBUSTION:STATE OF THE ART AND FUTURE DEVELOPMENT[J]. Biomass and Bioenergy,1998,14(1):33-56.
    [20]李宁.河南省生物质(秸秆、林业废弃物)发电现状、存在问题及对策研究[D].河南郑州:河南农业大学,2009.
    [21]Hiroshi Tsuji, Ashwani Gupta, Toshiaki Hasegawa, et al. High temperature Air Combustion [M], CRC PRESS,2002.
    [22]Antonio Cavaliere, Mara de Joamion. Mild Combustion [J]. Progress in Energy and Combustion Science,2004,30:329-366.
    [23]Roman Webera, John P. Smarta, Willem vd Kamp. On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air [J]. Proceedings of the Combustion Institute,2005,30:2623-2629.
    [24]傅维镳,张永廉,王清安.燃烧学[M].北京:高等教育出版社,1989.
    [25]Weinberg, P. J. NATURE,1971,233:239-241.
    [26]J. Werther et al. Progress in Energy and Combustion Science,2000,26:1-27.
    [27]Marco Derudi, Alessandro Villani, Renato Rota. Sustainability of mild combustion of hydrogen-containing hybrid fuels[J]. Proceedings of the Combustion Institute,2007,31: 3393-3400.
    [28]Art Fernandez, Sheldon B. Davis, Jost O. L. Wendt, et al. Particulate emission from biomass combustion[J]. NATURE,2001,409:998-999.
    [29]L.S. Johanssona, C. Tullina, B. Leckner, et al. Particle emissions from biomass combustion in small combustors[J]. Biomass and Bioenergy,2003,25:435-446.
    [30]H.K. Chagger, A. Kendall, A. Mc Donald. Formation of dioxins and other semi-volatile organic compounds in biomass combustion[J]. Applied Energy,1998,60:101-114.
    [31]H. J. Ziock, K.S.Lackner, D.P.Harrison. Zero Emission Coal Power,a New Concept[R].2001, Report from Los Alamos National Laboratory, W-7405-ENG-36.
    [32]Anastasia Nikolaou, Michaela Remrova, Ilian Jeliazkov. Biomass availability in Europe[R], Report from Centre for Renewable Energy Sources.
    [33]Effuggi, Gelosa, Derudi, et al. Mild combustion of methane derived fuel mixtures:natural gas and biogas[J]. Combustion Science and Technology,2008,180:481-493.
    [34]A. Schuster, M. Zieba, G. Scheffknecht. Optimisation of conventional biomass combustion system by applying flameless oxidation[C]. The 15th IFRF Members Conference, Pisa, Italy, 2007.
    [35]G. Szego, B. Dally, J. Nathan. Operational characteristics of a parallel jet MILD combustion burner system [J]. Combustion and Flame,2009,156:429-438.
    [36]J. A. Wiinning, J. G. Wiinning. FLAMELESS OXIDATION TO REDUCE THERMAL NO-FORMATION [J]. Prog. Energy ComlnaL Sci.1997,23:81-94.
    [37]T. Faravelli, L. Bua, A. Frassoldati. A new procedure for predicting NOx emissions from furnaces[J]. Computers and Chemical Engineering,2001,25:613-618.
    [1]李宁.河南省生物质(秸秆、林业废弃物)发电现状、存在问题及对策研究[D].河南:河南农业大学,2009.
    [2]T. R. MILES, L. L. BAXTER, I. W. BRYERS, et al. BOILER DEPOSITS FROM FIRING BIOMASSFUELS[J].Biomass and Bioenergy,1996,10:125-138,1996.
    [3]Hanne Philbert Michelsen, Flemming Frandsen, Kim Dam-Johansen, et al. Deposition and high temperature corrosion in a 10MW straw fired boiler[J]. Fuel Processing Technology, 1998,54:95-108.
    [4]O.H. Larsen, N. Henriksen, S. Inselman, et al.The influence of boiler design and process conditions on fouling and corrosion in straw and coal/straw-fired ultra supercritical power plants [J]. Proceedings of the 9th European Bioenergy Conference, Biomass for Energy and the Environment, Copenhagen, Denmark, June 24-27,1996.
    [5]Hanne Philbert Michelsen,Flemming Frandsen, Kim Dam-Johansen, et al. Deposition and high temperature corrosion in a 10MW straw fired boiler[J]. Fuel Processing Technology,1998,54: 95-108.
    [6]A. Williams, M. Pourkashanian, J.M. Jones. Combustion of pulverised coal and biomass[J]. Progress in Energy and Combustion Science,2001,27:587-610.
    [7]J. Werthera, M. Saengera, E.-U. Hartge, et al. Combustion of agricultural residues[J]. Progress in Energy and Combustion Science,2000,26:1-27.
    [8]B.M. Jenkins, L.L. Baxter, T.R. Miles Jr. Combustion properties of biomass [J]. Fuel Processing Technology,1998,54:17-46.
    [9]Ayhan Demirbas. Combustion characteristics of different biomass fuels[J]. Progress in Energy and Combustion Science,2004,30:219-230.
    [10]姚宗路,赵立欣,Ronnback等.生物质颗粒燃料特性及其对燃烧的影响分析[J].农业机械学报,2010,10:97-102.
    [11]邢秀云,张克芮.固体生物质燃料灰成分测定方法的研究煤质技术[J].2010,5:18-21.
    [12]聂虎,余春江,柏继松等.生物质燃烧中硫氧化物和氮氧化物[J].热力发电,2010,39(9):21-26.
    [13]田贺忠,郝吉明,陆永琪,等.中国生物质燃烧排放SO2、NOx量的估算[J].环境科学学报,2002,22(2):204-208.
    [14]朱宝山等,燃煤锅炉大气污染物净化技术手册[M].北京:中国电力出版社,2006.
    [15]林宗虎,徐通模,等.锅炉手册[M].北京:化学工业出版社,1999.
    [16]THOMAS R. MILES. BOILER DEPOSITS FROM FIRING BIOMASS FUELS [J]. Biomass Ned Bioewrg,1996,10:125-138.
    [17]Hanne Philbert Michelsen, Flemming Frandsen,Kim Dam-Johansen, et al. Deposition and high temperature corrosion in a 10 MW straw fired boiler[J]. Fuel Processing Technology, 1998,54:95-108.
    [18]赵青玲,袁超,王阳阳,等.生物质锅炉受热面沉积的模拟试验装置的设计[J].能源技术,2010,31(2):85-92.
    [19]孙学信,等.燃煤锅炉燃烧实验技术与方法[M].北京:中国电力出版社,2001.
    [20]潘雯瑞,任建兴,秸秆生物质燃料燃烧特性分析[J].上海电力学院学报,2010,26(2):131-134.
    [21]B.M. Jenkins, L.L. Baxter, T.R. Miles, et al. Combustion properties of biomass[J]. Fuel Processing Technology,1998,54:17-46.
    [22]秦建光,余春江,聂虎,等.秸秆燃烧中温度对钾转化与释放的影响[J].太阳能学报,2010,31(5):540-544.
    [23]石元春.中国生物质原料资源[J].中国工程科学,2011,13(2):16-23.
    [24]佘雕,耿增超.农业秸秆生物质转化利用的研究进展[J].西北林学院学报,2010,25(1):157-161.
    [25]黄承洁,姬登祥,于凤文,等.生物质热解动力学研究进展[J].生物质化学工程,2010,44(1):157-161.
    [26]陈海翔,刘乃安,范维澄.基于差示扫描量热技术的生物质热解两步连续反应模型研究[J].物理化学学报,2006,22(7):786.
    [27]赵伟涛,陈海翔,周建军,等.森林泥炭的热解特性及热解动力学[J].物理化学学报,2009,25(9):1756.
    [28]张睿智,段佳,刘春元,等.焦油对生物质气化再燃还原NO的影响[J].燃烧科学与技术,2010,16(1):8.
    [29]程世庆,尚琳琳,张海清.生物质的热解过程及其动力学规律[J].煤炭学报,2006,31(4):501.
    [30]H.B. Vuthaluru. Thermal behavior of coal/biomass blends during co-pyrolysis [J]. Fuel Processing Technology,2003,85:141-155
    [31]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001.
    [32]任宁,张建军.热分析动力学数据处理方法的研究进展[J].化学进展,2006,18(4):410-316.
    [33]张保生,刘建忠,周俊虎),等.基于无模式法推断石灰石分解机理新方法[J].化工学报,2007,58(5):1204-1209.
    [34]张晓东,许敏,孙荣峰.玉米秆热解动力学研究[J].燃料化学学报,2006,31(1):123-125.
    [35]冉景煜,曾艳,张力.几种典型农作物生物质的热解及动力学特性[J].重庆大学学报,2009,32(1):76-81.
    [36]V. Mamleev, S. Bourbigot, M. Le Bras. THREE MODEL-FREE METHODS FOR CALCULATION OF ACTIVATION ENERGY IN TG[J]. Journal of Thermal Analysis and Calorimetry,2004,78:1009-1027
    [37]陈海翔,刘乃安.温度积分近似式研究[J].化学进展,2008,20(7/8):1015.
    [38]任庚坡,张超群,魏砾宏.超细褐煤粉的热解特性及其热解机理[J].热能动力工程,2005,20(4):407-410.
    [39]Haiping Yang, Rong Yan, Hanping Chen, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis [J]. Fuel,2007,86:1781-1788
    [40]Liao Cuiping, Wu Chuangzhi, Yanyongjie, et al. Chemical elemental characteristics of biomass fuels in China [J]. Biomass and Bioenergy,2004,27:119-130
    [41]刘乃安,王海晖),夏敦煌.林木热解动力学模型研究[J].中国科学技术大学学报,1998,28(1):40-48.
    [42]Ggbor Vtirhegyi, Michael Jerry Antal, Jr., Emma Jaka. Kinetic modeling of biomass pyrolysis [J]. Journal of Analytical and Applied Pyrolysis,1997,42:73-87.
    [43]J.M. Jones, M. Pourkashanian, A. Williams. A comprehensive biomass combustion model [J]. Renewable Energy,2000,19:229-234.
    [44]娇常命.农作物秸秆阴燃特性及应用研究[D].山东:山东理工大学,2006.
    [1]Natalia Schaffel-Mancini. Ecological evaluation of the pulverized coal combustion in HTAC technology [D]. Germany:Clausthal University,2009.
    [2]Ashwani K. Gupta. FLAME CHARACTERISTICS AND CHALLENGES WITH HIGH TEMPERATURE AIR COMBUSTION[J]. International Joint Power Generation Conference, Miami Beach, Florida,2000,23-26.
    [3]RICHARD VAN DEN BROEK, FAAIJ. BIOMASS COMBUSTION FOR POWER GENERATION[J]. Biomass and Bioenergy,1996,11 (4):271-281.
    [4]中华人民共和国可再生能源法[G].2005.
    [5]陆炳,孔少飞,韩斌,等.2007年中国大陆地区生物质燃烧排放污染物清单[J].中国环境科学,2011,31(2):186~194.
    [6]J. Werther et al./Progress in Energy and Combustion Science,2000,26:1-27.
    [7]吴承康,徐建中.金红光等.能源发展战略研究[J].世界科技研究与发展,22(4):1-6.
    [8]Hanne Philbert Michelsen, Flemming Frandsen, et al. Deposition and high temperature corrosion in a 10MW straw fired boiler[J]. Fuel Processing Technology,1998,54:95-108.
    [9]秦建光,余春江,李双江,等,循环流化床秸秆燃烧中的碱金属迁移转化研究[J].太阳能学报2009,30(5):667~672.
    [10]N. Schaffel, M. Mancini, A. Szlek, et al. Mathematical modeling of MILD combustion of pulverized coal[J]. Combustion and Flame,2009,156:1771-1784.
    [11]Antonio Cavaliere, Mara de Joannon. Mild Combustion[J]. Progress in Energy and Combustion Science,2004,30:329-366.
    [12]Marco Derudi, Alessandro Villani, Renato Rota. Sustainability of mild combustion of hydrogen-containing hybrid fuels[J]. Proceedings of the Combustion Institute,2007,31: 3393-3400.
    [13]Yu Yu, Wang Gaofeng, Lin Qizhao, et al. Flameless combustion for hydrogen containing fuels[J]. International Journal of hydrogen energy,2010,35:2694-2697.
    [14]Hannes Stadler, Dragisa Ristic, Malte Forster, et al. NOx-emissions from flameless coal combustion in air, Ar/O2 and CO2/O2[J]. Proceedings of the Combustion Institute,2009, 32:3131-3138.
    [15]Sudarshan Kumar, P.J. Paul, H.S. Mukunda. Investigations of the scaling criteria for a mild combustion burner[J]. Proceedings of the Combustion Institute,2005,30:2613-2621.
    [16]Roman Weber, John P. Smart, Willem vd Kamp. On the (MILD) combustion of gaseous, liquid,and solid fuels in high temperature preheated air[J]. Proceedings of the Combustion Institute,2005,30:2623-2629.
    [17]Hiroshi Tsuji, Ashwani Gupta, Toshiaki Hasegawa, et al. High temperature Air Combustion [M], CRC PRESS,2002.
    [18]Chiara Galletti, Alessandro Parente, Leonardo Tognotti. Numerical and experimental investigation of a mild combustion bumer[J]. Combustion and Flame2007,151:649-664.
    [19]N. Shimo. in:Proceedings of the 2nd InternationalSeminar on High Temperature Combustion in Industrial Furnaces[C], Jernkontoret-KTH, Stockholm, Sweden,2000.
    [20]T. Kiga, K. Yoshikawa, M. Sakai, S. Mochida, AIAA J. Propul. Power,2000,16 (4): 601-605.
    [21]S. Orsino, M. Tamura, P. Stabat, S. Costantini, et al. Excess Enthalpy Combustion of Coal[J]. IFRF Doc, No. F46/y/3,2000.
    [22]Hannes Stadler, Dragisa Ristic, Malte Forster,et al. NOx-emissions from flameless coal combustion in air, Ar/O2 and CO2/O2. Proceedings of the Combustion Institute 32 (2009) 3131-3138.
    [23]G.G. Szeg, B.B. Dally, G.J. Nathan. Operational characteristics of a parallel jet MILD combustion burner system[J]. Combustion and Flame,2009,156:429-438.
    [24]Ahmed E.E. Khalil, Ashwani K. Gupta. Swirling distributed combustion for clean energy conversion in gas turbine applications [J]. Applied Energy,2011,88:3685-3693.
    [25]潘雯瑞,任建兴.秸秆生物质燃料燃烧特性分析[J].上海电力大学学报,2010,26(2):131-134.
    [1]A.M. Eaton, L.D. Smoot, S.C. Hill, et al. Components, formulations, solutions, evaluation, and application of comprehensive combustion models[J]. Progress in Energy and Combustion Science,1999,25:387-436.
    [2]A. Williams, M. Pourkashanian, J, M, Jones. Combustion of Pulverized Coal and Biomass[J]. Progress in Energy and Combustion Science,2001,27:587-610.
    [3]孙学信,等.燃煤锅炉燃烧实验技术与方法[M].北京:中国电力出版社,2001.
    [4]刘聿拯,袁益超,张明.燃生物质锅炉空气动力场冷态模化试验研究[J].动力工程,2004,24(6):789-792.
    [5]蒋利桥,陈恩鉴,阎常峰.不同进风结构煤粉燃烧器冷态流场实验研究[J].热能动力工程,2003,18(3):269-324.
    [6]唐志国.基于无焰氧化的干法煤粉气化特性研究[D].安徽合肥:中国科学技术大学,2009.
    [7]董陈,徐通模,周屈兰,等,旋流预混合燃烧器基本性能的冷态试验研究[J].动力工程,2008,28(5):799-806.
    [8]李格升.两段燃烧炉炉膛冷态模化实验研究[J].武汉水运工程学院学报,1990,14(2):166.172.
    [9]N. Schaffel, M. Mancini, A. Szle_k, et al. Mathematical modeling of MILD combustion of pulverized coal[J]. Combustion and Flame,2009,156:1771-1784.
    [10]赵云,施明恒,王家骅.回流式燃烧室头部冷态浓度场实验研究[J].燃烧科学与技术,2001,7(4):252-255.
    [11]郎洪俭,郭志辉,黄勇.主燃孔对旋流杯下游流场的影响[J].推进技术,2006,27(2)110-113.
    [12]韩启祥,许铁军,黄健.双旋流器单头部模型燃烧室冷态流场试验航空动力学报[J].2008,23(8):1370-1374.
    [13]潘良明,程淑明,伍成波,等.大型蓄热式环形加热炉冷态流场试验分析[J].钢铁,2008,43(10):78-98.
    [14]吴清松.计算热物理[M].安徽:中国科学技术大学出版社,2009.
    [15]刘钦圣,张晓丹,王兵团.数值方法教程[M].北京:冶金工业出版社,1998.
    [16]陶文铨.数值传热学[M].陕西:西安交通大学出版社,2001.
    [17]M. Joannon, P. Sabia b, G. Sorrentino. Numerical study of mild combustion in hot diluted diffusion ignition (HDDI) regime[J]. Proceedings of the Combustion Institute,2009,32: 3147-3154
    [18]Thierry POINSOT, Denis VEYNANTE. Theoretical and Numerical Combustion[M].
    [19]A.M. Eaton, L.D. Smoot, S.C. Hill, et al. Components, formulations, solutions, evaluation, and application of comprehensive combustion models[J]. Progress in Energy and Combustion Science,1999,25:387-436.
    [20]曾文,解茂昭,等,二气门汽油机缸内冷态流场的大涡模拟[J].工程热物理学报,2011,31 (11):1977-1979.
    [21]Balram Panjwani, Ivar S. Ertesvag, Kjell Erik Rian, SUBGRID COMBUSTION MODELING FOR LARGE EDDY SIMULATION (LES) OF TURBULENT COMBUSTION USING EDDY DISSIPATION CONCEPT, V European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010.
    [22]J.M. Jones, P.M. Patterson, M. Pourkashanian, et al. Modelling NOx formation in coal particle combustion at high temperature:an investigation of the devolatilisation kinetic factors[J]. Fuel,1999,78:1171-1179.
    [23]P. J. COELHO, N. PETERS. Numerical Simulation of a Mild Combustion Burner[J]. COMBUSTION AND FLAME,2001,124:503-518.
    [24]Chiara Galletti, Alessandro Parente, Leonardo Tognotti. Numerical and experimental investigation of a mild combustion burner[J]. Combustion and Flame,2007,151:649-664.
    [25]衡丽君,段坤杰,何长征.220 t/h锅炉冷态数值试验研究[J].热能动力工程,2006,21(6):573-654.
    [26]邓甜,王方,黄勇.多点喷射燃烧室冷态流场特性研究[J].工程热物理学报,2008,29(5):876-880.
    [27]王擎,关键,孙东红,等,卧式煤无烟燃烧锅炉炉内冷态流场的数值模拟[J].中国电机工程学报,2003,23(1):163-166.
    [28]于宗明,黄勇,王方.方腔折流燃烧室冷态流场研究[J].推进技术,2010,31(5):533-538.
    [29]胡好生,蔡文祥,赵坚行.燃烧室冷态流场的数值研究[J].南京航空航天大学学报,2005,37(6):704-708.
    [1]A.M. Eaton, L.D. Smoot, S.C. Hill, et al. Components, formulations, solutions, evaluation, and application of comprehensive combustion models [J]. Progress in Energy and Combustion Science,1999,25:387-436.
    [2]吴清松.计算热物理[M].安徽:中国科学技术大学出版社,2009.
    [3]解茂昭.内燃机计算燃烧学[M].辽宁:大连理工大学出版社,2005.
    [4]傅维镳,张永廉,王清安.燃烧学[M].北京:高等教育出版社,1989.
    [5]Thierry POINSOT, Denis VEYNANTE. Theoretical and Numerical Combustion[M].
    [6]N. Schaffel, M. Mancini, A. Szlek. Mathematical modeling of MILD combustion of pulverized coal[J]. Combustion and Flame,2009,156:1771-1784.
    [7]A. Parente, C. Galletti, L. Tognotti. Effect of the combustion model and kinetic mechanism on the MILD combustion in an industrial burner fed with hydrogen enriched fuels [J]. International Journal of Hydrogen Energy,2008,33:7553-7564.
    [8]胡小翠.生物质锅炉燃烧数值模拟[D].河北保定:华北电力大学,2008.
    [9]MI Jianchun, LI Pengfei, ZHENG Chuguang. Numerical Simulation of Flameless Premixed Combustion with an Annular Nozzle in a Recuperative Furnace[J]. Chinese Journal of Chemical Engineering,2010,18(1):10-17.
    [10]郑成航,程乐鸣,李涛,等.多孔介质内低热值气体燃烧及传热数值模拟[J].浙江大学学报(工学版),2010,44(8):1567-1572.
    [11]仇中柱,徐吉浣.无焰燃烧炉膛传热的三维数值模拟[J].同济大学学报,2004,32(3):323-326.
    [12]白涛,郭永红,孙宝民,等.1250t/h旋流燃烧器煤粉炉降低NOx生成的数值模拟[J].中国电机工程学报.2010,30 (29):16-23.
    [13]J. A. Wiinning, J. G. Wiinning. FLAMELESS OXIDATION TO REDUCE THERMAL NO-FORMATION[J]. Prog. Energy Combust. Sci,1997,23:81-94.
    [14]唐志国.基于无焰氧化的干法煤粉气化特性研究[D].安徽合肥:中国科学技术大学,2009.
    [15]邢献军,王宝源,林其钊.常温空气无焰燃烧在燃煤锅炉煤改气中的应用[J].热能动力工程,2007,22(3):284-287.
    [16]Han S. Kim, Vaibhav K. Arghode, Ashwani K. Gupta. Flame characteristics of hydrogen enriched methane airpremixed swirling flames [J]. International Journal of Hydrogen Energy, 2009,34:1063-1073.
    [17]Roman Weber, John P. Smart, Willem vd Kamp. On the (MILD) combustion of gaseous, liquid,and solid fuels in high temperature preheated air[J]. Proceedings of the Combustion Institute,2005,30:2623-2629.
    [18]秸秆中钾的提取与利用[D].四川:成都理工大学,2008.
    [19]张宏博,秦国彤,纪任山等.煤粉燃烧过程的数值模拟[J].北京航空航天大学学报,2009,35(5):536-539.
    [20]纪任山.煤粉工业锅炉燃烧的数值模拟[J].煤炭学报,2009,34(12):1703-1706.
    [21]王政允,孙保民,郭永红,等.330 MW前墙燃烧煤粉锅炉炉内温度场的数值模拟及优化[J].中国电机工程学报,2009,29(20):18-24.
    [22]Hiroshi Tsuji, Ashwani Gupta, Toshiaki Hasegawa, et al. High temperature Air Combustion [M].CRC PRESS,2002.
    [23]A. Williams, R. Backreedy, R. Habib, et al. Modelling coal combustion:the current position[J]. Fuel,2002,81:605-618.
    [24]J.M. Jones, M. Pourkashanian, A. Williams, et al. A comprehensive biomass combustion model[J]. Renewable Energy,2000,19:229-234.
    [25]A.A. Rostami, M.R. Hajaligol, S.E. Wrenn. A biomass pyrolysis sub-model for CFD applications[J]. Fuel,2004,83:1519-1525.
    [26]Natalia Schaffel-Mancini. Ecological evaluation of the pulverized coal combustion in HTAC technology [D]. Germany:Clausthal University,2009.
    [27]A.Williams et al., Modelling coal combustion:the current position[J], Fuel,2002,81:605-618.
    [28]Haiping Yang, Rong Yan, Hanping, et al. ChenCharacteristics of hemicellulose, cellulose and ligninpyrolysis[J]. Fuel,2007,86:1781-1788.
    [29]Hannes Stadler, Dobrin Toporov, Malte Foster,et al. On the influence of the char gasification reactions on NO formation in flameless coal combustion[J]. Combustion and Flame,2009, 156:1755-1763.
    [30]A. Parente, C. Galletti, L. Tognotti. Effect of the combustion model and kinetic mechanism on the MILD combustion in an industrial burner fed with hydrogen enriched fuels[J]. International Journal of Hydrogen Energy,2008,33:7553-7564.
    [31]Hannes Stadler, Dobrin Toporov, Malte Foster,et al. On the influence of the char gasification reactions on NO formation in flameless coal combustion[J]. Combustion and Flame,2009, 156:1755-1763.
    [32]何宏舟,黄俊斌.入口下倾旋风分离器分离特性的数值模拟[J].燃烧科学与技术,2010,16 (6):531-536.
    [33]李星,贾力,张田田.天然气高温空气燃烧特性数值研究[J].中国电机工程学报,2009,29(32):3744.
    [1]Antonio Cavaliere, Mara de Joannon. Mild Combustion [J]. Progress in Energy and Combustion Science,2004,30:329-366.
    [2]Hiroshi Tsuji, Ashwani Gupta, Toshiaki Hasegawa, et al. High temperature Air Combustion [M], CRC PRESS,2002.
    [3]Arghode VK et al. High intensity colorless distributed combustion for ultra low emissions and enhanced performance[J]. Appl Energy (2011), doi:10.1016/j.apenergy.2011.08.039.
    [4]Marco Derudi, Alessandro Villani, Renato Rota. Sustainability of mild combustion of hydrogen-containing hybrid fuels[J]. Proceedings of the Combustion Institute,2007,31: 3393-3400.
    [5]A. E.E. Khalil, A. K. Gupta. Swirling distributed combustion for clean energy conversion in gas turbine applications[J]. Applied Energy,2011,88:3685-3693.
    [6]崔玉峰,吕煊,徐纲,等.无焰燃烧模型燃烧室动态特性分析[J].中国科学:技术科学,2010,40(9):1044-1051.
    [7]石元春.中国生物质原料资源[J].中国工程科学,2011,13(2):14-23.
    [8]彭永军,谢东升.生物质直燃发电技术在我国的应用[J].热电技术,2009,4:8-9.
    [9]佘雕,耿增超.农业秸秆生物质转化利用的研究进展[J].西北林学院学报,2010,25(1):157-161.
    [10]A. Schuster, M. Zieba, G. Scheffknecht. Optimisation of conventional biomass combustion system by applying flameless oxidation[C]. The 15th IFRF Members Conference, Pisa, Italy, 2007.
    [11]G. Szego, B. Dally, J. Nathan. Operational characteristics of a parallel jet MILD combustion burner system [J]. Combustion and Flame,2009,156:429-438.
    [12]廖钦.煤油及其裂解产物自点火现象的初步实验研究[D].安徽合肥:中国科学技术大学,2009.
    [13]Effuggi, Gelosa, Derudi, et al., Mild combustion of methane derived fuel mixtures:natural gas and biogas[J]. Combustion Science and Technology,2008,180:481-493.
    [14]M. Forsth, Sensitivity analysis of the reaction mechanism for gas-phase chemistry of H2-O2 mixtures induced by a hot Pt surface[J]. Combustion and Flame,2002,130(3): 241-260.
    [15]Chia-Jui Chiang, Anna G. Stefanopoulou, Sensitivity Analysis of Combustion Timing of Homogeneous Charge Compression Ignition gasoline Engines[J]. Journal of Dynamic Systems, Measurement, and Control,2009,131(1):1-4.
    [16]下高峰.基于激波管实验平台的甲烷燃烧化学动力学机理研究[D].安徽合肥:中国科学技术大学,2008.
    [17]刘饮圣,张晓丹,下兵团.数值方法教程[M].北京:冶金工业山版社,1998.
    [18]傅维镳,张永廉,王清安.燃烧学[M].北京:高等教育出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700