用户名: 密码: 验证码:
液体燃料无焰燃烧的实现与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源储量日益减少,环境污染严重,节能减排成为常规能源利用的工作重点。无焰燃烧技术因其高效率、低污染的特点受到广泛的关注。目前关于无焰燃烧的研究主要围绕气体燃料在高闻空气条件下无焰燃烧的机理与应用研究展开,液体燃料无焰燃烧的研究报道则少得多。本文以微型燃气轮机为应用背景,探索非预热条件下液体燃料无焰燃烧的实现条件和燃烧特征。本文的工作对于探索无焰燃烧机理,研究其在工业领域的应用具有重要理论意义和实用价值。
     本文的主要工作包括:
     (1)设计了外部带涡旋气流的无焰喷嘴,采用可适性相位激光多普勒测速仪(APV/LDV)对非受限喷雾射流进行了流场和雾化特性的冷态测试,分析喷嘴雾化性能和近喷孔处的流动情况。试验表明:雾滴直径在30-68μm之间,平均直径约为50μm,雾滴尺寸呈偏态分布;燃料初始射流动量大于文献所述实现无焰燃烧的初始动量值。雾化试验结果表明该喷嘴满足实现液体燃料无焰燃烧研究的基本要求。
     (2)以喷嘴射流雾化试验结果为依据,借助CFD方法,设计了多级进气无焰燃烧室,建立热态试验装置,并改变燃料流量、燃空当量比、空气分配比例和进气孔尺寸等多个参数进行了燃烧试验。结果表明:喷孔附近的液雾的稀释和混合程度对整个燃烧模式的转变具有重要影响;模型燃烧室工作在无焰模式的燃空当量比范围为0.25-0.50;在相同输入热功率和燃空当量比条件下,燃空质量比相同,无焰模式的射流动量明显大于有焰模式,有焰模式的污染物排放低于无焰模式;输入热功率相同时,降低燃空当量比,总射流动量增大,燃烧室平均温度降低,CO排放浓度增加,Φ越低CO排放浓度增长越快,NOx稍有增加;燃空当量比相同时,在可操作范围内,降低输入热功率,总射流动量减小,燃烧室平均温度降低,无焰燃烧模式的燃空当量比范围△Φ变窄,△Φ下限降低,CO排放浓度增加,NOx变化很小,在输入功率较低时,CO浓度增加很多。在宏观上,高温惰性组分是形成并维持稳定无焰燃烧的重要因素,烟气循环主要靠大动量反应物射流来实现;在微观上高温惰性成分的加入降低了反应物分了发生有效碰撞的几率,但是,碰撞传热过程提高了反应物分子的能量和发生有效碰撞的几率,使反应持续发生。
     (3)建立了三维燃烧室物理模型,并进行了反应流场的数值计算,将温度计算结果与试验结果进行比较,并分析反应区特征,得出结论:所选用的模型可信且结果正确;高氧条件下也能够实现无焰燃烧,此时射流动量是燃烧模式转变的重要因素;增加射流动量时无焰模式并未发生熄火,说明各处的低燃空当量比反应混合物依靠高温循环烟的预热持续地维持无焰燃烧的反应放热,燃烧空内燃烧产物与反应组分之间的热质传递发挥了更重要的作用;隔板强化了燃烧室内的传热,随燃空当量比降低,两表而及平均的对流传热量减小。空气分级射流改善了流场与热流场的协同配合,促进了混合组分在较小燃烧室空间内的快速传热,为局部反应提供了持续着火的热量。
     (4)以CFD数值计算结果为依据,将燃烧室划分多个区域,在CHEMKIN4.1平台上建立了CRN模型,采用正庚烷中低温和高温反应机理结合NOx反应机理计算污染物排放,分析了NO和CO这两种污染物的主要反应路径,并与试验进行比较。结果表明:无焰燃烧模式采用中低温反应机理计算和有焰燃烧模式采用高温反应机理计算与试验测量结果差别较小;试验条件下排出的NO大部分是快速型NO。
Conventional energy reserves are dwindling accompanied by serious environmental pollution, so energy-saving and emission-reduction becomes the focus of conventional energy utilization. Flameless combustion technology becomes a research hotspot for its high efficiency and low pollutant emission. The present main focus of flameless combustion research is the mechanism and application of the gasous fuel under the conditions of high temperature air, therefore the flameless combustion research of liquid hydrocarbon reported is much less. The realization and combustion characteristics of flamelss combustion of liquid hydrocarbon under non-preheating air condition were investigated with an application background of micro gas turbine in this paper. The work is of great theoretical significance in exploring the flameless combustion mechanism and of practical value in studying the application in industrial applications.
     The major work of the paper is as follows:
     (1)A nozzle with surrounding vortex air was designed for flameless combustion, and the non-reactive spray flow in the vicinity of the nozzle exit and the atomization characteristics was tested using Adaptive Laser Phase/Doppler Velocimetry (APV/LDV) system. The test illustrates that the spray droplet sizes are between30-68μm with a skew distribution and an average diameter of about50μm. The initial fuel injection momentum is larger than that reported in the literature. It shows that the nozzle meets the basic research requirements of flameless combustion of liquid hydrocarbon.
     (2)A flameless combustor that can provide sufficient exhaust gas recirculation with multiple air jets was designed with the aid of CFD according to the atomization results. After the hot test devices had established, a series of combustion experiments was carried out by changing the fuel mass flow, fuel/air equivalence ratio (Φ), air shares and air inlet sizes. The results demonstrate that the dilution and mixing extent of liquid spray nearby the nozzle have an important influence on the transition of combustion regime. The fuel/air equivalence ratio range of the model combustor operating at flameless regime is0.25-0.50. With the same power input (Qp) and Φ, the total injection momentum (GT) and pollutant concentration of flameless combustion regime are higher than those of conventional combustion regime. Lowering Φ only, GT will increase, the average temperature of the combusor chamber (Tavg) will decrease, and emission concentration of CO will increase. In addition, the lower0is, the faster the increase of CO emission concentration will be with a little increase of NOx. Lowering Qp only, GT and Tavg decreases, the range of Φ(ΔΦ) at the flameless regime becomes narrower, the lower limit of0decreases, and CO concentration increases with a bit change of NOx emission. Note that the lower Op is. the faster the increase of CO will be. The process of flameless combustion was analyzed from the macroscopic and microcosmic perspective. In macrocopic, the high-temperature inertial species entranined by large reactant injection momentum is an important factor to realize and sustain stable flameless combustion. In microcosmic, the incorporated high-temperature inertial species lowers the probability of the effective collision of reactant molecules but the heat transfer at the uneffective collision moment enhances the energy of reactant molecules and the probability of proceeding collisions and continues the reaction.
     (3)A3D combustor was modeled to simulate the reactive flow and study the characteristics of the reaction zone. The computation reveals that flameless combustion can be achieved under the condition of high oxygen concentration when the reactant injection momentum is very important. It doesn't quench when increasing the injection momentum at the flameless regime, which indicates that the heat and mass transfer between the combustion products and the reactants plays an important role in local reaction to release heat at low Φ. The heat transfer enhanced by the baffer in the chamber varies with Φ. The staged air jets improve the field synergy of the flow and the heat flow fields, promote the rapid heat transfer of species in small combustor chamber and provide energy for persistent ignition of local reaction.
     (4)The chamber was divided into13zones according to the computation results of CFD. The zones were connected to build a CRN model on the platform of CHEMKIN4.1. The pollutant emissions were computed using heptane reactional mechanism of low and medium-temperature and high-temperature respectively combining NOx mechanism. The main reaction paths of NO and CO were analyzed. Compared with the experimental measurements the computation results show that there are smaller differences in the computations of the flameless combustion regime using the low and medium-temperature reaction mechanism and the conventional combustion regime using high-temperature reaction mechanism. It is believed that the prompt NO accounts for the most of NO emission.
引文
[1]BP Global. BP statistical review of world energy 2011[M/OL].2012-06 [2012-03-10]. http://www.bp.com/statisticalreview.
    [2]何建坤.低碳发展与能源技术创新[EB/OL]. (2010-09-29) [2012-03-10]. http://wenku.baidu.com/view/9ea0450d844769eae009ed70.html.
    [3]快讯:分布式能源系统是21世纪科学用能的重要途径[EB/OL].2010-07-8 [2012-03-10]. http://www.china5e.com/show.php?contentid=110899.
    [4]翁一武,翁史烈,苏明.以微型燃气轮机为核心的分布式供能系统[J].中国电力,2003,36(3):1-4.
    [5]Weinberg F J. Combustion temperature:The future?[J] Nature,1971,233 (5317):239-241.
    [6]Mancini M, Schwoppe P, Weber R, et al. On mathematical modelling of flameless combustion[J]. Combustion and Flame,2007,150(1-2):54-59.
    [7]Wiinning J A, Wiinning J G. Flameless oxidation to reduce thermal NO formation[J]. Progress in Energy and Combustion Science,1997,23(1):81-94.
    [8]Cavaliere A, de Joannon M. Mild combustion[J]. Progress of Energy and Combustion Science. 2004,30(4):329-366.
    [9]de Joannona M, Cavaliere A, Faravellic T, et al. Analysis of process parameters for steady operations in methane mild combustion technology[J]. Proceedings of the Combustion Institute, 2005,30(2):2605-2612.
    [10]Arghode V K, Gupta A K. Effect of flow field for colorless distributed combustion (CDC) for gas turbine combustion[J]. Applied Energy,2010,87:1631-1640.
    [11]Choi G M, Katsuki M. Advanced low NOx combustion using highly preheated air[J]. Energy Conversion and Management,2001,42(5):639-652.
    112] Plessing T, Peters N, Wunning J G. Laseroptical investigation of highly preheated combustion with strong exhaust gas recirculation[C]//.Twenty-Seventh Symposium (International) on Combustion:1998, Pittsburgh:The Combustion Institute.1998:3197-3204.
    [13]Xing Xian Jun, Wang Bao Yuan, Lin Qi Zhao. Structure of reaction zone of normal temperature air flameless combustion in a 2 ton/h coal-fired boiler furnace Part A [J]. Journal of Power and Energy.2007,221(4):473-480.
    [14]刘赵淼,郝海舟,金艳梅,等.化学反应速率模型对高温空气燃烧特性的影响[J].北京工业大学学报,2007,33(4):413-417.
    [15]Kumar S, Paul P J, Mukunda H S. Investigations of the scaling criteria for a mild combustion burner[J]. Proceedings of the Combustion Institute,2005,30(2):2613-2621.
    [16]Levy Y, Lockwood F C, Abbas T. et al. Low-NOx flameless oxidation combustor for high efficiency gas turbines[R]. FLOXCOM Final Report,2004:17-56,147-150.
    [17]Li G Q, Gutmark E J. Experimental study of flameless combustion in gas turbine combustors[C]// 44th A1AA Aerospace Sciences Meeting and Exhibit,2006, Nevada:AIAA,2006-546:1-15.
    [18]Li Peng Fei, Mi Jian Chun. Dally B B, et al. Progress and recent trend in MILD combustion[J]. Science China:Technological Sciences,2011,54(2):255-269.
    [19J Derndi M, Rota R. Experimental study of the mild combustion of liquid hydrocarbons[J]. Proceedings of the Combustion Institute.2010,33(2):3325-3332.
    [20]邢献军,王宝源,林其钊.常温空气无焰燃烧在燃煤锅炉煤改气中的应用[J],热能动力工程,2()()7,22(3):284-287.
    [21]邢献军,林其钊.常温空气无焰燃烧中CO生成的研究[J],热能动力工程,2006,21(6):612-617.
    [22]邢献年,林其钊.常温空气无焰燃烧中NOx生成的研究[J],环境科学学报,2006,26(10):1671-1676.
    [23]Gallelti C, Parente A, Derudi M, et al. Numerical and experimenlal analysis of NO emissions from a lab-scale burner fed with hydrogen-enriched fuels and operating in MILD combustion[J]. International Journal of Hydrogen Energy,2009,34(19):8339-8351.
    [24]Derudi M, Villani A, Rota R. Mild combustion of industrial hydrogen-containing by products[J]. Industrial & Engineering Chemistry Research,2007,10,46(21):6806-6811.
    [25]Wang Y D, Mcllveen-Wright D, Huang Y, et al. The application of FLOX/COSTAIR technologies to reduce NOx emissions from coal/biomass fired power plant:A technical assessment based on computational simulation[J]. Fuel,2007,86:2101-2108.
    [26]Dally B B, Riesmeier E, Peters N. Effect of fuel mixture on moderate and intense low oxygen dilution combustion[J]. Combustion and Flame,2004,137(4):418-431.
    [27]唐志国.基于无焰氧化的干法煤粉气化特性研究[D].合肥:中国科学技术大学,2009.
    [28]唐超君.基于空间反应的煤粉无焰燃烧特性研究[D].合肥:中国科学技术大学,2009.
    [29]Ayoub M, Rottier C, Carpentier S, et al. An experimental study of mild flameless combustion of methane/hydrogen mixtures[J]. International Journal of Hydrogen Energy,2012.37(8): 6912-6921.
    [30]Sabia P, de Joannon M, Fierro S, et al. Hydrogen-enriched methane mild combustion in a well stirred reactor[J]. Experimental Thermal and Fluid Science 2007,31(5):469-475.
    [31]Parente A, Galletti C, Tognot L. Effect of the combustion regime and kinetic mechanism on the MILD combustion in an industrial burner fed with hydrogen enriched fuels[J]. International journal of hydrogen energy,2008,33(24):7553-7564.
    [32]Derudi M, Villani A, Rota R. Sustainability of mild combustion of hydrogen-containing hybrid fuels[J]. Proceedings of the Combustion Institute,2007,31(2):3393-3400.
    [33]Yu Yu, Wang Gao Feng, Lin Qi Zhao. Flameless combustion for hydrogen containing fuels[J]. International Journal of Hydrogen Energy.2010,35(7):2694-2697.
    [34]Frassoldati A, Sharma P, Cuoci A, et al. Kinetic and fluid dynamics modeling of methane/hydrogen jet flames in diluted coflow[J]. Applied Thermal Engineering.2010,30: 376-383.
    [35]Coelho P J, Peters N. Numerical simulation of a mild combustion burner[J]. Combustion and flame,2001,124:503-518.
    [36]Luckerath R, Meier W, Aigner M. FLOX(?) combustion at high pressure with different fuel compositions[J]. Journal of Engineering for Gas Turbines and Power,2008,130:011505-1-7.
    [37]祁海鹰,李宇红,由长福,等.高温低氧燃烧条件下氮氧化物的生成特性[J]。燃烧科学与技术,2002,8(1):17-22.
    [38]彭好义,蒋绍坚,周孑民.高温空气燃烧技术的开发应用、技术优势及其展望[J].工业加热,2004,33(3):11-15.
    [39]朱彤,朱尚龙,曹甄俊,等.高温空气燃烧NOx排放特性的试验研究[J].工程热物理学报,2006.27(5):894-896.
    [40]王力军,蔡九菊,邹宗树,等.燃气喷射对高温空气燃烧室内流动影响的数值研究[J].东北大学学报(自然科学版).2003,24(3):771-772,872.972.
    [41]陈饮.燃气轮机燃烧室柔和燃烧条件与特征的研究[D].北京:中国科学院工程热物理研究所,2010.
    [42]崔玉峰,吕煊,徐纲,等.无焰燃烧模型燃烧室书动态特性分析[J].中国科学:技术科学2010,40(9):1044-1051.
    [43]吕煊.适用于微小型燃气轮机富氢燃料的无焰燃烧技术[D].北京:中国科学院工程热物理研究所,2010.
    [44]杨小龙,崔玉峰,徐纲,等.燃气轮机燃烧室化学反应器网络模型研究[J].工程热物理学报,2009,30(9):1585-1588.
    [45]吕煊,崔玉峰,妓超群,等.合成气无焰燃烧模型燃烧器实验研究[C]//中国工程热物理学:会2011年燃烧学学术年会,2009,10.31-11.2,合肥,2009-094341:1-10.
    [46]黄豪中.柴油均质压燃(HCCI)发动机燃烧过程数值模拟和实验研究[D].天津:天津大学2007.
    [47]姚春德,姚广涛,宋金鸥,等.柴油引燃预混合天然气实现准均质压燃着火燃烧方式的理论研究[J1.汽车工程,2005,27(2):168-171.
    [48]邢献军.常温空气无焰燃烧研究及其在燃媒锅炉煤改气中的应用[D].合肥:中国科学技术大学,2006.
    [49]Mi Jian Chun, Li Peng Fei, Dally B B, et al. Importance of initial momentum rate and air-fuel premixing on moderate or intense low oxygen dilution (MILD) combustion in a recuperative furnace[J]. Energy & Fuels,2009,23(11):5349-5356.
    [50]Li Peng Fei, Mi Jian Chun, Dally B B, et al. Premixed moderate or intense low-oxygen dilution (MILD) combustion from a single jet burner in a laboratory-scale furnace[J]. Energy & Fuel,2011, 25 (7):2782-2793.
    [51]Mi Jian Chun, Li Peng Fei, Zheng Chu Guang. Numerical simulations of flameless premixed combustion with an annular nozzle in a recuperative furnace[J]. Chinese Journal of Chemical Engineering,2010,18(1):10-17.
    [52]李鹏飞,米建春,Dally B B,等.当掣比和反应物混合模式对无焰燃烧的影响[J].中国电机工程学报,2011,31(5):20-27.
    [53]Mi Jian Chun, Wang Fei Fei. Li Peng Fei, et al. Modified vitiation in a moderate or intense low-oxygen dilution (MILD) combustion furnace[J]. Energy & Fuels,2012,26(1):265-277.
    [54]Mi Jian Chun, Li Peng Fei, Zheng Chu Guang. Impact of injection conditions on flame characteristics from a parallel multi-jet burner[J]. Energy,2011,36(11):6583-6595.
    [55]蒋绍坚,柳楷玲,艾元方,等.蓄热式高温空气发生器冷态实验研究[J].煤气与热力,2003,23-2:70-72.
    [56]欧俭平,萧泽强,蒋绍坚,等.高温空气燃烧技术在纲包烘烤中的应用效果分析[J].2003,6:23-25.
    [57]刘赵淼,马重芳,武立云,等.逆向式高温蓄热空气燃烧过程的数值研究[J].工业炉,2002,24-2:1-4.
    [58]杨艳超,苏亚欣.几何结构影响高温空气燃烧特性的数值分析[J].工业炉,2009,31(1):5-9.
    [59]祁海鹰,李宇红.高温空气燃烧技术的国际发展动态[J].工业加热,2003,32(1):1-7.
    [60]王婕,黄佐华,刘兵.天然气掺氢配合废气再循环发动机燃烧过程的数值模拟[J].西安交通大学学报,2009.43,(5):22-25.
    [61]刘玉英,Most J M, Bauer P,等.稀释燃烧的火焰稳定性[J].燃烧科学与技术,2009,15(2):103-108.
    [62]唐志国,马培勇,李永玲,等.基于无焰氧化的煤粉气化炉模型设计与试验研究[J].中国电机工程学报,2011,30(8):50-55.
    [63]俞瑜.气体引射式无焰燃烧的数值模拟和实验研究[D].合肥:中国科学技术大学,2010.
    [64]Milani A, Wunning J G. Flameless oxidation technology[C]//Advanced Combustion and Aerothermal Technologies:Environmental Protection and Pollution Reductions. Kiev:Springer, 2007:343-352.
    [65]Flamme M. New combustion systems for gas turbines (NGT) [J]. Applied Thermal Engineering, 2004,24(11-12):1551-1559.
    [66]Weber R, Smart J P, Kamp W V. On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air[J], Proceedings of the Combustion Institute,2005,30(2): 2623-2629.
    [67]Torresi M, Camporeale S M, Fortunato B, et al. Diluted combustion in a aerodynamically staged swirled burner fueled by diesel oil[C]//Processes and Technologies for a Sustainable Energy. Ischia:2010:1-8.
    [68]Duwig C, Stankovic D, Fuchs L, et al. Experimental and numerical study of flameless combustion in a model gas turbine combustor[J]. Combustion Science and Technology,2008.180(2): 279-295.
    [69]Shim S H, Dally B B, Ashman P J, et al. Sawdust burning under MILD combustion conditions[C]//Proceedings of the Australian Combustion Symposium, Sydney,2007,94-97.
    [70]Dally B B, Shim S H, Craig R A, et al. On the Burning of Sawdust in a MILD Combustion Furnace[J]. Energy & Fuels,2010,24 (6):3462-3470.
    [71]Cui Yu Feng, Lu Xuan, Xu Gang, et al. Dynamic analysis of a flameless combustion model combustor[J]. Science China:Technological Sciences.2010,53(8):2291-2298.
    [72]Galletti C, Parente A, Tognotti L. Numerical and experimental investigation of a mild combustion burner[J]. Combustion and Flame,2007,151(4):649-664.
    [73]Schaffel M N, Mancini M, Szlek A, et al. Novel conceptual design of a supercritical pulverized coal boiler utilizing high temperature air combustion(HTAC) technology[J]. Energy,2010,35(7): 2752-2760.
    [74]Colorado A F, Herrera B A, Amell A A. Performance of a flameless combustion furnace using biogas and natural gas[J]. Bioresource Technology,2010,101(7):2443-2449.
    [75]Wu S R, Chang W C, Chiao J. Low NOx heavy fuel oil combustion with high temperature air[J]. Fuel,2007,86(5-6):820-828.
    [76]Awosope 1 O, Kandamby N H, Lockwood F C. Flameless oxidation modeling:on application to gas turbine combustors[J]. Journal of the Energy Institute,2006,79(2):75-83.
    [77]Technion, Israel institute of technology. Low NOx flameless oxidation combustor for high efficiency gas turbines[EB/OL].2004-12-22[2012-03-10]. http://floxcom.ippt.gov.pl/flox_re-ports.html.
    [78]Cho E S, Danon B, Jong W de, et al. Behavior of a 300 kWth regenerative multi-burner flameless oxidation furnace[J]. Applied Energy,2011,88 (12):4952-4959.
    [79]Zieba M, Brink A, Schuster A, et al. Ammonia chemistry in a flameless jet[7]. Combustion and Flame,2009,156(10):1950-1956.
    [80]王宝源,林其钊.采用稀薄—无焰燃烧方式的燃气或燃油锅炉:中国,200510022667.2 [P].2005.12.24.
    [81]Katsuki M, Hasegawa T. The science and technology of combustion in highly preheated air[C]// Twenty-Seventh Symposium (International) on Combustion, Pistburg:The Combustion Institute. 1998:3135-3146.
    [82]Levy Y, Sherbaum V, Arfi P. Basic thermodynamics of FLOXCOM, the low-NOx gas turbines adiabatic combustor[J]. Applied Thermal Engineering,2004,24(11-12):1593-1605.
    [83]Levy Y. Sherbaum V. Erenburg V. et al. Fundamentals of low-NOx gas turbine adiabatic combustor[C]//Proceedings of GT2005. ASME Turbo Expo 2005:Power for Land. Sea and Air. Nevada:ASME,2005, GT2005-68321:1-11.
    [84]Lammel O, Schutz H, Schmitz G, et al. FLOX(?) Combustion at High Power Density and High Flame Temperatures[J]. Journal of Engineering for Gas Turbines and Power,2010, Vol.132: 121503:1-10.
    [85]Clercq P L, Schlieper M, Noll B, et al. Liquid fuel flameless combustion RANS simulation[C]// Proceedings of ASME Turbo Expo 2008:Power for Land, Sea and Air. Berlin:ASME,2008, GT2008-50552:1-12.
    [86]Maruta K, Muso K, Takeda K, et al. Reaction zone structure in flameless combustion[J]. Proceedings of the Combustion Institute, Volume 28,2000/pp.2117-2123.
    [87]Ochrymiuk T, Badure J. Flameless oxidation at the GT26 gas turbine:numerical study via full chemistry[J]. Task Quarterly 5,2001,2:239-246.
    [88]Liedtke O, Schulz A. Development of a new lean burning combustor with fuel film evaporation for a micro gas turbine[J]. Experimental Thermal and Fluid Science,2003,27:363-369.
    [89]Shehata M. Emissions and wall temperatures for lean prevaporized premixed gas turbine combustor[J]. Fuel,2009,88:446-455.
    [1]Le Clercq P, Schlieper M, Noll B, et al. Liquid fuel flameless combustion RANS simulation[C]//Proceedings of ASME Turbo Expo 2008:Power for Land, Sea and Air. Berlin:ASME,2008, GT2008-50552:1-12.
    [2]祁海鹰,李宇红.高温空气燃烧技术的国际发展动态[J].工业加热,2003,32(1)1-7.
    [3]汪文辉,苏亚欣.天然气高温空气燃烧的空气直射流与旋射流的模拟比较[J].化工进展(增刊.2009,28:493-496.
    [4]Phi V M, Mauzey J L, McDonell V G, et al. Fuel injection and emissions characteristics of a commercial microturbine generator[C]//ASME TurboExpo 2004. Vienna:ASME.2004, GT-2004-54039.
    [5]Kalb J R, Hirsch C, Sattelmayer T. Operational characteristics of a premixed sub-ppm NOx burner with periodic recirculation of combustion products[C]//. ASME Turbo Expo 2006, Barcelona:ASME,2006, GT2006 90072.
    [6]化工部工业炉设计技术中心站.化学工业炉设计手册[M].北京:化学工业出版社,1988.
    [7]沈灿正著.燃气轮机装置原理设计与实用:上册 原理与分部设计[M].北京:高等教育出版社,1958.
    [8]Mi Jian Chun, Li Peng Fei, Dally B B, et al. Importance of initial momentum rate and air-fuel premixing on moderate or intense low oxygen dilution (MILD) combustion in a recuperative furnace[J]. Energy & Fuels,2009,23(11):5349-5356.
    [9]严传俊,范玮.燃烧学[M].西安:西北工业大学出版社,2005.
    [1]唐志国,马培勇,李永玲,等.基于无焰氧化的煤粉气化炉模型设计与试验研究[J].中国电机工程学校,2011,30(8):50-55.
    [2]Mi Jian Chun, Li Peng Fei, Zheng Chu Guang. Numerical simulation of flameless premixed combustion with an annular nozzle in a recuperative furnace[J]. Chinese Journal of Chemical Engineering,2010,18(1):10-17.
    [3]李鹏飞,米建存,Dally B B,等.当量比和反应物混合模式对无焰燃烧的影响[J].中国电机工程学报,2011,31(5):20-27.
    [4]Shim S H, Dally B B, Ashman P J, et al. Sawdust Burning Under MILD Combustion Conditions[C]//Proceedings of the Australian Combustion Symposium, Sydney,2007:94-97.
    [5]Cui Yu Feng, Lu Xuan, Xu Gang, et al. Dynamic analysis of a flameless combustion regimel combustor[J]. Science China:Technological Sciences.2010,.53 (8):2291-2298(in Chinese).
    [6]Galletti C, Parente A, Tognotti L. Numerical and experimental investigation of a mild combustion burner[J]. Combustion and Flame,2007,151(4):649-664.
    [7]邢献军.常温空气无焰燃烧研究及其在燃煤锅炉煤改气中的应用[D].合肥:中国科学技术大学,2006.
    [8]Colorado A F, Herrera B A, Amell A A. Performance of a Flameless combustion furnace using biogas and natural gas[J]. Bioresource Technology,2010,101(7):2443-2449.
    [9]Wu S R, Chang W C, Chiao J. Low NOx heavy fuel oil combustion with high temperature air[J]. Fuel,2007,86(5-6):820-828.
    [10]Awosope I O, Kandamby N H, Lockwood F C. Flameless oxidation modeling:on application to gas turbine combustors[J]. Journal of the Energy Institute,2006,79(2):75-83.
    [11]Technion, Israel institute of technology. Low NOx flameless oxidation combustor for high efficiency gas turbines[EB/OL].2004-12-22[2011-03-10]. http://floxcom.ippt.gov.pl/flox_reports.html.
    [12]化工部工业炉设计技术中心站.化学工业炉设计手册[M].北京:化学工业出版社,1988年.
    [13]Levy Y, Lockwood F C, Abbas T, et al. Low-NOx flameless oxidation combustor for high efficiency gas turbines[R]. FLOXCOM Final Report,2004:17-56,147-150.
    [14]de Joannona M, Cavaliere A, Faravellic T, et al. Analysis of process parameters for steady operations in methane mild combustion technology[J]. Proceedings of the Combustion Institute.2005.30(2):2605-2612.
    [15]Li G Q. Gutmark E J. Experimental study of flameless combustion in gas turbine combustors.[C] 44th AIAA Aerospace Sciences Meeting and Exhibit,2006, Nevada:AIAA 2006-546:1-15.
    [16]Li Peng Fei, Mi Jian Chun, Dally B B, et al. Progress and recent trend in MILD combustion[J]. Science China:Technological Sciences,2011,54(2):255-269.
    [17]Derudi M, Rota R. Experimental study of the mild combustion of liquid hydrocarbons[J]. Proceedings of the Combustion Institute,2011,33(2):3325-3332.
    [18]Le Clercq P, Schlieper M, Noll B, et al. Liquid fuel flameless combustion RANS simulation[C]//Proceedings of ASME Turbo Expo 2008:Power for Land, Sea and Air. Berlin:ASME.2008,3:445-456.
    [19]Mi Jian Chun, Li Peng Fei, Dally B B, et al. Importance of initial momentum rate and air-fuel premixing on moderate or intense low oxygen dilution (MILD) combustion in a recuperative furnace[J]. Energy & Fuels,2009,23(11):5349-5356.
    [20]Mi Jian Chun, Wang Fei Fei, Li Peng Fei, et al.. Modified vitiation in a moderate or intense low-oxygen dilution (MILD) combustion furnace[J]. Energy & Fuels,2012,26(1):265-277.
    [21]Luckerath R, Meier W, Aigner M. FLOX(?) combustion at high pressure with different fuel compositions[J]. Journal of Engineering for Gas Turbines and Power,2008,130:011505-1-7.
    [22]Kumar S, Paul P J, Mukunda H S. Studies on a new high-intensity low-emission burner[J]. Proceedings of the Combustion Institute,2002,29(1):1131-1137.
    [23]Levy Y, Sherbaum V, Arfi P. Basic thermodynamics of FLOXCOM, the low-NOx gas turbines adiabatic combustor[J]. Appllied Thermal Engineering,2004,24(11-12):1593-1605.
    [24]Lee J C Y, Malte P C, Benjamin M A. Low NOx combustion for liquid fuels:Atmospheric pressure experiments using a staged prevoprizer premixer[J]. Journal of Engineering for Gas Turbines and Power,2003,125(4):861-871.
    [25]Duwig C, Stankovic D, Fuchs L, et al. Experimental and numerical study of flameless combustion in a model gas turbine combustor[J]. Combustion Science and Technology,2008, 180(2):279-295.
    [26]Verissimo A S, Rocha A M A, Costa M. Operational, combustion, and emission characteristics of a small-scale combustor[J]. Energy & Fuels,2011,25(6):2469-2480.
    [27]Arghode V K, Gupta A K. Development of high intensity CDC combustor for gas turbine engines[J]. Applied Energy,2011,88 (3):963-973.
    [28]金如山著.航空燃气轮机燃烧室[M].北京:宇航出版社,1988,16-18.
    [29]张勇,黄佐华,王倩,等.天然气-氢气-空气混合气火焰传播特性研究.内燃机学报,2006,24(6):481-488.
    [30]吕煊.适用于微小型燃气轮机富氢燃料的无焰燃烧技术[D].北京:中国科学院工程热物理研究所,2010.
    [31]过增元.对流换热的物理机制及其控制:速度场与热流场的协同[J].科学通报,2000,45(19):2118-2122.
    [32]傅维镳,张永廉,王清安.燃烧学[M].北京:高等教育出版社,1989.
    [1]Shih T H, Liou W, Shabbir A, et al. A new k-ε eddy viscosity model for high Reynolds number trubulent flows[J]. Computers Fluids,1995, (24):227-238.
    [2]王增莹,梁钦锋,张志文,等.撞击气流床气化炉内浓度场和温度场的数值模拟[J].计算机与应用化学,2007,24(10):1319-1323.
    [3]唐鹏.煤油射流自动着火的数值研究[D].合肥:中国科学技术大学,2009.
    [4]Dally B B, Riesmeier E, Peters N. Effect of fuel mixture on moderate and intense low oxygen dilution combustion. Combustion and Flame,2004,137 (4):418-431.
    [5]Galletti C. Parente A, Tognotti L. Numerical and experimental investigation of a mild combustion burner[J]. Combustion and Flame,2007.151(4):649-664.
    [6]Coelho P J, Peters N. Numerical simulation of a mild combustion burner[J]. Combustion and Flame,2001,124:503-518.
    [7]Ochrymiuk T, Badur J. Flameless oxidation at the Gt26 gas turbine:numerical study via full chemistry[J]. Task Quarterly 5,2001,2:239-246.
    [8]Tabacco D, Innarella C, Bruno C. Theoretical and numerical investigation on flameless combustion[J]. Combustion Science and Technology,2002,174(7):1-35.
    [9]Awosope I O, Kandamby N H. Lockwood F C. Flameless oxidation modelling:on application to gas turbine combustors[J]. Journal of the Energy Institute.2006,79(2):75-83.
    [10]Mancini M, Weber R, Bollettini U. Predicting nox emissions of a burner operated in flameless oxidation mode[J]. Proceedings of the Combustion Institute,2002,29(1): 1155-1163.
    [11]Clercq P L, Schlieper M, Noll B, et al. Liquid fuel flameless combustion RANS simulation[C]//Proceedings of ASME Turbo Expo 2008:Power for Land, Sea and Air. Berlin: ASME,2008, GT2008-50552:1-12.
    [12]Duwig C, Stankovic D, Fuchs L, et al. Experimental and numerical study of flameless combustion in a model gas turbine combustor[J]. Combustion Science and Technology,2008, 180(2):279-295.
    [13]Mi Jian Chun, Li Peng Fei, Dally B B, et al. Importance of initial momentum rate and air-fuel premixing on moderate or intense low oxygen dilution (MILD) combustion in a recuperative furnace[J]. Energy & Fuels,2009,23(11):5349-5356.
    [14]Mi Jian Chun, Li Peng Fei, Zheng Chu Guang. Numerical simulation of flameless premixed combustion with an annular nozzle in a recuperative furnace[J]. Chinese Journal of Chemical Engineering,2010,18(1):10-17.
    [15]Mi Jian Chun, Wang Fei Fei, Li Peng Fei, et al. Modified vitiation in a moderate or intense low-oxygen dilution (MILD) combustion furnace[J]. Energy & Fuels,2012,26(1):265-277.
    [16]Mi Jian Chun, Li Peng Fei, Zheng Chu Guang. Impact of injection conditions on flame characteristics from a parallel multi-jet burner[J]. Energy,2011,36(11):6583-6595.
    [17]蔡文祥.环形燃烧室两相燃烧流场与燃烧性能数值研究[D].南京:南京航空航天大学,2007,27-50.
    [18]赵坚行,易勇.紊流燃烧模型数值研究[J].推进技术,1993,3(1):8-15.
    [19]Westbrook C K, Dryer F L. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames[J]. Combustion Science and Technology,1981,27(2).31-43.
    [20]A Cavigiolo, M A Galbiati, A Effuggi, D Gelosa, R Rota. Mild combustion in a laboratory-scale apparatus[J]. Combustion Science and Technology,2003,175:1347-1367.
    [21]过增元.对流换热的物理机制及其控制:速度场与热流场的协同[J].科学通报,2000,45(19):2118-2122.
    [1]Fichet V, Kanniche M, Plion P, et al. A reactor network model for predicting NOx emissions in gas turbines[J]. Fuel,2010,89(9):2202-2210.
    [2]Predicting Emissions for Liquid Fueled Combustors with ENERGICO[EB/OL]. EAPP-Liquid (v1.0) September 7,2010, http://www.reactiondesign.com/.
    [3]Benedetto D, Falcitelli M, Pasini S, et al. Simulation of NOx formation in glass melting furnaces by an integrated computational approach:CFD+Reactor network analysis[J]. Computer Aided Chemical Engineering,2000.8:421-426.
    [4]杨小龙,崔玉峰,徐纲,等.燃气轮机燃烧室化学反应器网络模型研究[J].工程热物理学报,2009,30(9):1585-1588.
    [5]http://wenku.baidu.com/view/32650a7101f69e3143.329466.html.
    [6]Novosselov I V, Malte P C. Development and application of an eight-step global mechanism for CFD and CRN simulations of lean-premixed combustor[J]. Journal of Engineering for Gas Turbines and Power,2008,130(2):0215021-9.
    [7]Novosselov I V. Chemical Reactor Network modeling of combustion systems[D]. Seattle: University of Washington,2006.
    [8]Ehrhardt K, Tokan M, Jansohn P, Teare JD, Ber JM, Sybon G, et al. Modeling of NOx reburning in a pilot scale furnace using detailed reaction kinetics[J]. Combustion Science and Technology,1998,131(1-6):131-146.
    [9]Falcitelli M, Pasini S, Rossi N, Tognotti L. CFD+reactor network analysis:an integrated methodology for the modeling and optimisation of industrial systems for energy saving and pollution reduction[J]. Appllied Thermal Engineering,2002.22(8):9-971.
    [10]Mancini M, Schwppe P, Weber R. Investigations on the modeling assumptions for NOx emissions calculations in MILD combustion of natural gas[C]//15th IFRF members conference. Pisa, Italy:International Flame Research Foundation,2007.
    [11]Zeuch T, Moreac G, Ahmed S S, et al. A comprehensive skeletal mechanism for the oxidation of n-heptane generated by chemistry-guided reduction[J]. Combustion and Flame,2008.155: 651-674.
    [12]The San Diego Mechanism [DB/OL]. (2004-12-09) [2012-03-11]. http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html.
    [13]Lee, J C Y, Malte, P C, Benjamin, M A. Low NOx combustion for liquid fuels:Atmospheric pressure experiments using a staged prevoprizer premixer[J]. Journal of Engineering for Gas Turbines and Power,2003,125(4):861-871.
    [14]Mancini M, Weber R, Bollettini U. Predicting nox emissions of a burner operated in flameless oxidation mode[J]. Proceedings of the Combustion Institute,2002,29(1): 1155-1163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700