用户名: 密码: 验证码:
焦炭燃烧过程中氮转化机理与低NOx燃烧技术的开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是能源消耗大国,且能源结构以煤炭为主,每年消耗煤炭总量的50%用于火力发电,燃煤电站排放的氮氧化物(NOx)是破坏我国大气环境的的重要污染物之一,深入探索煤燃烧过程中的氮转化机理、开发新型低NOx燃烧技术对控制电厂NOx排放、改善我国大气环境有重要意义。由于煤粉高温热解所释放的挥发分向NOx的转化及对NOx的同相还原机理已相当明确,本文主要研究煤及焦炭中氮的赋存形态、焦炭氮向NOx的异相转化机理及NO在焦炭表面的异相还原机理,提出一种新型的低NOx燃烧技术,在中型试验台上将其实施并进行热态调试试验。
     XPS分析发现煤焦中的氮主要是以六元环的吡啶氮的形态存在。选用合理简化的具有zigzag结构和armchair结构的焦炭和含氮焦炭模型,使用量子化学计算的方法对焦炭氮异相氧化生成NO、NO在焦炭表面发生异相还原、NO与焦炭氮相互作用的反应机理进行了分子层面上的研究。O2可与煤焦中的氮发生反应,将焦炭氮异相氧化为NO。O2在含氮焦炭边缘的吸附为强放热反应。O2异相氧化zigzag结构焦炭氮生成NO释放出430kJ/mol的热量;将armchair结构焦炭氮异相氧化为NO有两个不同的反应路径,分别释放出97.2kJ/mol和241kJ/mol的热量。计算发现NO释放与CO释放路径及所需能量非常相似,燃烧过程中O2对焦炭中氮和碳的异相氧化没有选择性。
     NO在焦炭表面发生异相还原主要有两个不同的反应机理。机理一为烟气中一个NO分子首先吸附在焦炭表面生成表面碳氮组分(-CN),另一个NO分子与(-CN)结合释放出N2;机理二为烟气中两个NO分析吸附在焦炭边缘相邻的四个碳活性位上并生成两个相邻的(-CN),两个(-CN)相结合释放出N2。计算发现反应机理一所需能量低于反应机理二,使用经典过渡态理论对两个机理的速率限制步的反应速率常数进行计算发现,机理一速率限制步的反应速率常数明显高于机理二的反应速率常数。NO在焦炭表面的异相还原主要经由反应机理一进行。NO在焦炭表面还可被还原为N20,N2O会在焦炭表面经由氧抽提反应发生异相分解释放出N2。
     NO可以与焦炭中自身存在的吡啶氮发生异相反应。当以side-on吸附模式生成N-N键时,会经由放热反应释放出N2;生成N-O键时,会发生类似氮交换的反应释放出NO,氮交换的过程为吸热过程。当NO以N-down模式吸附在含氮焦炭表面生成N-N键时,会将焦炭中的氮原子提取出来释放出N2O,N2O的生成路径最高需翻越418kJ/mool的能垒,NO与含氮焦炭作用释放出N20比较困难。
     在水平管式炉上对焦炭燃烧过程中焦炭氮向NO的转化规律及焦炭对NO的异相还原进行了研究。当温度低于1000℃时,随着温度的升高,焦炭氮向NO的转化率升高;当温度高于1000℃时,随着温度的升高,焦炭氮向NO的转化率降低。当氧浓度为3%时,焦炭氮向NO的转化率最低。焦炭氮向NO的转化率随着煤阶程度的增高而增高。焦炭对NO的异相还原作用随着温度的升高而增强,随着氧量的升高而减弱。粒径越小,NO在焦炭表面的异相还原率越大。
     在自动程序升温化学吸附平台上对几种不同的焦样在不同条件下对NO的还原作用进行了详细的研究,并研究了CO的添加对焦炭异相还原NO的影响。无氧条件下600℃以下并未发现焦炭对NO的异相还原能力,当温度高于600℃时,随着温度的升高,焦炭对NO的还原能力增强。焦炭异相还原NO的主要产物是CO和N2,此外还有CO2,850-900℃是较适于CO2生成的温度。活性炭在异相还原NO的过程中还会有HCN的生成。CO的添加并不会影响焦炭异相还原NO的起始温度。在焦炭的催化作用下,CO会将NO还原为N2,同时生成C02,CO的添加会提高NO的还原效率。CO的添加会抑制HCN的生成。
     提出BFA(Below Fire Air)的概念,在2.11MW四角燃烧中型锅炉试验台上对BFA与空气分级和燃料分级相结合的新型低NOx燃烧技术进行热态调试试验。OFA风速越大炉膛出口烟气温度越低,NOx排放量越低,但会引起飞灰含碳量的上升。BFA的投入会降低下炉膛的温度。对于BFA与OFA相结合和BFA与燃料分级相结合的技术,均存在一个最佳的BFA配风量使NOx排放量最低。BFA风门开度越大,锅炉尾部飞灰含碳量越小
Coal is the most important energy resource in China.50%of the total coal consumption is used for coal-fired power plant evergy year. During combustion a large part of nitrogen in coal evolves into nitrogen oxide, a well-known pollutant causing environmental problems. That investigation of nitrogen conversion mechanisms and development of new low NOx combustion technology is of great significance to NOx control in power plant and environmental improvement. Compared with homogeneous mechanisms of nitrogen conversion, heterogeneous mechanisms of nitrogen conversion during char combustion are less well understood. Heterogeneous formation and reduction mechanisms of NOx were investigated theoretically and experimentally in this work. A new low NOx combustion technology was developed and a pilot experiment was carried out in a2.11MW tangentially fired boiler.
     It is found by XPS that the nitrogen is retained in char primarily as pyridine. Reasonably simplified char models and nitrogen-containing char models with zigzag and armchair configuration were used for quantum chemistry simulation. Mechanisms of heterogeneous oxidation of char nitrogen to NO, heterogeneous reduction of NO on the surface of char and reaction between NO and nitrogen-containing char were studied on molecular level. NO was formed through heterogeneous oxidation of char nitrogen by O2. Chemisorption of O2on char is a strong exothermic reaction.430kJ-mol"1was released during NO desorption from oxidation of char nitrogen with zigzag configuration. There were two different pathways for NO desorption from oxidation of char nitrogen with armchair configuration, which were97.2kJ/mol and241kJ/mol exothermic.The non-selective oxidation of carbon and nitrogen took place during char combustion.
     Heterogeneous reduction of NO on the surface of char could take place through two different mechanisms. Mechanism1is by reaction between C(N) formed by pre-adsorbed NO molecule and another NO molecule in surrounding gas. Mechanism2is by combination of two neighboring C(N) active sites. The highest energy barrier in mechanism1was lower than that in mechanism2. Predicted rate constants of rate-limiting steps of mechanism1by transition state theory was much higher than that of mechanism2. Calculation results suggest that mechinism1 was more favorable than mechanism2. N2O was another product during NO reduction, which could decompose quickly on the surface of char.
     NO could react with pyridinic nitrogen incorporated in char structure. When N-N bond was formed with NO chemisorption on nitrogen-containing char in side-on mode, N2was released to gas phase through exothermic reactions. When N-O bond was formed, reactions similar to nitrogen exchange took place and NO was released. N2O desorption would take place if NO chemisorbed on nitrogen-containing char in N-down mode to form N-N bond. The highest energy barrier for N2O desorption was418kJ/mol.
     Mechanisms of NO formation and reduction during char combustion were studied on a horizontal tube furnace. The conversion rate of char nitrogen to NO increased with temperature if it is below1000℃; and decreased with increasing temperature when it is higher than1000℃. The lowest conversion rate was obtained when O2concentration was3%. The conversion rate increased with increasing coal rank. Heterogeneous reduction rate increased with increasing temperature, and decreased with increasing oxygen concentration. The smaller the pulverized char, the higher the reduction rate during char combustion.
     An experimental study of NO heterogeneous reduction on the surface of char was carried out on a temperature-programmed system. In the absence of O2, the reduction ability of char to NO was not found below600℃. The reduction rate increased with increasing temperature. CO and N2were the main products of reduction reaction.850-900℃was a suitable temperature range for CO2formation. HCN was detected during the reaction between NO and acitivate carbon. Addition of CO would not influence the initial reaction temperature. CO enhanced NO reduction rate on char surface and depressed the formation of HCN.
     Below fire air was proposed and the new developed technology based on combination of BFA with air staging or fuel staging was tested in a2.11MW tangentially fired boiler. Increase of OFA was benefit for NOx control, but it resulted in decrease of furnace exit gas temperature and increase of carbon content in fly ash. The use of BFA decreased temperature in lower furnace. There existed an optimized BFA ratio to obtain the lowest NOx emission concentration. Carbon content in fly ash decreased with increasing BFA ratio.
引文
[1]中华人民共和国国家统计局.中国统计年鉴一2010.2011.
    [2]中国电力企业联合会.2011年全国电力工业统计快报.2012.
    [3]环境保护部,国家质量监督检验检疫总局.火电厂大气污染物排放标准(GB13223-2011).2011.
    [4]K.Mark T. The release of nitrogen oxides during char combustion. Fuel,1997,76. (6). 457-473.
    [5]Boudou J-P, Mariotti A, Oudin J-L. Unexpected enrichment of nitrogen during the diagenetic evolution of sedimentary organic matter. Fuel,1984,63, (11),1508-1510.
    [6]Burchill P, Welch L S. Variation of nitrogen content and functionality with rank for some UK bituminous coals. Fuel,1989,68, (1),100-104.
    [7]Leppalahti J, Koljonen T. Nitrogen evolution from coal, peat and wood during gasification: Literature review. Fuel Processing Technology,1995,43, (1),1-45.
    [8]Valentim B, Guedes A, Rodrigues S, Flores D. Case study of igneous intrusion effects on coal nitrogen functionalities. International Journal of Coal Geology,2011,86, (2-3),291-294.
    [9]Robert P. XPS study and physico-chemical properties of nitrogen-enriched microporous activated carbon from high volatile bituminous coal. Fuel,2009,88, (10),1871-1877.
    [10]Wu B, Hu H-q, Zhao Y-p, Jin L-j, Fang Y-m. XPS analysis and combustibility of residues from two coals extraction with sub-and supercritical water. Journal of Fuel Chemistry and Technology,2009,37, (4),385-392.
    [11]Bartle K D, Perry D L, Wallace S. The functionality of nitrogen in coal and derived liquids: An XPS study. Fuel Processing Technology,1987,15, (0),351-361.
    [12]Perry D L, Grint A. Application of XPS to coal characterization. Fuel,1983,62, (9), 1024-1033.
    [13]Friebel J, Kopsel R F W. The fate of nitrogen during pyrolysis of German low rank coals-a parameter study. Fuel,1999,78, (8),923-932.
    [14]Mieczyslaw K. XPS study of reductively and non-reductively modified coals. Fuel,2004, 83. (3).259-265.
    [15]Wallace S, Bartle K D, Perry D L. Quantification of nitrogen functional groups in coal and coal derived products. Fuel,1989,68, (11),1450-1455.
    [16]Valentim B, Guedes A, Boavida D. Nitrogen functionality in "oil window" rank range vitrinite rich coals and chars. Organic Geochemistry,2011,42, (5),502-509.
    [17]Alan N B. Nitrogen functionality in coals and coal-tar pitch determined by X-ray photoelectron spectroscopy. Fuel Processing Technology,1994,38, (3),165-179.
    [18]Glarborg P, Jensen A D, Johnsson J E. Fuel nitrogen conversion in solid fuel fired systems. Progress in Energy and Combustion Science,2003,29. (2),89-113.
    [19]Kirtley S M, Mullins O C, van Elp J, Cramer S P. Nitrogen chemical structure in petroleum asphaltene and coal by X-ray absorption spectroscopy. Fuel,1993,72, (1),133-135.
    [20]Mullins O C, Mitrakirtley S, Vanelp J, Cramer S P. Molecular-Structure of Nitrogen in Coal from Xanes Spectroscopy. Applied Spectroscopy,1993,47, (8),1268-1275.
    [21]Wojtowicz M A, Pels J R, Moulijn J A. N2O emission control in coal combustion. Fuel, 1994,73, (9),1416-1422.
    [22]Wanzl W. Chemical-Reactions in Thermal-Decomposition of Coal. Fuel Processing Technology,1988,20, (1-3),317-336.
    [23]Wiktorsson L P, Wanzl W. Kinetic parameters for coal pyrolysis at low and high heating rates-a comparison of data from different laboratory equipment. Fuel,2000,79, (6),701-716.
    [24]刘茂省.煤粉空气分级和再燃技术机理、应用和模型研究.浙江大学,杭州,2009.
    [25]Molina A, Eddings E G. Pershing D W, Sarofim A F. Char nitrogen conversion:implications to emissions from coal-fired utility boilers. Progress in Energy and Combustion Science,2000, 26, (4-6),507-531.
    [26]Pels J R, Kapteijn F. Moulijn J A, Zhu Q, Thomas K M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon,1995,33, (11),1641-1653.
    [27]Wojtowicz M A, Pels J R, Moulijn J A. The fate of nitrogen functionalities in coal during pyrolysis and combustion. Fuel,1993,72, (5),695.
    [28]Kambara S, Takarada T, Yamamoto Y, Kato K. Relation between Functional Forms of Coal Nitrogen and Formation of NOx Precursors During Rapid Pyrolysis. Energy & Fuels,1993,7, (6),1013-1020.
    [29]Tsubouchi N, Ohtsuka Y. Nitrogen chemistry in coal pyrolysis:Catalytic roles of metal cations in secondary reactions of volatile nitrogen and char nitrogen. Fuel Processing Technology,2008,89. (4),379-390.
    [30]Tsubouchi N, Ohtsuka Y. Nitrogen release during high temperature pyrolysis of coals and catalytic role of calcium in N2 formation. Fuel,2002,81, (18),2335-2342.
    [31]Ohtsuka Y, Xu C, Kong D, Tsubouchi N. Decomposition of ammonia with iron and calcium catalysts supported on coal chars. Fuel,2004,83, (6),685-692.
    [32]Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry in combustion. Progress in Energy and Combustion Science,1989,15. (4).287-338.
    [33]Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry in combustion. Progress in Energy and Combustion Science,1990,16, (4),347.
    [34]Glarborg P, Miller J A. Mechanism and modeling of hydrogen cyanide oxidation in a flow reactor. Combustion and Flame,1994,99, (3-4),475-483.
    [35]Wargadalam V J, Loffler G, Winter F, Hofbauer H. Homogeneous formation of NO and N2O from the oxidation of HCN and NH3 at 600℃-1000℃. Combustion and Flame.2000,120. (4),465-478.
    [36]Dagaut P, Lecomte F, Chevailler S, Cathonnet M. The oxidation of HCN and reactions with nitric oxide:Experimental and detailed kinetic modeling. Combustion Science and Technology. 2000,155.105-127.
    [37]Flatness S A, Kramlich J C. Measurement of the branching ratio of NCO+NO into N2O at 1100-1400 K. Symposium (International) on Combustion,1996,26, (1),567-573.
    [38]D.C B. A shock tube study of the oxidation of ammonia. Combustion and Flame,1968,12. (6),603-610.
    [39]Glarborg P. Kristensen P G, Jensen S H, Dam-Johansen K. A flow reactor study of HNCO oxidation chemistry. Combustion and Flame,1994,98, (3),241-258.
    [40]Glarborg P, Alzueta M U, Dam-Johansen K, Miller J A. Kinetic Modeling of Hydrocarbon/Nitric Oxide Interactions in a Flow Reactor. Combustion and Flame,1998,115, (1-2),1-27.
    [41]Klippenstein S J, Harding L B, Glarborg P, Miller J A. The role of NNH in NO formation and control. Combustion and Flame,2011,158, (4),774-789.
    [42]Lindstedt R P, Lockwood F C, Selim M A. A detailed kinetic study of ammonia oxidation. Combustion Science and Technology.1995,108, (4-6),231-254.
    [43]Miller J A, Glarborg P. Modeling the Thermal De-NOx Process:Closing in on a final solution. International Journal of Chemical Kinetics,1999,31, (11),757-765.
    [44]Sullivan N, Jensen A, Glarborg P, Day M S, Grcar J F, Bell J B, Pope C J, Kee R J. Ammonia conversion and NOx formation in laminar coflowing nonpremixed methane-air flames. Combustion and Flame,2002,131, (3),285-298.
    [45]Dagaut P, Glarborg P, Alzueta M U. The oxidation of hydrogen cyanide and related chemistry. Progress in Energy and Combustion Science,2008,34, (1),1-46.
    [46]Phong-Anant D, Wibberley L J, Wall T F. Nitrogen oxide formation from australian coals. Combustion and Flame,1985,62, (1),21-30.
    [47]Brown S D, Thomas K M. A comparison of NO release from coals and entrained-flow reactor chars during temperature-programmed combustion. Fuel,1993,72, (3),359-365.
    [48]Harding A W, Brown S D, Thomas K M. Release of NO from the combustion of coal chars. Combustion and Flame,1996,107, (4),336-350.
    [49]Wang W, Brown S D, Hindmarsh C J, Thomas K M. NOx release and reactivity of chars from a wide range of coals during combustion. Fuel,1994,73, (9),1381-1388.
    [50]Wang W X, Thomas K M, Cai H Y, Dugwell D R, Kandiyoti R. NO release and reactivity of chars during combustion:The effect of devolatilization temperature and heating rate. Energy & Fuels,1996,10, (2),409-416.
    [51]Ashman P J, Haynes B S, Rate coefficient of H+O2+M→HO2+M (M=H2O, N2, Ar, CO2). In Twenty-Seventh Symposium,1998; pp 185-191.
    [52]Winter F, Wartha C. Loffler G, Hofbauer H. The NO and N2O formation mechanism during devolatilization and char combustion under fluidized-bed conditions. Symposium (International) on Combustion,1996,26, (2),3325-3334.
    [53]Goel S, Zhang B, Sarofim A F. NO and N2O formation during Char combustion:Is it HCN or surface attached nitrogen? Combustion and Flame,1996,104, (1-2),213-217.
    [54]Goel S K, Morihara A, Tullin C J. Sarofim A F. Effect of NO and O2 concentration on N2O formation during coal combustion in a fluidized-bed combustor:Modeling results. Symposium (International) on Combustion,1994,25, (1),1051-1059.
    [55]Soete D. Heterogeneous N2O and NO formation from bound nitrogen atoms during coal char combustion. Symposium (International) on Combustion,1991,23. (1),1257-1264.
    [56]Croiset E, Heurtebise C, Rouan J-P, Richard J-R. Influence of pressure on the heterogeneous formation and destruction of nitrogen oxides during char combustion. Combustion and Flame,1998,112, (1-2),33-44.
    [57]Feng B, Liu H, Yuan J W, Lin Z J, Liu D C. Mechanisms of N2O formation from char combustion. Energy & Fuels,1996,10, (1),203-208.
    [58]Amand L E, Leckner B. Formation of N2O in a Circulating Fluidized-Bed Combustor. Energy & Fuels,1993,7, (6),1097-1107.
    [59]Chu X, Schmidt L D. Intrinsic Rates of NOx-Carbon Reactions. Industrial & Engineering Chemistry Research,1993,32, (7),1359-1366.
    [60]De Soete G G, Croiset E, Richard J R. Heterogeneous formation of nitrous oxide from char-bound nitrogen. Combustion and Flame,1999,117, (1-2),140-154.
    [61]Jones J M, Harding A W, Brown S D, Thomas K M. Detection of reactive intermediate nitrogen and sulfur species in the combustion of carbons that are models for coal chars. Carbon, 1995,33,(6),833-843.
    [62]王国忠.采用煤粉再燃技术炉内流动特性及工程应用研究.哈尔滨工业大学.哈尔滨,2007.
    [63]Drummond L J. Shock Induced Reactions of Methane with Nitrous and Nitric Oxides. Bulletin of the Chemical Society of Japan,1969,42, (2),285-&.
    [64]Wendt J O L, Sternling C V, Matovich M A. Reduction of sulfur trioxide and nitrogen oxides by secondary fuel injection. Symposium (International) on Combustion,1973,14, (1), 897-904.
    [65]Chan L K, Sarofim A F, Beer J M. Kinetics of the NO-carbon reaction at fluidized bed combustor conditions. Combustion and Flame,1983,52, (0),37-45.
    [66]Jan E J. Formation and reduction of nitrogen oxides in fluidized-bed combustion. Fuel, 1994,73, (9),1398-1415.
    [67]Furusawa T, Tsunoda M, Tsujimura M, Adschiri T. Nitric oxide reduction by char and carbon monoxide:Fundamental kinetics of nitric oxide reduction in fluidizedbed combustion of coal. Fuel,1985,64, (9),1306-1309.
    [68]Aarna I, Suuberg E M. A review of the kinetics of the nitric oxide-carbon reaction. Fuel, 1997,76. (6),475-491.
    [69]Aarna I, Suuberg E M. A study of the reaction order of the NO-carbon gasification reaction. Symposium (International) on Combustion,1998,27, (2),3061-3068.
    [70]Aarna I, Suuberg E M. The role of carbon monoxide in the NO-carbon reaction. Energy & Fuels,1999,13,(6),1145-1153.
    [71]Beer J M, Sarofim A F, Lee Y Y. No Formation and Reduction in Fluidized-Bed Combustion of Coal. Journal of the Institute of Energy,1981,54, (418),38-47.
    [72]Song Y H, Beer J M, Sarofim A F. Reduction of Nitric-Oxide by Coal Char at Temperatures of 1250-K-1750-K. Combustion Science and Technology,1981,25, (5-6),237-240.
    [73]Suuberg E M, Teng H. An examination of the two kinetic regimes of the nitric oxide-carbon gasification reaction. Abstracts of Papers of the American Chemical Society,1996,41, (1),160.
    [74]Teng H S, Suuberg E M. Chemisorption of Nitric-Oxide on Char.1. Reversible Nitric-Oxide Sorption. Journal of Physical Chemistry,1993,97, (2),478-483.
    [75]Teng H S, Suuberg E M, Calo J M. Studies on the Reduction of Nitric-Oxide by Carbon-the No Carbon Gasification Reaction. Energy & Fuels,1992,6, (4),398-406.
    [76]Chambrion P, Kyotani T, Tomita A, C-NO reaction in the presence of O2. In Twenty-Seventh Symposium,1998; pp 3053-3059.
    [77]Chambrion P, Kyotani T, Tomita A. Role of N-containing surface species on NO reduction by carbon. Energy & Fuels,1998,12, (2),416-421.
    [78]Chambrion P, Orikasa H, Suzuki T, Kyotani T, Tomita A. A study of the C-NO reaction by using isotopically labelled C and NO. Fuel,1997,76, (6),493-498.
    [79]Chambrion P, Suzuki T, Zhang Z G, Kyotani T, Tomita A. XPS of nitrogen-containing functional groups formed during the C-NO reaction. Energy & Fuels,1997,11, (3),681-685.
    [80]Kyotani T, Tomita A. Analysis of the reaction of carbon with NO/N2O using ab initio molecular orbital theory. Journal of Physical Chemistry B,1999,103, (17),3434-3441.
    [81]Noda K, Chambrion P, Kyotani T, Tomita A. A study of the N2 formation mechanism in carbon-N2O reaction by using isotope gases. Energy & Fuels,1999,13, (4),941-946.
    [82]Illan-gomez M J, Linaressolano A, Delecea C S, Calo J M. NO Reduction by Activated Carbons.1. the Role of Carbon Porosity and Surface-Area. Energy & Fuels,1993,7, (1), 146-154.
    [83]Illan-gomez M J, Linaressolano A, Delecea C S M. No Reduction by Activated Carbon.6. Catalysis by Transition-Metals. Energy & Fuels,1995,9, (6),976-983.
    [84]Illan-gomez M J, Linaressolano A, Radovic L R, Delecea C S M. No Reduction by Activated Carbons.3. Influence of Catalyst Loading on the Catalytic Effect of Potassium. Energy & Fuels,1995,9,(1),104-111.
    [85]Illan-gomez M J, Linaressolano A, Radovic L R. Delecea C S M. No Reduction by Activated Carbons.4. Catalysis by Calcium. Energy & Fuels,1995,9, (1),112-118.
    [86]Illan-gomez M J, Linaressolano A, Radovic L R, Delecea C S M. No Reduction by Activated Carbons.2. Catalytic Effect of Potassium. Energy & Fuels,1995,9, (1),97-103.
    [87]Illan-Gomez M J, LinaresSolano A, Radovic L R, deLecea C S M. NO reduction by activated carbons.7. Some mechanistic aspects of uncatalyzed and catalyzed reaction. Energy & Fuels,1996,10, (1),158-168.
    [88]Illan-gomez M J, Linaressolano A, Radovic L R, Delecea S M. No Reduction by Activated Carbons.5. Catalytic Effect of Iron. Energy & Fuels,1995,9, (3),540-548.
    [89]Montoya A, Truong T N, Sarofim A F. Application of density functional theory to the study of the reaction of NO with char-bound nitrogen during combustion. Journal of Physical Chemistry A,2000,104, (36),8409-8417.
    [90]Madley D G, Stricklandconstable R F. The Kinetics of the Oxidation of Charcoal with Nitrous Oxide. Transactions of the Faraday Society,1953,49, (11),1312-1324.
    [91]唐敖庆,杨忠志,李前树,量子纪学.科学出版社:北京,1982.
    [92]徐光宪,黎乐民,王德民,量子纪学基本原理和从头算法(第二版).科学出版社:北京,2007.
    [93]陈飞武,量子纪学中的计算方法.科学出版社:北京,2008.
    [94]Zhu Z, Lu G Q, Finnerty J, Yang R T. Electronic structure methods applied to gas-carbon reactions. Carbon,2003,41, (4),635-658.
    [95]傅献彩,沈文霞,姚天扬,物理化学,下册).高等教育出版社:北京.2006.
    [96]姜树栋.利用臭氧及活性分子协同脱除多种污染物的试验及机理研究.浙江大学,杭州,2010.
    [97]Becke A D. Density-Functional Thermochemistry.1. the Effect of the Exchange-Only Gradient Correction. Journal of Chemical Physics,1992,96, (3),2155-2160.
    [98]Becke A D. Density-Functional Thermochemistry.2. the Effect of the Perdew-Wang Generalized-Gradient Correlation Correction. Journal of Chemical Physics,1992,97, (12), 9173-9177.
    [99]Becke A D. Density-Functional Thermochemistry.3. the Role of Exact Exchange. Journal of Chemical Physics,1993,98, (7),5648-5652.
    [100]Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Physical Review,1964,136, (3B), B864.
    [101]Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review,1965,140, (4A),1133-&.
    [102]Labanowski J K, Andzelm J W, Density functional methods in chemistry. Springer-Verlag:New York,1991.
    [103]Parr R G, Yang W, Density functional theory of atoms and molecules. Oxford Univ. Oxford,1989.
    [104]Salahub D R, Zerner M C, The challenge of d and f electrons. ACS:Washington, D. C., 1989.
    [105]Foresman J B, Frisch A, Exploring Chemistry with Electronic Structure Methods,2nd ed. Gaussian, Pittsburgh, PA:1996.
    [106]Gonzalez C, Schlegel H B. Reaction-Path Following in Mass-Weighted Internal Coordinates. Journal of Physical Chemistry,1990,94, (14),5523-5527.
    [107]赵学庄,罗渝然,臧雅茹,纪学反应动力学原理(下册).高等教育出版社:北京,1990.
    [108]Chen N. Yang R T. Ab initio molecular orbital calculation on graphite:Selection of molecular system and model chemistry. Carbon,1998,36, (7-8),1061-1070.
    [109]Sendt K, Haynes B S. Density functional study of the chemisorption of O2 on the zig-zag surface of graphite. Combustion and Flame,2005,143, (4),629-643.
    [110]Sendt K. Haynes B S. Quantum chemical and RRKM calculations of reactions in the H/S/O system. Proceedings of the Combustion Institute,2007,31,257-265.
    [111]Sendt K, Haynes B S. Density functional study of the chemisorption of O-2 across two rings of the armchair surface of graphite. Journal of Physical Chemistry C,2007,111, (14), 5465-5473.
    [112]Wang S. Sendt K, Haynes B S, CO and NO desorption from N-bounded carbonaceous surface complexes:Density functional theory calculations. In Proceedings of the 6th International Symposium on Coal Combustion,2007; pp 522-526.
    [113]Zhu Z H, Finnerty J, Lu G Q, Wilson M A, Yang R T. Molecular orbital theory-calculations of the H2O-carbon reaction. Energy & Fuels,2002,16, (4),847-854.
    [114]Zhu Z H, Finnerty J, Lu G Q, Yang R T. A comparative study of carbon gasification with O2 and CO2 by density functional theory calculations. Energy & Fuels,2002,16. (6). 1359-1368.
    [115]Miessen G, Behrendt F, Deutschmann O, Warnatz J. Numerical studies of the heterogeneous combustion of char using detailed chemistry. Chemosphere,2001,42, (5-7). 609-613.
    [116]Perry S T, Hambly E M, Fletcher T H, Solum M S, Pugmire R J. Solid-state 13C NMR characterization of matched tars and chars from rapid coal devolatilization. Proceedings of the Combustion Institute,2000,28, (2).2313-2319.
    [117]Bhatia S K. Reactivity of chars and carbons:New insights through molecular modeling. Aiche Journal,1998,44. (11),2478-2493.
    [118]Petersen E E. Reaction of Porous Solids. Aiche Journal,1957,3, (4),443-448.
    [119]Kidena K, Murata S, Nomura M. A newly proposed view on coal molecular structure integrating two concepts:Two phase and uniphase models. Fuel Processing Technology,2008, 89, (4),424-433.
    [120]Fu X, Qin Y, Wang G G X, Rudolph V. Evaluation of coal structure and permeability with the aid of geophysical logging technology. Fuel,2009,88. (11),2278-2285.
    [121]Xie K-C, Li F, Feng J, Liu J. Study on the structure and reactivity of swollen coal. Fuel Processing Technology,2000,64, (1-2),241-251.
    [122]Xiang J-h, Zeng F-g, Liang H-z, Sun B-l, Zhang L, Li M-f, Jia J-b. Model construction of the macromolecular structure of Yanzhou Coal and its molecular simulation. Journal of Fuel Chemistry and Technology,2011,39, (7),481-488.
    [123]Ibarra J, Murioz E, Moliner R. FTIR study of the evolution of coal structure during the coalification process. Organic Geochemistry,1996,24, (6-7),725-735.
    [124]Kyotani T, Ito K, Tomita A, Radovic L R. Monte Carlo simulation of carbon gasification using molecular orbital theory. Aiche Journal,1996,42, (8),2303-2307.
    [125]Thomas J M, Jones K M. Kinetic Anisotropy in the Oxidation of Graphite. Journal of Nuclear Materials,1964,11, (2),236-239.
    [126]Frankcombe T J, Bhatia S K, Smith S C. Ab initio modelling of basal plane oxidation of graphenes and implications for modelling char combustion. Carbon,2002,40. (13).2341-2349.
    [127]Stein S E, Brown R L. Chemical Theory of Graphite-Like Molecules. Carbon,1985,23, (1),105-109.
    [128]Stein S E, Brown R L. Pi-Electron Properties of Large Condensed Polyaromatic Hydrocarbons. Journal of the American Chemical Society,1987,109, (12),3721-3729.
    [129]Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Physical Review B,1996,54, (24), 17954-17961.
    [130]Miyamoto Y, Nakada K, Fujita M. First-principles study of edge states of H-terminated graphitic ribbons (vol 59, pg 9858,1999). Physical Review B,1999,60, (23),16211-16211.
    [131]Klein D J, Bytautas L. Graphitic edges and unpaired pi-electron spins. Journal of Physical Chemistry A,1999,103, (26),5196-5210.
    [132]Menendez J A, Illan-Gomez M J, y Leon C A L. Radovic L R. On the difference between the isoelectric point and the point of zero charge of carbons. Carbon,1995,33, (11), 1655-1657.
    [133]Radovic L R. Active Sites in Graphene and the Mechanism of CO2 Formation in Carbon Oxidation. Journal of the American Chemical Society,2009,131, (47),17166-17175.
    [134]Radovic L R, Silva I F, Ume J I, Menendez J A, Leon C A L Y, Scaroni A W. An experimental and theoretical study of the adsorption of aromatics possessing electron-withdrawing and electron-donating functional groups by chemically modified activated carbons. Carbon,1997,35, (9),1339-1348.
    [135]Radovic L R, Silva-Tapia A B, Vallejos-Burgos F. Oxygen migration on the graphene surface.1. Origin of epoxide groups. Carbon,2011,49, (13),4218-4225.
    [136]Radovic L R, Silva-Villalobos A F, Silva-Tapia A B, Vallejos-Burgos F. On the mechanism of nascent site deactivation in graphene. Carbon,2011,49, (11),3471-3487.
    [137]Radovic L R, Suarez A, Vallejos-Burgos F, Sofo J O. Oxygen migration on the graphene surface.2. Thermochemistry of basal-plane diffusion (hopping). Carbon,2011,49. (13),4226-4238.
    [138]Chen J P, Yang R T. Chemisorption of hydrogen on different planes of graphite-A semi-empirical molecular orbital calculation. Surface Science,1989,216. (3),481-488.
    [139]Chen N, Yang R T. Ab initio molecular orbital study of the unified mechanism and pathways for gas-carbon reactions. Journal of Physical Chemistry A,1998,102, (31). 6348-6356.
    [140]Pan Z J. Yang R T. The mechanism of methane formation from the Reaction between graphite and hydrogen. Journal of Catalysis,1990,123, (1),206-214.
    [141]Pan Z J, Yang R T. Strongly Bonded Oxygen in Graphite-Detection by High-Temperature Tpd and Characterization. Industrial & Engineering Chemistry Research. 1992,31, (12),2675-2680.
    [142]Espinal J F, Truong T N, Mondragon F. Mechanisms of NH3 formation during the reaction of H2 with nitrogen containing, carbonaceous materials. Carbon,2007,45, (11). 2273-2279.
    [143]Espinal J F, Montoya A, Mondragon F, Truong T N. A DFT study of interaction of carbon monoxide with carbonaceous materials. Journal of Physical Chemistry B.2004,108. (3). 1003-1008.
    [144]Truong T N, Mondragon F, Espinal J F. Mechanism of methane formation for hydrogen storage in single wall carbon nanotubes. Abstracts of Papers of the American Chemical Society. 2003,225, U705-U705.
    [145]Garcia P, Espinal J F, de Lecea C S M, Mondragon F. Experimental characterization and molecular simulation of nitrogen complexes formed upon NO-char reaction at 270 degrees C in the presence of H2O and O2. Carbon,2004,42, (8-9),1507-1515.
    [146]Chen S G, Yang R T. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O. Energy & Fuels,1997,11, (2).421-427.
    [147]Sendt K, Haynes B S. Density functional study of the reaction of O2 with a single site on the zigzag edge of graphene. Proceedings of the Combustion Institute,2011,33. (2). 1851-1858.
    [148]Janiak C, Hoffmann R, Sjovall P, Kasemo B. The Potassium Promoter Function in the Oxidation of Graphite-an Experimental and Theoretical-Study. Langmuir,1993,9, (12), 3427-3440.
    [149]Lamoen D, Persson B N J. Adsorption of potassium and oxygen on graphite:A theoretical study. Journal of Chemical Physics,1998,108, (8),3332-3341.
    [150]Chen S G, Yang R T. The Active Surface Species in Alkali-Catalyzed Carbon Gasification:Phenolate (C-O-M) Groups vs Clusters (Particles). Journal of Catalysis,1993,141, (1),102-113.
    [151]Iaconis E, Illas F, Russo N, Toscano M. A Theoretical-Study of the NO-C10H8 System as a Model for the No-Graphite Interaction. Gazzetta Chimica Italiana,1988,118, (8),603-605.
    [152]Montoya A, Mondragon F, Truong T N. Adsorption on carbonaceous surfaces: cost-effective computational strategies for quantum chemistry studies of aromatic systems. Carbon,2002,40, (11),1863-1872.
    [153]Muzio L J, Quartucy G C. Implementing NOx control:Research to application. Progress in Energy and Combustion Science,1997,23, (3),233-266.
    [154]Smoot L D. A decade of combustion research. Progress in Energy and Combustion Science,1997,23, (3),203-232.
    [155]岑可法,姚强,骆仲侠,燃烧理论与污染控制。机械工业出版社:北京,2004.
    [156]Wang J, Fan W, Li Y, Xiao M, Wang K, Ren P. The effect of air staged combustion on NOx emissions in dried lignite combustion. Energy,2012,37, (1),725-736.
    [157]Spliethoff H, Greul U, Rodiger H, Hein K R G. Basic effects on NOx emissions in air staging and reburning at a bench-scale test facility. Fuel,1996,75, (5),560-564.
    [158]Fan W, Lin Z, Kuang J, Li Y. Impact of air staging along furnace height on NOx emissions from pulverized coal combustion. Fuel Processing Technology,2010,91, (6), 625-634.
    [159]Lyngfelt A, Amand L-E, Leckner B. Reversed air staging-a method for reduction of N2O emissions from fluidized bed combustion of coal. Fuel,1998,77, (9-10),953-959.
    [160]Mereb J B, Wendt J O L. Air staging and reburning mechanisms for NOx abatement in a laboratory coal combustor. Fuel,1994,73, (7),1020-1026.
    [161]Normann F, Andersson K, Leckner B, Johnsson F. Emission control of nitrogen oxides in the oxy-fuel process. Progress in Energy and Combustion Science,2009,35, (5),385-397.
    [162]Gibbs B M, Pereira F J, Beer J M. The influence of air staging on the N?O emission from a fluidised bed coal combustor. Symposium (International) on Combustion,1977,16. (1). 461-474.
    [163]Faravelli T, Bua L, Frassoldati A, Antifora A, Tognotti L, Ranzi E, Sauro P, A new procedure for predicting NOx emissions from furnaces. In Computer Aided Chemical Engineering, Elsevier:2000; Vol. Volume 8. pp 859-864.
    [164]Fan W D, Lin Z C, Li Y Y, Kuang J G Zhang M C. Effect of Air-Staging on Anthracite Combustion and NOx Formation. Energy & Fuels,2009,23, (1),111-120.
    [165]Li S, Xu T, Zhou Q, Tan H, Hui S, Hu H. Optimization of coal reburning in a 1MW tangentially fired furnace. Fuel,2007,86, (7-8),1169-1175.
    [166]斯东波.超细煤粉再燃和深度空气分级技术的试验研究与数值模拟.浙江大学,杭州,2008.
    [167]Lu P, Xu S, Zhu X. Pyrolysis property of pulverized coal in an entrained flow reactor during coal reburning. Chemical Engineering and Processing:Process Intensification,2009,48, (1),333-338.
    [168]Hampartsoumian E, Folayan O O, Nimmo W, Gibbs B M. Optimisation of NOx reduction in advanced coal reburning systems and the effect of coal type. Fuel,2003,82, (4), 373-384.
    [169]Zarnitz R, Pisupati S V. Evaluation of the use of coal volatiles as reburning fuel for NOx reduction. Fuel,2007,86, (4),554-559.
    [170]Zhong B J, Shi W W, Fu W B. Effects of fuel characteristics on the NO reduction during the reburning with coals. Fuel Processing Technology,2002,79, (2),93-106.
    [171]Luan T, Wang X, Hao Y, Cheng L. Control of NO emission during coal reburning. Applied Energy,2009,86, (9),1783-1787.
    [172]Dao D Q. Gasnot L, Marschallek K, El Bakali A. Pauwels J F. Experimental Study of NO Removal by Gas Reburning and Selective Noncatalytic Reduction using Ammonia in a Lab-Scale Reactor. Energy & Fuels.2011,24.1696-1703.
    [173]Kristensen P G. Glarborg P. DamJohansen K. Nitrogen chemistry during burnout in fuel-staged combustion. Combustion and Flame.1996,107, (3),211-222.
    [174]Rutar T, Kramlich J C. Malte P C, Glarborg P. Nitrous oxide emissions control by reburning. Combustion and Flame,1996,107, (4),453-463.
    [175]Smoot L D, Hill S C, Xu H. NOx control through reburning. Progress in Energy and Combustion Science,1998,24, (5),385-408.
    [176]Stanmore B R, Tschamber V, Brilhac J F. Oxidation of carbon by NOx, with particular reference to NO2 and N2O. Fuel,2008,87, (2),131-146.
    [177]Chen S L, McCarthy J M, Clark W D, Heap M P, Seeker W R, Pershing D W. Bench and pilot scale process evaluation of reburning for in-furnace nox reduction. Symposium (International) on Combustion,1988,21, (1),1159-1169.
    [178]张忠孝,姚向东,乌晓江,魏华彦,陶晓华,朱基本.气体再燃低NOx排放试验研究.中国电机工程学报,2005,25,(9),99-102.
    [179]金晶,张忠孝,李瑞阳.超细煤粉再燃的模拟计算与试验研究.中国电机工程学报,2004,24,(10),215-218.
    [180]金晶,张忠孝.超细煤粉分级燃烧中NOx还原规律的研究.工程热物理学报,2006,27,(4),699-701.
    [181]毕玉森.低氮氧化物燃烧技术的发展状况.热力发电,2000,(2),2-9.
    [182]新井纪男,燃烧生产物的发生与抑制技术.科学出版社:北京,2001.
    [183]Wei X L, Xu T M, Hui S. Burning low volatile fuel in tangentially fired furnaces with fuel rich/lean burners. Energy Conversion and Management 2004,45, (5),725-735.
    [184]周俊虎,赵玉晓,刘建忠,杨卫娟,周志军,岑可法.低NOx煤粉燃烧器技术的研究进展与前景展望.热力发电,2005,(8),1-6.
    [185]Faber R, Yan J, Stark F, Priesnitz S. Flue gas desulphurization for hot recycle Oxyfuel combustion:Experiences from the 30MWth Oxyfuel pilot plant in Schwarze Pumpe. International Journal of Greenhouse Gas Control,2011,5, Supplement 1, (0), S210-S223.
    [186]Hayashi J i, Hirama T, Okawa R, Taniguchi M, Hosoda H, Morishita K, Li C Z, Chiba T. Kinetic relationship between NO/N2O reduction and O2 consumption during flue-gas recycling coal combustion in abubbling fluidized-bed. Fuel,2002,81, (9),1179-1188.
    [187]Croiset E, Thambimuthu K V. NOx and SO2 emissions from O2/CO2 recycle coal combustion. Fuel,2001,80, (14),2117-2121.
    [188]Hu Y Q, Kobayashi N, Hasatani M. The reduction of recycled-NOx in coal combustion with O2/recycled flue gas under low recycling ratio. Fuel,2001,80, (13),1851-1855.
    [189]Nguyen T D B, Kang T-H, Lim Y-I, Eom W-H, Kim S-J, Yoo K-S. Application of urea-based SNCR to a municipal incinerator:On-site test and CFD simulation. Chemical Engineering Journal,2009,152, (1),36-43.
    [190]Oliva M, Alzueta M U, Millera A, Bilbao R. Theoretical study of the influence of mixing in the SNCR process. Comparison with pilot scale data. Chemical Engineering Science. 2000,55, (22),5321-5332.
    [191]Bae S W, Roh S A, Kim S D. NO removal by reducing agents and additives in the selective non-catalytic reduction (SNCR) process. Chemosphere,2006,65, (1),170-175.
    [192]Mahmoudi S, Baeyens J, Seville J P K. NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass. Biomass and Bioenergy.2010,34, (9),1393-1409.
    [193]Ayoub M, Irfan M F, Yoo K-S. Surfactants as additives for NOx reduction during SNCR process with urea solution as reducing agent. Energy Conversion and Management.2011, 52, (10),3083-3088.
    [194]Javed M T, Irfan N, Gibbs B M. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction. Journal of Environmental Management,2007,83, (3). 251-289.
    [195]吕洪坤.选择性非催化还原与先进再燃技术的试验及机理研究.浙江大学.杭州,2009.
    [196]Schaub G, Unruh D, Wang J, Turek T. Kinetic analysis of selective catalytic NOx reduction (SCR) in a catalytic filter. Chemical Engineering and Processing:Process Intensification,2003,42, (5),365-371.
    [197]Gutberlet D H, Schallert D B. Selective catalytic reduction of NOx from coal fired power plants. Catalysis Today,1993,16, (2).207-235.
    [198]Zheng L-G, Zhou H, Cen K-F, Wang C-L. A comparative study of optimization algorithms for low NOx combustion modification at a coal-fired utility boiler. Expert Systems with Applications.2009,36. (2. Part 2),2780-2793.
    [199]Liang Z, Ma X. Lin H, Tang Y The energy consumption and environmental impacts of SCR technology in China. Applied Energy,2011,88, (4),1120-1129.
    [200]Carlin N T, Annamalai K, Harman W L, Sweeten J M. The economics of reburning with cattle manure-based biomass in existing coal-fired power plants for NOx and CO2 emissions control. Biomass and Bioenergy.2009,33, (9),1139-1157.
    [201]Hoekman S K, Robbins C. Review of the effects of biodiesel on NOx emissions. Fuel Processing Technology,2012,96, (0),237-249.
    [202]Ighigeanu D, Calinescu I, Martin D, Matei C, Bulearca A, Ighigeanu A. SO2 and NOx removal by microwave and electron beam processing. The Journal of microwave power and electromagnetic energy:a publication of the International Microwave Power Institute,2009,43, (1),44-50.
    [203]Basfar A A, Fageeha O I, Kunnummal N, Al-Ghamdi S, Chmielewski A a Licki J, Pawelec A, Tyminski B, Zimek Z. Electron beam flue gas treatment (EBFGT) technology for simultaneous removal of SO2 and NOx from combustion of liquid fuels. Fuel,2008,87, (8-9), 1446-1452.
    [204]Lazaroiu G, Zissulescu E, Sandu M, Roscia M. Electron beam non-thermal plasma hybrid system for reduction of NOx and SOx emissions from power plants (vol 32, pg 2412, 2007). Energy,2008,33, (3),524-524.
    [205]冯光耀,裴元吉,王相綦.电子束与烟气相互作用机制模拟分析.强激光与粒子束,2006,18,(10),1721-1726.
    [206]邓华,易红宏,唐晓龙,宁平,余琼粉,杨丽萍.燃煤烟气在13X分子筛上的吸附行为与热力学分析.中南大学学报(自然科学版),2012,43,(1),401-406.
    [207]李兵,张立强,蒋海涛,王志强,马春元.粉末活性炭低温吸附氧化NO动力学研究.煤炭学报,2011,36,(12),2092-2096.
    [208]张文祥,贾明君,吴通好.金属离子交换分子筛的NO吸附性能.高等学校化学学报,1997,18,(12),1999-2003.
    [209]Millet C-N, Ch茅dotal R, Da Costa P. Synthetic gas bench study of a 4-way catalytic converter:Catalytic oxidation, NOx storage/reduction and impact of soot loading and regeneration. Applied Catalysis B:Environmental,2009,90, (3-4),339-346.
    [210]Twigg M V. Roles of catalytic oxidation in control of vehicle exhaust emissions. Catalysis Today,2006,117, (4),407-418.
    [211]陈瑶姬.W型火焰锅炉燃用无烟煤低NOx燃烧技术机理和模化试验研究.浙江大学,杭州,2011.
    [212]Pershing D W, Wendt J O L. Relative Contributions of Volatile Nitrogen and Char Nitrogen to Nox Emissions from Pulverized Coal Flames. Industrial & Engineering Chemistry Process Design and Development,1979,18, (1),60-67.
    [213]Muckenhuber H, Grothe H. The heterogeneous reaction between soot and NO2 at elevated temperature. Carbon,2006,44, (3),546-559.
    [214]Radovic L R. Importance of Carbon Active-Sites in Coal Char Gasification-8 Years Later. Carbon,1991,29, (6),809-811.
    [215]Radovic L R, Hong J, Lizzio A A. A Transient Kinetics Study of Char Gasification in Carbon-Dioxide and Oxygen. Energy & Fuels,1991,5, (1),68-74.
    [216]Stanczyk K. Nitrogen oxide evolution from nitrogen-containing model chars combustion. Energy & Fuels,1999,13, (1),82-87.
    [217]Coda B, Kluger F, Fortsch D, Spliethoff H, Hein K R G, Tognotti L. Coal-nitrogen release and NOx evolution in air-staged combustion. Energy & Fuels,1998,12, (6),1322-1327.
    [218]Zhang X X, Zhou Z J, Zhou J Z, Jiang S D, Liu J Z, Cen K F. Analysis of the Reaction between O2 and Nitrogen-Containing Char Using the Density Functional Theory. Energy & Fuels,2011,25,670-675.
    [219]刘艳华,车得福,李荫堂,惠世恩,徐通模.X射线光电子能谱确定铜川煤及其焦中氮的形态.西安交通大学学报,2001,35,(7),661-665.
    [220]姚明宇,刘艳华,车得福.氧对宜宾煤中燃料氮迁移特性的影响.燃烧科学与技术,2004,10,(4),336-340.
    [221]Montoya A, Truong T N, Sarofim A F. Spin contamination in Hartree-Fock and density functional theory wavefunctions in modeling of adsorption on graphite. Journal of Physical Chemistry A,2000,104, (26),6108-6110.
    [222]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Gaussian 03, Revision D.01. Gaussian, Inc.:Wallingford CT,2004.
    [223]Zhu Q, Money S L, Russell A E, Thomas K M. Determination of the fate of nitrogen functionality in carbonaceous materials during pyrolysis and combustion using X-ray absorption near edge structure spectroscopy. Langmuir,1997,13, (7),2149-2157.
    [224]Baxter L L, Mitchell R E, Fletcher T H, Hurt R H. Nitrogen release during coal combustion. Energy & Fuels,1996,10, (1),188-196.
    [225]Jones J M, Jones D H. Modelling the competition between annealing and oxidation in the carbon-oxygen reaction. Carbon,2007,45, (3),677-680.
    [226]Klose W, Rincon S. Adsorption and reaction of NO on activated carbon in the presence of oxygen and water vapour. Fuel,2007,86, (1-2),203-209.
    [227]Bonn B, Pelz G, Baumann H. Formation and decomposition of N2O in fluidized bed boilers. Fuel,1995,74, (2),165-171.
    [228]Orrego J F, Zapata F, Truong T N, Mondragon F. Heterogeneous CO2 Evolution from Oxidation of Aromatic Carbon-Based Materials. Journal of Physical Chemistry A,2009,113, (29),8415-8420.
    [229]Montoya A, Mondragon F, Truong T N. CO2 adsorption on carbonaceous surfaces:a combined experimental and theoretical study. Carbon,2003,41, (1),29-39.
    [230]Sander M, Raj A, Inderwildi O, Kraft M, Kureti S, Bockhorn H. The simultaneous reduction of nitric oxide and soot in emissions from diesel engines. Carbon,2009,47. (3). 866-875.
    [231]Pels J R, Wojtowicz M A, Kapteijn F, Moulijn J A. Trade-Off between NOx and N2O in Fluidized-Bed Combustion of Coals. Energy & Fuels,1995,9. (5),743-752.
    [232]Chen S L, Heap M P, Pershing D W, Martin G B. Fate of coal nitrogen during combustion. Fuel,1982,61, (12),1218-1224.
    [233]Maier H, Spliethoff H, Kicherer A, Fingerle A, Hein K R G. Effect of coal blending and particle size on NOx emission and burnout. Fuel,1994,73, (9),1447-1452.
    [234]Pels J R, Wojtowicz M A, Moulijn J A. Rank dependence of N2O emission in fluidized-bed combustion of coal. Fuel,1993,72, (3),373-379.
    [235]Yamashita H, Tomita A, Yamada H. Kyotani T, Radovic L R. Influence of Char Surface-Chemistry on the Reduction of Nitric-Oxide with Chars. Energy & Fuels.1993,7, (1), 85-89.
    [236]Pevida C, Arenillas A, Rubiera F, Pis J J. Synthetic coal chars for the elucidation of NO heterogeneous reduction mechanisms. Fuel,2007,86, (1-2),41-49.
    [237]Pevida C, Arenillas A, Rubiera F, Pis J J. Heterogeneous reduction of nitric oxide on synthetic coal chars. Fuel,2005,84, (17),2275-2279.
    [238]Orikasa H, Matsuoka K, Kyotani T, Tomita A. HCN and N2 formation mechanism during NO/CHAR reaction. Proceedings of the Combustion Institute,2002,29,2283-2289.
    [239]陈孙航.基于BFA和OFA结合的低NOx煤粉燃烧技术的试验研究与数值模拟.浙江大学,杭州,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700