用户名: 密码: 验证码:
内摇摆柱—多层钢框架结构体系受力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,随着我国经济、社会和城市化的快速发展,人口向城市快速集中,城市面临住宅短缺,需要建设大量住宅,以满足人们对住房的量和质的要求。但是目前建筑本身和其原材料的生产又都面临着保护地球环境的严峻形势,这使得我国的城市化和住宅产业化需要高效节能的建筑结构体系,钢结构住宅体系的诸多优点能够满足这一需求,然而,由于目前我国钢结构的直接建设成本仍高于传统建筑结构,使之难以得到大面积的推广和应用。本文旨在寻求一种成本较低廉,既能满足使用者的使用和安全需求,又能适应时代发展要求的新型钢结构体系。
     钢框架结构具有优良的性能较适宜住宅建设的需求,传统的纯钢框架结构梁柱连接一般为刚性节点,构造复杂,施工难度较大。本文认为只要框架侧向刚度满足抗侧力的要求,并无必要把所有梁柱连接都设计成刚性连接,以部分的铰接节点代替刚接节点可简化节点构造,节约节点用钢量,降低施工难度,从而节约建设成本。
     本文首次提出六种部分梁柱铰接节点的钢框架结构新型体系,分别是(1)内摇摆柱-铰接梁钢框架式,(2)内框式,(3)外框架式,(4)内摇摆柱-端部刚接、铰接梁式,(5)跃层部分铰接节点式和(6)多层外摇摆柱-框架结构体系等。本文首次对其中的(1)即内摇摆柱-铰接梁多层钢框架结构体系进行了详细的研究。
     为了解新型结构体系的性能特点,本文首先用一阶线弹性方法对比分析了内摇摆柱-钢框架结构和传统纯钢框架结构的受力性能,通过对比得出了内摇摆柱-钢框架结构体系完全可以在不增加总体用钢量的前提下达到与钢框架结构同样的抗侧移刚度的结论;并且揭示了内摇摆柱-钢框架结构体系的受力变形特点,框架各部分空间协同工作的规律;通过对柱脚刚接和铰接计算模型对整体性能的影响的分析,提出摇摆柱柱脚可以铰接而其所在平面的边柱柱脚必须刚接的观点;分析了简化的平面协同工作设计原理,提出钢框架-悬臂柱平面结构分析代替空间结构计算的模型。
     其次,本文使用二阶非线性弹性分析方法研究了几何非线性对内摇摆柱-钢框架新型结构体系内力和变形计算结果的影响,研究了结构层数、摇摆柱柱脚做法、稳定系数、中国规范的以概念水平荷载考虑的等效初始缺陷、1/200初始侧移角等效缺陷、1/500初始侧移角等效缺陷和摇摆柱截面大小等因素对新结构体系二阶效应的影响,给出了内力二阶效应增大系数的简化计算公式,可利用此公式对内摇摆柱-钢框架新型结构体系的内力进行计算,并按计算长度系数为1对各受压构件进行稳定性设计验算。
     为了分析内摇摆柱-钢框架结构体系的抗震性能,本文采用静力弹塑性分析方法对结构进行单向推覆,以了解结构体系的承载能力、延性特征和受荷历程中梁柱塑性铰的发展和分布,并使用能力谱-需求谱方法对结构对应于多遇地震和罕遇地震时的结构响应进行了分析,得出内摇摆柱-钢框架体系完全可以满足抗震设计要求的结论。
     最后本文进一步研究了内摇摆柱-钢框架结构新体系的动力特性,揭示了内摇摆柱-钢框架结构与纯钢框架相比其平动振型周期相近而扭转振型周期差别较大,内摇摆柱-钢框架新型结构体系由于材料多集中于结构的周边使其抗扭刚度大,扭转周期小。用弹塑性直接动力分析方法研究了结构在地震中的表现,发现本文提出的内摇摆柱-钢框架新型结构体系具有良好的抗震性能,且相比对照的纯钢框架一定程度上表现出了减震的效果。
     内摇摆柱-钢框架新型结构体系是本文首次提出并研究的新型结构体系,它具有简化梁柱节点构造、降低施工难度和工程量,节约建设成本等一系列的优点。本文对其静力和抗震性能进行了较为完整的研究,得出了一些有意义的成果,为该结构体系进一步的研究、设计、应用和推广奠定了基础。
In recent ten years, with the development of economy, society andurbanization, people migrate from country to city rapidly in China; in2011theurban population proportion has reached51.3%, which lead to housing shortage."Reducing carbon emissions, low carbon economy development" was put forwardin2009at the Copenhagen UN climate conference, which aimed at melioratingliving environment of the human and other creatures on earth. At the meeting,China promised that to2020the carbon emissions of unit gross domestic productwill be decreased40%-45%than in2005. Urbanization needs a large number ofresidential buildings, but facing a grim situation of protecting environment, so ourresidential industrialization needs energy saving and efficient building structuresystems. The steel structure residence have many advantages to meet thisrequirement, but at present in our country direct construction cost of it is stillhigher than the traditional building structures which restricts the development andpromotion of steel construction.The purpose of this paper is to seeking a lower costof the steel structure system which can meet the needs of the owners and can meetthe requirements of the times.
     The moment steel frame structure with many excellent performances is moresuitable for residential construction. This paper consider that as long as thestructure has sufficient lateral stiffness to resisting lateral force, there is no need todesign all the beam to column connections to be rigid, partial connections can bedesigned to be flexible instead of rigid connection which can simplify the details,reduce the steel consumption of these connections, reduce the difficulty of construction and engineering quantity, thereby saving cost of construction. Thispaper put forward six types of steel frame structure systems partly with flexibleconnections and studied the Steel Moment Frame with Interior Leaning Columnsand Hinged Beams.
     Firstly, in this paper the first-order linear elastic analysis method was adoptedto reserch the basic mechanical properties of the new structure contrast totraditional moment frame. By the comprarision, a conclusion was obtained that theSteel Moment Frame system with Interior Leaning Columns and Hinged Beams hassimiliar lateral stiffness as traditional moment frames with the similar steelconsumption of two systems. The performance and collaborative working principleof various parts of the new structure system is revealed. The steel momentframe-cantilever column planar structure model instead of spatial computing modelis put forword.
     The second-order analysis model including geometrical nonlinear and materiallinear elastic was set up to research the internal forces and deformation of the newstructure system. Several types’ equivalent initial imperfections, stabilitycoefficient, number of storey and other factors to second-order effect of newstructure system were studied. A second-order internal force amplification factorformula is proposed.
     A point of view that the new structure system has excellent seismicperformance is obtained by static inelastic analysis method (pushover) and directlydynamic time history analysis method.
引文
[1.1]国家统计局.国际统计年鉴2000-2010[EB/OL].国家统计局,http://www.stats.gov.cn/tjsj/qtsj/gjsj/
    [1.2]国家统计局.全国国民经济和社会发展年度统计公报1978-2011[EB/OL].国家统计局,2012. http://www.stats.gov.cn/tjgb/
    [1.3]吕军.中国统计摘要-2004[M].中国统计出版社,2004.4.
    [1.4] Shao-Wen Liu and Ji-Ping Hao. Housing Industrialization of China and Applicationof Steel Moment Frame with Interior Leaning Columns and Hinged Beams inResidential Buildings [C]//International Conference on Electric Technology and civilEngineering (ICETCE2011),2011.4.
    [1.5]王炜.2011年全国开工保障房一千万套—真正的民心工程[N/OL].人民日报.[2012-02-20] http://www.gov.cn/jrzg/2012-02/20/content_2071198.htm
    [1.6]顾杨妹.二战后日本人口城市化及城市问题研究[J].西北人口,2006(5).
    [1.7]张铁山,洪媛,许炳.日本住宅产业化发展经验与启示[J].商业时代,2010(6):116-118.
    [1.8]梁小青.日本住宅产业发展的主要政策和措施[J].住宅产业化,2004(7):92-95.
    [1.9]黄锡璆.小汤山医院二部工程概述[J].工程建设与设计,2003(6):3-6.
    [1.10] Alan Whitson. Turning Green into Gold [J]. Buildings,2002,3.
    [1.11]李国强,李杰,苏小卒.建筑结构抗震设计(第二版)[M].中国建筑工业出版社,2008.
    [1.12]薛发.全面推进钢结构住宅产业化[J].金属世界,2004(3):19-21.
    [1.13]薛发.我国钢结构住宅发展历程[J].住宅产业,2004(11):20-25.
    [1.14]赵欣.芬兰和英国的产业化钢结构住宅[J].建筑钢结构进展,2003,5(4):29-36
    [1.15] Dowling P. J., Burgran B. A.. Steel Structures in the New Millennium [J]. J. Constr.Steel Research,1998,46(1~3):34, Paper No.423
    [1.16] JGJ209-2010.轻型钢结构住宅技术规程[S].北京:中国建筑工业出版社,2010.
    [1.17] B. S.Taranath. Steel Concrete and Composite Design of Tall Buildings (2nd Edition)[M]. The McGraw-Hill Company, Inc.,1998
    [1.18]陈福生等.高层建筑钢结构设计(第二版)[M].北京:中国建筑工业出版社,2005.
    [1.19]李国强.多高层钢结构设计[M].北京:中国建筑工业出版社,2004.
    [1.20]陈绍蕃,顾强.钢结构(下册)-房屋建筑钢结构设计(第二版)[M].北京:中国建筑工业出版社,2007.
    [1.21]柴昶,宋曼华.钢结构设计与计算(第二版)[M].北京:机械工业出版社,2006.
    [1.22]李国强.钢结构框架体系弹性及弹塑性分析与计算理论[M].上海:上海科学技术出版社,1998
    [1.23] ANSI/AISC360-05. Specification for Structural Steel Buildings [S]. AmericanInstitute of Steel Construction, Inc.,2005
    [1.24] Richard Liew, J.Y.; Balendra, T. and Chen, W.F. Multistory Frame Structures [M]//Structural Engineering Handbook (Ed. Chen Wai-Fah) Boca Raton: CRC Press LLC,1999
    [1.25]陈绍蕃,顾强.钢结构(上册)钢结构基础[M].北京:中国建筑工业出版社,2003.
    [1.26]李星荣,魏才昂,丁峙崐,李和华.钢结构连接节点设计手册(第二版)[M].北京:中国建筑工业出版社,2004.
    [1.27] JGJ99-98.高层民用建筑钢结构技术规程[S].1998.
    [1.28] GB50011-2010.建筑抗震设计规范[S].2010.
    [1.29]郭兵.钢框架梁柱端板连接在循环荷载作用下的破坏机理及抗震对策[D]西安:西安建筑科技大学博士论文.2002
    [1.30] Shao-Wen Liu, Ji-Ping Hao, Peng-Fei Yang and Jiang Zhen. Low-cycle HystereticBehavior of Beam-to-column Extended End-plate Connections[C]//Proceedings of theTenth International Symposium on Structural Engineering for Young Experts(ISSEYE-10), Beijing: Science Press.2008:939-943.
    [1.31]刘少文.梁柱端板连接抗震性能分析[D].包头:内蒙古科技大学硕士论文.2005.
    [1.32]柳长江.钢框架梁柱四角钢连接在循环荷载作用下的破坏机理及抗震设计对策[D].西安:西安建筑科技大学博士论文,2008.
    [1.33]李文岭.钢框架梁柱弱轴半刚性连接性能研究[D].西安:西安建筑科技大学,2007.
    [1.34]罗仁.多高层钢建筑结构抗侧力体系综述[J].钢结构,2001,16(3):47-50.
    [1.35] CECS102:2002.门式刚架轻型房屋钢结构技术规程[S].2002.
    [1.36]陈绍蕃.门式钢框架轻型化的技术措施[J].建筑结构.1998(2).
    [1.37]童根树.带摇摆柱门式刚架的稳定性[J].建筑结构.1999(6).
    [1.38]陈骥.钢结构稳定理论与设计[M].北京:科学出版社,2001.
    [1.39]童根树,施祖元,李志飚.计算长度系数的物理意义及对各种钢框架稳定设计方法的评论[J].建筑钢结构进展,2004,6(4):1-8.
    [1.40] YURA J A.The effective length of columns in unbraced frames [J]. EngineeringJournal, AISC,1971,8(2):37-42.
    [1.41] YURA J. A.. Discussion of the effective length of columns in unbraced frames [J].Engineering Journal, AISC,1972,9(2):40-48.
    [1.42] LEMESSURIER W. J.. A practical method of second-order analysis. Part1: rigidframes [J]. Engineering Journal, AISC,1976,13(4):89-96.
    [1.43] LEMESSURIER W. J.. A practical method of second-order analysis. Part2: pinjointedsystems[J]. Engineering Journal, AISC,1977,14(2):49-67.
    [1.44]陈绍蕃.钢结构稳定设计指南(第二版)[M].北京:中国建筑工业出版社,2004.
    [1.45] CECS102.门式刚架轻型房屋技术规程[S].北京:中国计划出版社,2002.
    [1.46] Bridge R.Q., and Fraser D.J.. Improved G-factor method for evaluating effeetivelengths of columns[J] J. Struct. Engrg., ASCE,1986,113(6):1341-1356.
    [1.47]王金鹏.考虑层与层相互作用的框架稳定分析[D].杭州:浙江大学硕士论文,2004
    [1.48]童根树,王金鹏.考虑层与层相互支援的框架柱的计算长度系数[J].建筑钢结构进展.2004(6).
    [1.49]童根树.按照整层模式失稳的框架稳定性计算[J].西安建筑科技大学学报,2006,38(3):297-301.
    [1.50]王金鹏,童根树.考虑层相互作用的框架柱计算长度[J].钢结构,2004,19(3):62-65.
    [1.51]童根树,邢国然.框架弹塑性失稳的层稳定系数[J].工程力学,2004,24(3):13-19.
    [1.52] N. Kishi, W. F. Chen, and Y.Goto. Effective length factor of columns in semirigidand unbraced frames. J. Struct. Engrg., ASCE,1997,123(3),313-320.
    [1.53] N. Kishi, W. F. Chen, and Y.Goto, et al. Effective length factor of columns in flexiblyjointed and braced frames. Journal of Constructional Steel Research.1998,47:93-118.
    [1.54]王燕,杨文惠.半刚接钢框架稳定分析中柱的计算长度取值研究[J].青岛建筑工程学院学报,2004,25(4):5-10.
    [1.55]舒赣平,孟宪德,陈绍礼.钢框架的高等分析与设计[J].建筑结构学报,2005,26(1):51-59.
    [1.56]王连坤,郝际平等.钢结构高等分析理论研究综述[J].钢结构工程研究⑤,钢结构增刊,2004,7-18.
    [1.57] GB50017.钢结构设计规范[S].2003
    [1.58]童根树,金阳.框架柱计算长度系数法和二阶分析设计法的比较[J].钢结构,2005,20(2):8-11.
    [1.59]彭达材,关建祺,陈绍礼.香港2005钢结构规范不需要假定有效长度的二阶分析和设计法[J].建筑钢结构进展,2007,9(5):57-62.
    [1.60]陈绍蕃.钢结构稳定设计的新进展[J].建筑钢结构进展.2004,6(2):1-13.
    [1.61] W.F. Chen著.钢框架稳定设计[M].周绥平译.上海:世界图书出版公司,1999.
    [1.62] W.F. Chen, S. Toma. Advanced analysis of steel frames theory, software, andapplication. CRC Press Inc,1994.
    [1.63] J.Y.R. Liew. Advanced analysis for frames design. Ph. D dissertation, School of CivilEngineering, Purdue University, West Lafayette,1992.
    [1.64] D.W. White, W.F. Chen. Plastic-hinge based methods for advanced analysis anddesign of steel frames. Bethlehem, PA: Structural Stability Research, LehighUniversity,1993.
    [1.66] J.Y.R. Liew. Notional load plastic hinge method for frame design. Journal ofStructural Engineering, ASCE1994,120:1434-1454.
    [1.67] S.E. Kim, W.F. Chen. Practical advanced analysis for braced steel frame analysis [J].Journal of Structural Engineering, ASCE,1996,122(11):1266-1274.
    [1.68] W.F. Chen. Structural stability: from theory to practice [J]. Engineering Structures,2000,22:116-122.
    [1.69] S.E. Kim, M.H. Park, S.H. Choi. Practical advanced analysis and design ofthree-dimensional truss bridges. Journal of Constructional Steel Research,2000,57:907-923.
    [1.70] S.E. Kim, W.F. Chen. Practical advanced analysis for braced steel frame analysis.Journal of Structural Engineering, ASCE1996,122(11):1259-65.
    [1.71]李国强,沈祖炎.钢框架弹塑性静动力反应的非线性分析模型.建筑结构学报,1990,(2):51-59.
    [1.72]徐伟良,吴惠弼.钢框架二阶弹塑性分析的简化塑性区法.重庆建筑工程学院学报,1994,16(2):74-80.
    [1.73]徐伟良,吴惠弼.半刚性连接框架非线性分析的修正塑性区法.重庆建筑大学学报,1995,17(3):35-42.
    [1.74]徐伟良,潘立本.钢框架弹塑性大位移分析的单元刚度矩阵.重庆建筑大学学报,1998,20(4):27-34.
    [1.75]李国强,沈祖炎.钢结构框架体系弹性弹塑性分析与计算理论.上海:上海科学技术出版社,1998.
    [1.76]舒兴平,沈蒲生.钢框架极限承载力的有限变形理论分析和试验研究.工程力学,1993,4:32-41.
    [1.77]舒兴平,沈蒲生.平面钢框架结构二阶效应的有限变形理论分析.钢结构,1999,14(3):5-9.
    [1.78]舒兴平,尚守平.平面钢框架结构二阶弹塑性分析.钢结构,2000,15(1):24-27.
    [1.79]张文远,张耀春.高层钢结构双重非线性分析的塑性铰法.哈尔滨建筑大学学报,2000,33(6):2-7.
    [1.80]王孟鸿.三维空间钢结构高级分析理论与应用[D].西安建筑科技大学博士论文,2003.03.
    [1.81]王孟鸿,郝际平:基于薄壁结构理论的三维空间钢结构整体稳定分析[J],西安建筑科技大学学报,2004(1):11-15.
    [1.82]刘永华,张耀春.空间钢框架精细塑性铰法高等分析[J].工程力学,2006:23(SI):108-116.
    [1.83]王连坤,张俊峰,郝际平.空间钢框架高等分析的塑性区方法研究[J].钢结构,2010,25(9):1-4.
    [1.85]王连坤.基于薄壁构件理论的空间钢框架高等分析研究[D].西安建筑科技大学博士论文,2008.04.
    [1.86]张俊峰.钢框架高等分析研究及面向对象的程序设计[D].西安建筑科技大学博士论文,2008.02.
    [1.87]刘永华,张耀春.钢结构高等分析研究综述[J].哈尔滨工业大学学报,2005,37(9):1284-1290.
    [1.88]王志骞,董明海.钢框架弯矩作用平面内弹塑性稳定试验研究[J].西安建筑科技大学学报,1999,31(1):48-50.
    [1.89]舒兴平,沈蒲生,尚守平.钢框架结构二阶弹塑性稳定极限承载力试验研究[J].钢结构,1999,14(4):19-22.
    [1.90]刘曙.钢框架滞回性能试验研究[J].华中科技大学学报,2004,32(10):43-45.
    [1.91]吴芸,彭少民,张其林.角钢连接钢框架抗震性能试验研究与数值分析[J].同济大学学报.2005,33(11):1439-1442.
    [1.92]周学军,张祥龙.半刚性连接钢框架稳定极限承载力试验研究[J].济南大学学报(自然科学版),2005,19(1):75-78.
    [1.93]郭兵,郭彦林,柳锋等.焊接及螺栓连接钢框架的循环加载试验研究[J].建筑结构学报,2006,27(2):47-56.
    [1.94]孙犁,李凤霞.半刚性连接钢框架抗震性能的模型试验研究[J].世界地震工程,2005,21(4):143-147.
    [1.95]黄炳生,舒赣平,吕志涛.梁端楔形翼缘连接钢框架低周反复荷载试验研究[J].建筑结构学报,2006,27(2):57-63.
    [1.96]陈以一,吴香香等.空间足尺薄柔构件钢框架滞回性能试验研究[J].土木工程学报,2006,39(5):51-56.
    [1.97] M.F. Wong, K.F. Chung. Structural behaviour of bolted moment connections incold-formed steel beam-column sub-frames. Journal of Constructional Steel Research,2002(58):253–274
    [1.98] M. N. Nader, Astanch-Asl, A. Shaking Table Tests of Rigid, Semirigid, and FlexibleSteel Frames. J.Struct. Engrg.,122(6),589–596.
    [1.99] S.E. Kim, K.W. kang. Large-scale testing of space steel frame subjected tonon-proportional loads. International Journal of Solids and Structures,2002(39):6411-6427.
    [1.100] S.E. Kim, K.W. kang, D.H. Lee. Full-scale testing of space steel frame subjected toproportional loads. Engineering Structures25(2003):69–79.
    [1.101] S.E. Kim, K.W. kang. Large-scale testing of3-D steel frame accounting for localbuckling. International Journal of Solids and Structures.41(2004):5003–5022
    [1.102] S.E. Kim, D.H. Lee. Shaking table tests of a two-story unbraced steel frame. Journalof Constructional Steel Research.63(2007):412–421
    [1.103] A.S. Elnashai, A.Y. Elghazouli, and F.A. Denesh-ashtiani. Response of semirigidsteel frames to cyclic and earthquake loads. Journal of structural engineering,1998(8):857-867.
    [2.1]刘涛,杨风鹏等.精通ANSYS [M].北京:清华大学出版社,2002.
    [2.2]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [2.3]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].北京:机械工业出版社,2004.
    [2.4]李国强.钢结构框架体系弹性及弹塑性分析与计算理论[M].上海:上海科学技术出版社,1998.
    [2.5] GB50068-2001.建筑结构可靠度设计统一标准.2002.
    [2.6] GB5009-2001.建筑结构荷载规范.2006.
    [2.7] JGJ99-98.高层民用建筑钢结构技术规程.1998.
    [2.8] ANSI/AISC360-05. Specification for Structural Steel Buildings. American Instituteof Steel Construction, Inc.,2005
    [2.9] Code of Practice for the structure use of steel. Hong Kong: Buildings Department,2005.
    [2.10] Eurocode3. design of steel structures.2005.
    [2.11]威尔逊著.结构静力与动力分析(原著第四版)[M].北京金土木软件技术有限公司译.北京:中国建筑工业出版社,2006.
    [2.12]包世华.新编高层建筑结构[M].北京:中国水利水电出版社,2005.
    [2.13]李国强.多高层钢结构设计[M].北京:中国建筑工业出版社,2004.
    [2.14]本格尼.S.塔拉纳特.高层建筑钢混凝土组合结构设计[M].罗福午,王娴明,张良铎译.北京:中国建筑工业出版社,1999.
    [2.15] Charles W. Roeder. Connection Performance for Seismic Design of Steel MomentFrames,Journal of Structural Engineering,2002,128(4):517-525.
    [2.16] JGJ3-2010.高层建筑混凝土结构技术规程.2010.
    [2.17] GB50011-2010.建筑抗震设计规范,2010.
    [2.18]梁启智.高层建筑结构分析与设计[M].广州:华南理工大学出版社,1992.
    [3.1] S.P. Timoshenko, G.M. Gere. Theory of elastic stability (2nd Edition)[M].McGraw-Hill, inc.,1963.
    [3.2] F.柏拉希.金属结构的屈曲强度[M].同济大学钢木结构教研室译.北京:科学出版社,1965.
    [3.3]陈骥.钢结构稳定理论与设计[M].北京:科学出版社,2001.
    [3.4]陈绍蕃.钢结构稳定设计的新进展[J].建筑钢结构进展,2004,6(2):1-13.
    [3.5]童根树,金阳.框架柱计算长度系数法和二阶分析设计法的比较[J].钢结构,2005,20(2):8-11.
    [3.6]陈绍蕃.钢结构设计规范的回顾与展望[J].工业建筑,2009,39(6):1-4.
    [3.7] GB50017-2003.钢结构设计规范[S].2003.
    [3.8]沈祖炎,中国钢结构设计规范的发展历程[J].建筑结构学报,2010,31(6):1-6.
    [3.9] GB50011-2010.建筑抗震设计规范[S].2010.
    [3.10] JGJ99-98.高层民用建筑钢结构技术规程[S].1998.
    [3.11] ANSI/AISC360-05. Specification for Structural Steel Buildings [S]. AmericanInstitute of Steel Construction, Inc.,2005
    [3.12]刘珀.美国钢结构规范中结构稳定分析方法简介[J].钢结构,2009,24(7):66-69
    [3.13] UBC-1997. Uniform Building Code, Volume2[S].1997
    [3.14]本格尼.S.塔拉纳特.高层建筑钢混凝土组合结构设计[M].罗福午,王娴明,张良铎译.北京:中国建筑工业出版社,1999.
    [3.15] Structural Stability Research Council. Stability of Metal Structures—A WorldView[M]. American Institute of Steel Construction, Inc.,1983.
    [3.16] FEMA356. Prestandard and Commentary for the Seismic Rehabilitation ofBuildings[S].2000.
    [3.17] FEMA450. NEHRP Recommended Provisions for Seismic Regulations for NewBuildings and other Structures[S].2003.
    [3.18] Eurocode3: Design of steel structures: Part1-1: General rules and rules for buildings[S].2001,2005
    [3.19]彭达材,关建祺,陈绍礼.香港2005钢结构规范不需要假定有效长度的二阶分析和设计法[J].建筑钢结构进展,2007,9(5):57-62.
    [3.20] Code of Practice for the Structural Use of Steel2005[S]. Buildings Department,HKSAR Government.2005
    [3.21]陈绍蕃.钢结构稳定设计指南(第二版)[M].北京:中国建筑工业出版社,2004.
    [3.22] Adams, P.F. The design of steel Beam-columns. Canadian Steel IndustriesConstruction Council, Willowdale, Ontario, Canada
    [3.23]卢林枫.钢结构错列桁架体系结构分析与设计方法[D].西安建筑科技大学博士学位论文,2003.
    [3.24]北京金土木软件技术有限公司. SAP2000中文版使用指南.北京:人民交通出版社,2006.
    [4.1]李杰,李国强.地震工程学导论[M].北京:地震出版社,1992
    [4.2]陆新征,叶列平,廖志伟等.建筑抗震弹塑性分析[M].北京:中国建筑工业出版社,2009.
    [4.3]胡聿贤.地震工程学(第二版)[M].北京:地震出版社,2006.
    [4.4]民政部国家减灾中心.汶川地震救灾救援工作研究报告[R].2009.
    [4.5]叶列平,经杰.论结构抗震设计方法,第六届全国地震工程会议论文集,南京:东南大学出版社,2002:419-429.
    [4.6]小谷俊介.日本基于性能结构抗震设计方法的发展[J].建筑结构,2000,30(6):3-9.
    [4.7]黄小坤.高层建筑混凝土结构技术规程(JGJ3_2010)修订[J].建筑结构,2011,41(11):1-7.
    [4.8]杨志勇,何若全.高层钢结构弹塑性抗震分析静动力综合法[J].建筑结构学报,2003,24(3):25-32.
    [4.9]李国强,李杰,苏小卒.建筑结构抗震设计(第三版)[M].北京:中国建筑工业出版社,2009.
    [4.10]北京金土木软件有限公司. Pushover分析在建筑工程抗震设计中的应用[M].北京:中国建筑工业出版社,2010.
    [4.11] CHOPRA A K,GOEL R K.Capacity-demand-diagram methods for estimatingseismic deformation of inelastic structures: SDF systems[R]. Berkdey: PacificEarthquake Engrg Res Ctr, University of Califomia,1999,2:1-65.
    [4.12]丁洁民,沈祖炎.空间钢框架结构的非线性分析[J].土木工程学报,1993,26(6):37-45
    [4.13]沈祖炎,丁洁民.柔性节点钢框架的二阶弹塑性极限承载力研究[J].建筑结构学报,1992,13(1):34-42
    [5.1]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [5.2]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].北京:机械工业出版社,2004.
    [5.3]吴敏哲,赵桂平.工程有限单元法[M].陕西:陕西科学技术出版社,1995
    [5.4]陆新征,叶列平,廖志伟等.建筑抗震弹塑性分析[M].北京:中国建筑工业出版社,2009.
    [5.5] GB50011-2010.建筑抗震设计规范[S].2010.
    [5.6] CECS160:2004建筑工程抗震性态设计通则[S].2004
    [5.7]龚思礼.建筑工程抗震[M].北京:中国建筑工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700