用户名: 密码: 验证码:
喷动床内半焦颗粒烟气脱硫技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤烟气中SO_2的排放不仅污染空气、危害健康,而且能够形成严重的酸雨,同时是对我们这样一个硫资源相对短缺国家的极大浪费。加快烟气脱硫和回收技术的研发已成为生存环境可持续发展的迫切需要。干法烟气脱硫工艺既可以脱除SO_2,又能实现硫资源的回收,使其具有良好的应用前景。本文提出将干法烟气脱硫工艺结合喷动床技术来脱除烟气中的SO_2,采用层燃锅炉烟气中分离出来的半焦颗粒作为干法脱硫的吸附剂,从而达到以废治废的目的。
     本文针对喷动床内半焦烟气脱硫技术问题,通过冷、热态实验手段,考察了半焦颗粒在喷动床内的流体力学特性和脱硫性能。建立了半焦脱硫动力学模型,结合气固两相双流体模型模拟了喷动床内半焦颗粒的脱硫过程,为实现喷动床半焦颗粒烟气脱硫技术的开发与工业化应用提供支持。
     通过等温氮吸附/脱附法和HK法解析得到半焦颗粒的微孔比表面积、孔容和微孔孔径分布曲线;采用电子显微镜对半焦颗粒孔隙结构进行观察,得出其微孔结构多为开孔狭缝型。采用Lennard-Jones势能函数得到了SO_2、O2、H2O和SO3分子与半焦微孔壁面相互作用的吸附势曲线,并得出相应的最小吸附势能,通过比较说明半焦颗粒对SO_2分子的吸附能力较强,其对SO_2分子的吸附势能相当于吸附特性较好的活性炭颗粒的75%。所以可应用半焦替代活性炭进行脱硫。
     喷动床内半焦流动特性实验与数值模拟方法均得到:喷动床内半焦颗粒可以形成稳定的喷射区、环隙区和喷泉区的三区流动结构。随着表观气速的增大,喷动床的喷泉高度逐渐升高,喷射直径逐渐扩大,壁面处颗粒速度逐渐增加。采用环-核流动模型,结合实验得到的喷动床的喷射直径和环隙区颗粒平均流速等参数,得到了喷动床环隙区平均空隙率的分布规律:环隙区空隙率随表观气速的提高而增大,随着床层高度的增加而降低。数值模拟结果与实验结果吻合良好,为模拟热态情况下喷动床内半焦烟气脱硫打下基础。
     通过实验得到床层压降随表观气速的变化的情况,得到了喷动床不同床高下的最小喷动速度和最大床层压降,并将实验结果与经验模型进行比较,得出喷动床静床高在250到350mm范围内,Mathur和Gishler等人得到的经验模型与实验吻合较好;通过对不同工况下喷动床内半焦损失率的测量表明:在相同的表观速度下,堆积床高越高,其颗粒损失速率越大。
     通过热态脱硫实验研究得出:喷动床比固定床具有较好的传热性能。另外,喷动床的脱硫效率要比固定床大约高10%,说明喷动床内特有的喷射区、环隙区和喷泉区的三区流动结构有利于半焦对烟气中SO_2的脱除。通过对不同表观速度下喷动床脱硫效率的测量,得到脱硫效率随着表观速度的增加呈现峰型分布,说明喷动床内半焦颗粒的脱硫过程受到对流传质和停留时间两个因素的限制。通过实验得到喷动床的最优脱硫表观速度为:U mx=1.23~1.45Ums;通过对不同堆积床高下喷动床脱硫效率的测量得到:喷动床堆积高度增加55mm,其脱硫效率大约提高8%~10%。
     基于气固两相流体动力学,应用双流体模型来模拟喷动床内气固的相互作用。基于L-H动力学理论,建立了半焦脱硫的非均相催化反应速率模型,并求解了脱硫反应的动力学参数。根据得到的脱硫动力学模型,应用“UDF”对Fluent计算软件进行了二次开发,实现了床内气固流动与化学反应的耦合。通过模拟计算,得到床内速度矢量、气量分布、颗粒速度和颗粒拟温度的分布情况,并对喷动床内半焦颗粒脱硫过程进行有效预测,计算结果与实验结果吻合良好。在优化模拟中得出:喷动床的脱硫效率随着反应温度的提高而降低,随着烟气中含氧量和蒸汽量的增加而提高,烟气中蒸汽含量对脱硫速率的影响更加显著。研究表明,本文所建立的基于欧拉多相流模型的喷动床内半焦颗粒烟气脱硫数理模型及数值模拟方法,符合实际对象的特性,有助于揭示喷动床内复杂的稠密气固流动和化学反应规律,为喷动床脱硫反应器的结构设计、优化和运行提供有益的参考。
The emission of SO_2had inflicted severe acid rain pollution, air pollution, along withthat it is so regrettable for China such a country with a lack of sulfur in which gigantic sulfurresources had been wasted. So, Exploiting R&D of flue gas desulfurization and recoverytechnology had been becoming one of urgent requirements for the sustainable development ofliving environment. Semi-cokes flue gas desulfurization technology which possessedupstanding potential application can desulfur form flue gas, and simultaneously with drawalsulfur resources. In this paper, a new type carbon method flue gas desulfurization processcombined with spouted bed technique to remove SO_2from flue gases is presented. It canachieve the purpose of disposing the waste by waste using semi-cokes separated from flue gasof the tiered burning boilers as desulfurization sorbent.
     The mainwork in present paper can be summarized into these parts as follows:
     In this paper, the key problem of flue gas desulfurization technology in a spouted bedusing semi-cokes was studied through hydrodynamic experiment and hot mold experiment etc.This paper examined on hydrodynamic behaviour and its desulphurizing ability of semi-cokesin a spouted bed. The developed model of heterogeneous reactions including the two-fluidmodel (TFM) was also used to predict the process of flue gas desulphurization in a spoutedbed using semi-coke particles. The results of this paper can offer some technical reliance andguidance for industrialization of semi-cokes flue gas desulfurization technology in a spoutedbed.
     The radius distribution, specific surface area and volume of micropore in semi-coke wereresearched by N2isothermal adsorption/temperature-programmed desorption method and HKmethod. The pore channel of semi-cokes was observed as long and narrow by scanningelectron microscopy (SEM). And, the SO_2, O2,H2O and SO3interaction profiles along theradial direction inside the micropores of semi-cokes have been calculated based on theLennard-Jones potential function. And, the minimum adsorption potential of SO_2, O2, H2Oand SO3were obtained. The result shows that the ability of absorbing SO_2of semi-coke wasequivalent to75%of adsorption characteristics of activated carbon particles. Therefore,semi-cokes had been successfully developed in substitution of activated carbon for removalSO_2in the flue gas.
     The behavior of a gas-solid flow in a spouted bed was obtained through thehydrodynamic experiment and numerical simulation. Including the change pattern of bedpressure drop, the minimum spouting velocity, the gas velocity of central spout region,spouted diameter and the particle velocity of annulus. The average of solid concentrationdistributions in annulus area was predicted by using the core-annulus model incorporated theexperiment data. The solid concentration of annulus decreases with bed height increase, withthe gas velocity decreases. The simulation results were good agreement with experimentalresults. And, that will be based on the simulation of semi-coke flue gas desulfurization inspouted bed.
     The maximal total pressure drop and the minimal spout velocity of spouted bed wereobtaind by different operating conditions, and estimating the distribution of the axialsuperficial gas velocity and the gauge pressure. The results calculated by model of Mathurand Gishler were good agreement with the experimental results, especially for range ofpacked height between250mm and350mm. The experimental study on the particle massloss rate at dieffrent conditions was perofmred. The result shows that the increase of packedheight can improve the loss rate of the particle mass.
     A hot-state experiment study has been performed. The results reveal that the heat transferperformance and desulfurization efficiency of spouted bed is better than packed bed. It can beseen that the unique flow structures in a spouted bed are advantageous for enhancingdesulfurization. The tests also showed that the rate of desulphurization have peak profileswith increase of superficial gas velocity. And, the functional dependence between theoptimum gas velocity and the superficial gas velocity is,U mx1.23~1.45Ums. Based onthe experimental study on the rate of desulphurization at diffetent packed height conditions,the desulfurization efficiency can be markedly improved by increase of packed height in aspouted bed.
     In this work, TFM, which includes KTGF and chemical reaction kinetics, was extendedto simulate the desulphurization process in the spouted bed with semi-coke particles. Particlescollision and fluctuation in a bed can be described by KTGF. The complicateddesulphurization process includes a system of5species and6chemical equations.Heterogeneous reaction rates were determined by Langmuir-Hinshelwood-type mechanismincorporated the Arrhenius law.With proposed model, the process desulphurization using semi-coke particles were obtained, and the overall flow patterns within the spouted bed werepredicted well by the model, i.e. formation of a stable spout region, a fountain region and anannular region were correctly predicted. The results showed the distribution of concentrationof SO_2in a spouted bed. Besides, the effects of reaction temperature along with H2O, O2content in the flue gas on the desulphurization efficiency were investigated to determineoptimum operating conditions. Value of experimental determination dovetailed better withmodeling value. The results of paper offered clues for optimum design of reactor and researchof flue gas desulphurization using semi-cokes in a spouted bed.
引文
[1]郝吉明,王书肖.燃煤SO2控制技术手册.北京:化学工业出版社,2001:10-11页
    [2]中国环境状况公报.2010
    [3]潘巧媛.氧活性粒子注入烟气资源化脱硫脱硝研究.大连海事大学博士.2011:11-25页
    [4]邱琼.绿色GDP核算研究综述.中国统计.2006(09):8-9页
    [5]张增,李平.绿色GDP核算研究综述.科技经济市场.2010(10):79-80页
    [6] John Talberth,Alok K. Bohara.Economic openness and green GDP.EcologicalEconomics.2006,58(4):743-758P
    [7]严祯荣,罗晓明,时贵玉等.燃煤粉工业锅炉的发展前景及节能减排技术创新.节能技术.2010(01):65-69页
    [8]刘丹,沈振华.工业锅炉的发展与节能环保.科技资讯.2006(15):99-100页
    [9]赵钦新,王善武.我国工业锅炉未来发展分析.工业锅炉.2007(01):1-9页
    [10] Richter E.Carbon catalysts for Pollution Control.Catalysis Today.1990,1(7):9P
    [11]李月丽,尹华强,黄盼等.炭法烟气脱硫机理的研究现状.四川环境.2009,122(02):112-115页
    [12]楚英豪,尹华强,岑望来等.炭法烟气脱硫技术,中国环境科学学会2006年学术年会,江苏苏州,2006:9页
    [13]刘勇军,尹华强,裴伟征等.炭法烟气脱硫技术现状与趋势.环境污染治理技术与设备.2003(09):50-54页
    [14]李友平,尹华强,刘中正.炭法烟气脱硫技术研究进展.工业安全与环保.2005(05):8-10页
    [15]裴伟征.新型炭法烟气脱硫材料研究.四川大学硕士学位论文.2004:9-15页
    [16]陈军辉.新型炭法烟气脱硫过程动力学研究.四川大学硕士学位论文.2004:8-12页
    [17] Goutam Chattopadhyaya, Douglas G. Macdonald, Narendra N. Bakhshi, etal. Adsorptive removal of sulfur dioxide by Saskatchewan lignite and itsderivatives.Fuel.2006,85(12-13):1803-1810P
    [18]彭会清,胡海祥,赵根成.活性炭材料用于烟气脱硫的研究进展.能源工程.2003(04):29-32页
    [19]蒋文举.微波改性活性炭及其脱硫特性研究.四川大学博士学位论文.2003:14-17页
    [20]江霞.微波改性活性炭的脱硫性能研究.四川大学硕士学位论文.2003:13-15页
    [21]彭宏.蜂窝活性炭脱硫性能的研究.四川大学硕士学位论文.2006:5-10页
    [22]程琰.脱硫活性炭活化方法研究.四川大学硕士学位论文.2004:6-10页
    [23]上官炬.改性半焦烟气脱硫剂的物理结构和表面化学特性变化机理.太原理工大学博士学位论文.2006:15-20页
    [24]沈芳,上官炬,李春虎等.改性半焦烟气脱硫的研究.太原理工大学学报.2003(03):279-281页
    [25]郑仙荣.改性活性半焦脱硫剂制备方法研究与性能测试.太原理工大学硕士学位论文.2003:11-19页
    [26]李开喜,凌立成,刘朗等.不同反应温度下活性炭纤维脱除SO2的能力.新型炭材料.1999(01):11-15页
    [27]钟毅,曾汉才,金峰等.活性炭纤维脱硫性能研究.华中科技大学学报(自然科学版).2003(08):53-55页
    [28]李松柳,王欣,许绿丝等.ACF床动态吸附及脱附性能实验研究.电力环境保护.2007,91(03):28-31页
    [29]许绿丝,岑泽文,曾汉才等.活性炭纤维吸附NO和SO2的实验研究.华中科技大学学报(自然科学版).2006(02):105-107页
    [30]程振民,蒋正兴,袁渭康等.活性炭脱硫研究(Ⅱ)水蒸汽存在下SO2的氧化反应机理.环境科学学报.1997(03):17-21页
    [31]张守玉,王洋,吕俊复等.煤种及炭化条件对活性焦脱硫性能的影响.燃烧科学与技术.2003(05):430-433页
    [32]刘义,曹子栋,王盛.活性炭纤维与柱状活性炭用于烟气脱硫的对比实验.西安交通大学学报.2002(07):701-704页
    [33]唐强,曹子栋,王盛等.活性炭吸附法脱硫实验研究和工业性应用.现代化工.2003(03):37-40页
    [34] Isao Mochida,Keiichi Kuroda,Shizuo Kawano,et al.Kinetic study of the continuousremoval of SOx using polyacrylonitrile-based activated carbon fibres:2. Kineticmodel.Fuel.1997,76(6):537-541P
    [35] AnthonyA. Lizzio,JosephA. DeBarr.Effect of surface area and chemisorbed oxygenon the SO2adsorption capacity of activated char.Fuel.1996,75(13):1515-1522P
    [36] E. Raymundo-Pi ero, D. Cazorla-Amorós, A. Linares-Solano. Temperatureprogrammed desorption study on the mechanism of SO2oxidation by activated carbonand activated carbon fibres.Carbon.2001,39(2):231-242P
    [37] Vivekanand Gaur,RiteshAsthana,Nishith Verma.Removal of SO2by activated carbonfibers in the presence of O2and H2O.Carbon.2006,44(1):46-60P
    [38]楚英豪,尹华强,刘中正.活性炭纤维(ACF)脱硫动力学研究.四川环境.2001(02):37-40页
    [39]张香兰,任红星,李科等.活性半焦脱除烟气中SO2的动力学研究.中国矿业大学学报.2007,155(02):210-214页
    [40]张伟,李春虎,吴建芝.改性活性半焦脱除烟气中SO2的反应动力学.工业催化.2007,103(04):61-64页
    [41] X. Py,C. Roizard,N. Midoux.Kinetics of sulfur dioxide oxidation in slurries ofactivated carbon and concentrated sulfuric acid.Chemical Engineering Science.1995,50(13):2069-2079P
    [42]李辉.烟气脱硫球形活性炭工艺性能及反应器流体力学性能研究.四川大学硕士学位论文.2006:53-78页
    [43] Epstein N. Mathur K.B..Developments in Spouted bed Technology.Can J ChemEng.1974a,52:129-144P
    [44] Grace J R Epstein N.Spouting of Particlate Solids. M E Fayed, and L Otten,VanNostrand Reinhold Co.New York.1996:509-536P
    [45] Bridgwater J.Spouted Beds.JF Dabidson,R Clift and D Harrison.AcademicPress.London,1985:201-224P
    [46] Gishler P.E. Marhur K.B..A technique for contacting gases with coarse solidparticles.AIChE. Chem.1955:1-7P
    [47] Epstein N. Mathur K.B..Spouted beds.New York:Academic Press INC.1974
    [48] Lim C J,Grace J R.Spouted bed hydrodynamics in a0.91m diameter vessel.Can JChem Eng.1987(65):6P
    [49] Bowen B.D. Krzywanski R.S.,Epstein N..Multi-dimensional Model of a Spoutedbed.Can J Chem Eng.1992,5(70):14P
    [50] Morgan M.H. Day J.Y., Littman H..Measurement of Spout Voidage DistributionsParticle Velocity and Particle Circulating Rates in Spouted Beds of Coarse Particles-IIExperimental Veriflcation.Chem.Eng.Sci.1987(42):10P
    [51] M. J. San José,S. Alvarez,A. Morales,et al.Solid Cross-Flow into the Spout andParticle Trajectories in Conical Spouted Beds Consisting of Solids of Different Densityand Shape.Chemical Engineering Research and Design.2006,84(6):487-494P
    [52] Reed G P Paterson N, Dugwell D R etal.Gasification Tests with Sewage Sludge andCoal Sewage Sludge Mixtures in a Pilot Scale Air Blown, Spouted bedCasifier. American Society of Mechanical Engineers, International Gas TurbineInstitute.2002:1-5P
    [53] Lukanda Mukadi,Christophe Guy,Robert Legros.Parameter analysis and scale-upconsiderations for thermal treatment of industrial waste in an internally circulatingfluidized bed reactor.Chemical Engineering Science.1999,54(15-16):3071-3078P
    [54]金涌,祝京旭,汪展文等.流态化工程原理.清华大学出版社,2001:2-3页
    [55]祝京旭,洪江.喷动床发展与现状.化学反应工程与工艺.1997(02):207-209页
    [56]李水清,姚强,赵香龙.喷动床反应器气固流动模型的研究进展.化学反应工程与工艺.2003(03):264-279页
    [57] Qin S Z He Y L, Grace J R,et al.Measurements of voidage profile in spoutedbeds.Canadian Journal of Chemical Engineering.1994a,72(4):229-234P
    [58] C. R. Duarte,M. Olazar,V. V. Murata,et al.Numerical simulation and experimentalstudy of fluid–particle flows in a spouted bed. Powder Technology.2009,188(3):195-205P
    [59] A. Mendes,A. Dollet,C.Ablitzer,et al.Numerical simulation of reactive transfers inspouted beds at high temperature: Application to coal gasification. Journal ofAnalytical and Applied Pyrolysis.2008,82(1):117-12P
    [60] Wang Shuyan,Li Xiang,Lu Huilin,et al.Numerical simulations of flow behavior ofgas and particles in spouted beds using frictional-kinetic stresses model.PowderTechnology.2009,196(2):184-193P
    [61] S. Y. Wang,Y. R. He,H. L. Lu,et al.Numerical Simulations of Flow Behaviour ofAgglomerates of Nano-Size Particles in Bubbling and Spouted Beds with anAgglomerate-Based Approach.Food and Bioproducts Processing.2007,85(3):231-240P
    [62] Z. G. Wang,H. T. Bi,C. J. Lim.Numerical simulations of hydrodynamic behaviors inconical spouted beds.China Particuology.2006,4(3-4):194-203P
    [63] L. Huilin,S. Yongli,L. Yang,et al.Numerical Simulations of HydrodynamicBehaviour in Spouted Beds.Chemical Engineering Research and Design.2001,79(5):593-599P
    [64] T. Kawaguchi,M. Sakamoto,T. Tanaka,et al.Quasi-three-dimensional numericalsimulation of spouted beds in cylinder.Powder Technology.2000,109(1-3):3-12P
    [65] Wei Du,Xiaojun Bao,Jian Xu,et al.Computational fluid dynamics (CFD) modelingof spouted bed: Assessment of drag coefficient correlations.Chemical EngineeringScience.2006,61(5):1401-1420P
    [66] W. Du,X. Bao,J. Xu,et al.Computational fluid dynamics (CFD) modeling of spoutedbed: Influence of frictional stress, maximum packing limit and coefficient of restitutionof particles.Chemical Engineering Science.2006,61(14):4558-4570P
    [67] Wu Zhonghua,Arun S. Mujumdar.CFD modeling of the gas–particle flow behavior inspouted beds.Powder Technology.2008,183(2):260-272P
    [68]张少峰,赵卷,张占锋等.喷动床技术在烟气脱硫中的应用及最新进展.化工进展.2004(02):162-167页
    [69]张少峰,王淑华,赵斌等.双喷嘴矩形导流管喷动床喷动压降.化工学报.2006(05):1143-1146页
    [70]张少峰,兰艳涛,刘燕.双喷嘴矩形喷动床内气固两相流的数值模拟.河北工业大学学报.2010(01):29-33页
    [71]吴静,张少峰,刘燕.双喷嘴矩形喷动床中最小喷动速度的实验研究.化工机械.2005(06):350-352页
    [72]张少峰,李艳平,刘燕.半干方程喷动床烟气脱硫装置及其脱硫性能的研究.河北工业大学学报.2002(01):70-74页
    [73]张少峰,王淑华,赵斌等.双喷嘴矩形喷动床流体力学及脱硫性能的实验研究.环境污染与防治.2006(06):419-422页
    [74]赵香龙,姚强,李水清.喷动床反应模型的研究进展.煤炭转化.2004(01):13-17页
    [75]赵香龙,姚强,李水清.导流管喷动床环隙区颗粒流动分析.工程热物理学报.2006(05):802-804页
    [76]赵香龙,姚强,李水清.导流管喷动床流体动力特性的实验研究.燃烧科学与技术.2005(02):183-187页
    [77]赵香龙,姚强,李水清等.基于电容探针对稠相气固流动系统内颗粒浓度的测量.中国颗粒学会2004年年会暨海峡两岸颗粒技术研讨会会议,中国山东烟台,2004:573-577页
    [78]李水清,姚强,赵香龙等.喷动床内颗粒浓度的实验测量和理论模拟.工程热物理学报.2005(05):871-874页
    [79] Wenqi Zhong,Mingyao Zhang,Baosheng Jin,et al.Three-dimensional Simulationof Gas/Solid Flow in Spout-fluid Beds with Kinetic Theory of Granular Flow.ChineseJournal of Chemical Engineering.2006(05):611-617P
    [80]张勇,金保升,钟文琪.喷动气固流化床颗粒混合规律的实验研究.中国电机工程学报.2008(20):8-14页
    [81]李乾军,章名耀,施爱阳等.加压喷动流化床流型的实验研究.动力工程.2007(06):903-906页
    [82]付金良.喷动流化床内气体混合的实验研究和气固两相流动的数值模拟.东南大学硕士学位论文.2006:50-58页
    [83] Yong Zhang,Baosheng Jin,Wenqi Zhong,et al.DEM simulation of particle mixingin flat-bottom spout-fluid bed. Chemical Engineering Research and Design,88(5-6):757-771P
    [84] Yong Zhang,Wenqi Zhong,Baosheng Jin.New method for the investigation of particlemixing dynamic in a spout-fluid bed.Powder Technology.2011,208(3):702-712P
    [85] Wenqi Zhong,Yuanquan Xiong,Zhulin Yuan,et al.DEM simulation of gas–solid flowbehaviors in spout-fluid bed.Chemical Engineering Science.2006,61(5):1571-1584P
    [86] Wenqi Zhong,Mingyao Zhang,Baosheng Jin,et al.Flow behaviors of a largespout-fluid bed at high pressure and temperature by3D simulation with kinetic theoryof granular flow.Powder Technology.2007,175(2):90-103P
    [87] Wenqi Zhong,Mingyao Zhang,Baosheng Jin,et al.Flow pattern and transition ofrectangular spout–fluid bed. Chemical Engineering and Processing: ProcessIntensification.2006,45(9):734-746P
    [88] Wenqi Zhong,Xiaoping Chen,Mingyao Zhang.Hydrodynamic characteristics ofspout-fluid bed: Pressure drop and minimum spouting/spout-fluidizingvelocity.Chemical Engineering Journal.2006,118(1-2):37-46P
    [89] Wenqi Zhong,Mingyao Zhang,Baosheng Jin.Maximum spoutable bed height ofspout-fluid bed.Chemical Engineering Journal.2006,124(1-3):55-62P
    [90] Wenqi Zhong,Quanjun Li,Mingyao Zhang,et al.Spout characteristics of a cylindricalspout-fluid bed with elevated pressure. Chemical Engineering Journal.2008,139(1):42-47P
    [91]何玉荣,陆慧林,刘文铁等.喷动床内气固两相流体动力行为的数值模拟.化工学报.2004(02):290-296页
    [92]何玉荣,孙巧群,陆慧林等.贴体坐标系下喷动床内气固两相流体动力特性的数值模拟.燃烧科学与技术.2006(01):59-64页
    [93] Lu Huilin,Dimitri Gidaspow.Hydrodynamics of binary fluidization in a riser: CFDsimulation using two granular temperatures.Chemical Engineering Science.2003,58(16):3777-3792P
    [94]李响,孙丹,于龙等.基于摩擦-动力应力模型模拟喷动床气固流动.工程热物理学报.2010(01):68-71页
    [95]何心良.我国工业锅炉使用现状与节能减排探讨.工业锅炉.2010,3(2):1-9页
    [96]蒋文举,金燕,朱晓帆等.活性炭材料的活化与改性.环境污染治理技术与设备.2002(12):25-27页
    [97] D. D. Do,K. Wang.Dual Diffusion and Finite Mass Exchange Model for AdsorptionKinetics in Activated Carbon.AIChE Journal.1998,44(1):68-81P
    [98]林海波.气固循环流化床中粗重颗粒浓度分布的实验研究.四川大学硕士学位论文.2003:78-83页
    [99] FLUENT Inc.User's Guide v6.3.Leban on.USA:FLUENT Inc.2009
    [100]余江涛.气固提升管充分发展段的颗粒浓度与预测.四川大学硕士学位论文.2006:53-65页
    [101]黎梅,诸海碧,王冬琼,黄燕等.气固提升管内颗粒浓度的分布与计算.化工机械.2008,35(02):73-75页
    [102]沈来宏,吴家桦,肖军,张辉.喷动流化床气固流动特性实验研究.中国电机工程学报.2006(17):88-93页
    [103]黄明辉.喷动床内气固两相流体流动数值模拟.西北大学硕士学位论文.2009:62-70页
    [104]高建民.内循环多级喷动流态化烟气脱硫技术研究.哈尔滨工业大学博士.2007:69-75页
    [105]王琳娜,李静海.非均匀气固两相系统中多尺度传质模型.化工学报.2001(08):708-714页
    [106]催化作用基础(Ⅳ)第三章复相催化反应动力学(上).石油化工.1975(02):199-210页
    [107]万洪文,詹正坤.物理化学.北京:高等教育出版社,2002:318-330页
    [108]李乾军,章名耀,施爱阳等.加压喷动流化床流型的实验研究.动力工程.2007(06):903-906页
    [109] D. Gidaspow, Seo,Y.C.,Ettebadieh,B. Hydrodynamics of Fluidization: Experimentaland Theoretical Buble Sizes in A Two-dimensional Bed with AJet.Chem.Eng.Comm.1983(22):253-272P
    [110] S.B. Savage, Jeffrey,D.J..The Stress Tensor in Granular Flow at High ShearRates.Fluid Mech.1981(110):255-272P
    [111] J.T. Jenkins, S.B. Savage.A Theory for the Rapid Flow of Identical, Smooth,NearlyElastic Spherical Particles..Fluid Mech.1983(130):187-202P
    [112] C. K. K. Lun,S. B. Savage,D. J. Jeffrey,et al.Kinetic theories for granular flow:inelastic particles in Couette flow and slightly inelastic particles in a generalflowfield.Journal of Fluid Mechanics.1984(140):223-256P
    [113] P C. Johnson, R. Jackson.Frictional-collisionai Constitutive Relations for GranularMaterials,with Application to Plane Shearing.Fluid Mech.1987(176):67-93P
    [114] S.C. Campbell, D.G. Wang.Particle Pressure in Gas-fluidized Beds.FluidMech.1991(227):495-508P
    [115] J. Ding, D. Gidaspow.A Bubbling Fluidization Model Using Kinetic Theory ofGranular Flow.AIChE Journal.1990(36):523-538P
    [116] D. Gidaspow.Multiphase flow and fluidization: continuum and kinetic theorydescription.Academic Press.1994
    [117] Ranjeet P.Utikar, Vivek V.Ranade.Single Jet Fluidized Beds:Experiments and CFDSimulations with Glass and Polypropylene Particles.Chemical EngineeringScience.2007,62(1):167-183P
    [118] Raffaella Ocone, Yassir Makkawi.Amodel for Gas-solid Flow in AHorizontal Ductwith A Smooth Merge of Rapid-intermediate-dense flows. Chemical EngineeringScience.2006,61(13):4271-4281P
    [119] Yongsheng Nie, Dayou Liu, Guodong Jin.Numerical Simulation of Pulsed LiquidFluidized Bed and It's Experimental Validation.. Powder Technology.2001,119(2-3):153-163P
    [120] Schuler C A, Schuh M J, Humphrey J A C.Numerical calculation of particle-ladengas flows past tubes.AIChE J.1989(35):466-480P
    [121] Di Felice R.The voidage function for fluid-particle interaction systems.InternationalJournal of Multiphase Flow.1994,20(1):153-159P
    [122] Sylamlal M,O’Brien T J.Computer simulation of bubbles in a fluidized bed.AIChESymp.Ser.1989(85):22-31P
    [123] O’Brien T J,Sylamlal M.Particle cluster effects in the numerical simulation of acirculating fluidized bed.In:Avidan,A,eds.Preprints of4th int.Conference onCFB.1993:430-435P
    [124] Gidaspow D. Multiphase Flow and Fluidization. Boston:Academic Press.1994
    [125] D. J. Vojir,E. E. Michaelides.Effect of the history term on the motion of rigidspheres in a viscous fluid. International Journal of Multiphase Flow.1994,20(3):547-556P
    [126]岑可法.工程气固多相流动的理论及计算.浙江:浙江大学出版社.1990,123-140页
    [127] H. Enwald,E. Peirano,A. E. Almstedt.Eulerian two-phase flow theory applied tofluidization.International Journal of Multiphase Flow.1996,22, Supplement(0):21-66P
    [128] Michaelides E E. Liang L.The magnitude of basset forces in unsteady multiphaseflow computes.J.Fluid Eng.1992(114):417-419P
    [129]周立行.湍流气粒多相流数值模拟理论的最新进展.燃烧科学与技术.1995,1(1):10-15页
    [130] D.B.Spalding. B.E.Launder. Lectures in mathematical models ofturbulence.Academic Press.London.England.1972
    [131] Isao Mochida,Yozo Korai,Masuaki Shirahama,et al.Removal of SOx and NOxover activated carbon fibers.Carbon.2000,38(2):227-239P
    [132]张俊.活性焦烟气脱硫的实验研究.南京理工大学硕士学位论文.2008:38-45页
    [133] Robert A. Alberty.Calculation of Standard Transformed Gibbs Energies andStandard Transformed Enthalpies of Biochemical Reactants.Archives of Biochemistryand Biophysics.1998,353(1):116-130P
    [134] H.W. WAN, Z.K. ZHANG. Physical Chemistry. Higher EducationPress.2002:136-147P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700