用户名: 密码: 验证码:
青岛市陆源污染物排放总量控制网络化综合管理平台总体框架设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陆源污染物排放总量控制是实现资源节约型、环境友好型社会经济可持续发展方式的基础内容,也是综合解决当前地表水、海洋等环境污染问题的有效手段。自2006年国家开始实施以COD减排为约束性指标的“目标总量控制管理”计划以来,尽管采取了严格的政府责任制,但由于“目标总量控制管理”方式存在减排指标核定方法不科学和监管模式缺乏整体性等固有的缺陷,不仅导致年均减排2%左右的强制目标没有实现,而且部分纳污海域水质改善实际效果不甚理想。根据美国、欧盟、日本等有益经验,我国陆源污染物排放总量控制迫切需要由现行的“目标总量控制”向“容量总量控制”的转变。一方面,可以采取以精准数值计算的环境容量为科学依据的分配容量为量化管理指标,结果可以细化到具体的行政区责任主体甚至到排污责任主体,同时在管理模式上可以采取“排污链全过程监管模式”以有效提高管理的整体性。但由于陆源污染物“容量总量控制管理”是一个涉及从陆域污染源到纳污海域的多界面、多层次、多节点的全过程连续动态管理,因而不仅需要更加完备科学的“排污链全过程管理”流程,而且也需要更加智能化的网络化综合管理平台。
     因此,本论文的研究目的是建立完善适合青岛市实际情况的陆源污染物容量总量控制管理流程,并在此基础上设计总量控制网络化综合管理平台的总体框架,为实现由目标总量控制向容量总量控制的转变提供科学技术支撑。主要研究内容有4个方面:(1)借鉴美国、欧盟、日本等总量控制管理经验,综合考虑青岛市目前“目标总量控制管理”的实际情况,建立完善青岛市陆源污染物排放总量控制管理总流程。(2)按照“排污链全过程管理”模式要求,构建总量控制管理总流程中关键功能模块的运行流程,主要包括陆域污染源排放数量核算、总量控制率定量化指标体系、总量控制量化管理模式等。(3)根据总量控制管理总流程要求,设计青岛市陆源污染物排放总量控制网络化综合管理平台的总体框架。(4)以Microsoft. NET Framework和ArcGIS Engine为开发平台,以C#为开发语言,在青岛市陆源污染物排放总量控制网络化综合管理平台总体框架中,实现上述关键功能模块的运行。所取得的主要研究成果如下:
     (1)建立完善了青岛市陆源污染物排放总量控制管理总流程。以美国总量控制管理流程为基本框架,借鉴欧盟、日本等经验,综合考虑青岛市现行“目标总量控制管理”在数据管理、减排指标行政核定不合理等实际情况,建立完善了青岛市陆源污染物容量总量控制管理流程。该流程以青岛市环保行政部门为综合管理主体,围绕青岛市陆源污染物排放总量控制量化目标,实现管理界域识别、行政区和排污单元鉴别、数据管理、率定量化指标体系、污染负荷判别、总量控制措施优选、总量控制效果评价等管理环节的系统化、规范化和程序化。其中数据管理、率定量化指标体系、污染负荷判别等是流程的关键环节。
     “数据管理”不仅可以实现相关数据尤其是监测数据的采集、汇总、加工等常规处理,而且应具有数据筛选、互校、整合等预处理功能。其中,行政区和排污单元污染物排放数量核算是重要核心任务,前者一般可应用直接统计方法,后者既可以应用直接统计方法,也可以应用间接计算方法。计算表明,青岛市各行政区所在的排污管理区排放数量统计结果与排污单元累加统计和计算结果平均相差26.7%,与应用污染物陆海响应数值模型推算结果平均相差47.4%。
     “率定量化指标体系”是青岛市12区市和12735个排污单元污染物排放总量控制量化管理约束性指标,采取“一主多辅”序列指标构成。这里,“主体指标”是指分配容量,对于行政区是根据目标海域水环境质量要求,以目标海域环境容量为限值,综合考虑经济规模、人口数量、排放强度和污染治理技术等因素优化分配而得到的,对于排污单元是依据各排污单元准入的排放强度与相关规模度量要素如产值、人口等计算得到。“辅助指标”是实现量化管理目标的充分或必要条件,主要包括经济总量、人口规模、污染物排放强度、污染源结构、工程减排等(非)约束性指标。
     “污染负荷判别”是根据行政责任主体和污染排放主体超排率%大小确定其总量控制管理等级,一般划分为红、橙、黄、绿和蓝色五个等级,其中可将超排率%=0%作为判别基准,可参照数据序列间差异程度确定等级分级幅度为±25%。分析表明,在青岛市12区市中,只有城阳区超排率%大于25%,需要实行橙色管理,其他区市都小于25%,可实行黄色、绿色或蓝色管理。其中15%的街镇级行政区需要实行红色或橙色管理,主要分布在城阳区、李沧区和莱西市,其余85%需要实行黄色、绿色或蓝色管理。
     (2)青岛市陆源污染物排放总量控制网络化综合管理平台的总体框架设计。根据陆源污染物总量控制管理总流程的要求,设计青岛市陆源污染物排放总量控制网络化综合管理平台的总体框架,不仅要实现陆域污染物容量总量控制的全过程、动态化管理,同时要解决由目标总量控制向容量总量控制转变过程中所需要解决的实际问题,如不同部门数据的整合和共享、总量控制指标建立和完善、总量控制效果评估和反馈等。这样,综合管理平台在逻辑上采用“三层”架构,中层是由环保行政管理部门负责运行操作的“系统运行操作模块”,同时将与总量控制相关的专业数据和一般数据模块汇总生成“数据中心模块”,将资讯产品模块与用户界面分离生成“功能产品模块”,归并为中层。系统运行操作模块除具有用户管理、安全管理等常规功能外,还应具有数据管理、功能产品管理、系统运行管理等专门功能。这样,在中层内可以通过功能产品管理功能从“数据中心模块”中分别调用模型或方法和专业或公共数据,生成各类功能资讯产品;在中层外可以通过系统运行管理功能实现数据中心模块的更新,或实现前层不同用户界面的功能产品模块的调整,等等。
     (3)陆源污染物排放总量控制日常管理功能的运行实现。以Windows Server2003为操作运行平台,以SQL Server2005为数据库平台,以Microsoft. NETFramework为系统开发平台,以C#为系统开发语言,将GIS组件与“数据中心模块”中数据库、模型库等进行组件式二次开发集成。初步实现了对青岛市陆源污染物排放数量核算和青岛市胶州湾纳污海域总量控制效果评价功能。
     总之,本论文研究工作主要是按照“容量总量控制管理”的要求,在建立完善陆源污染物排放总量控制管理总流程基础上,设计了青岛市陆源污染物排放总量控制网络化综合管理平台的总体框架。论文创新点主要体现在青岛市陆源污染物排放总量控制网络化综合管理平台的“三层”架构设计中突出强化了“运行操作模块”的功能,并将其作为独立操作界面,以适应青岛市现行环境管理多部门数据综合管理、多用户功能产品扩展等需求,不仅整体上满足从排污单元监测数据采集到总量控制效果综合评估全过程管理要求,而且可以适应由“目标总量控制”向“容量总量控制”转变的需求。同时,论文特色体现在数据管理、率定量化指标体系、污染负荷判别等关键功能流程设计等方面。
Total discharge control of land based pollutants is not only the basic content toachieve a resource-saving and environment-friendly socio-economic sustainabledevelopment, but also an integrated effective solutions for environmental pollutionproblems in surface water, marine and other waterbodies. China started to implementthe target total discharge control of COD reduction in2006. However, due to theinherent defects of the target total emssion control, even to take a strict governmentaccountability, the annual reduction target of about2%was not met, and the seawaterquality improvement was not ideal in the coastal area. For example, according to theChinese coastal water environmental quality communique, the COD concentration ofyellow sea in2010was approximately the same as in2005, but the area exceeding thenational second-class water quality is increased.
     According to the experience from the U.S., EU, and Japan, the transition fromfrom the target total load control to capacity total load control is badly needed inChina. The capacity total load control, on the one hand, chooses the allocationcapacity allocated after accurate numerical calculation of environmental capacity asquantitative management criteria, thus, the reduction responsibility can be assigned tospecific administrative regions even to the sewage units, on the other hand, exacutesthe integrated supervision so that the integrity of management can be effectivelyimproved. However, the capacity total discharge control is a multi-phased processincluding terrestrial polluting source and receiving coastal water bodies, it is also aintegrated continuous dynamic management with multi-level and multi-node, thus,not only a developed scientific management process, but also a more intelligentnetwork management platform are needed.
     The purpose of this research is to establish and improve the managementprocesses of land based pollutants total discharge control in Qingdao, and on thisbasis designing a framework of the integrated management platform, which canprovide scientific and technical support for the transition of total discharge control.The four main contents are as follows:(1) Based on the experience learn from theUnited States, European Union, and Japan in the total discharge control, andconsidering the situation of Qingdao, the management processes of land basedpollutants total discharge control of Qingdao was established.(2) The operatingprogresses of the key functional modules in the management processes, including thetotal discharge calculation, the quantitative management indicators system and themanagement system, were designed.(3) Based on the management processes, anintegrated management platform for total discharge control of land based pollutants inQingdao was established.(4) Based on Microsoft. NET Framework and ArcGISEngine development platform, and C#as development language, the running of thekey functional modules is established in the integrated management platform.
     The main achievements are as follows:
     (1) The management processeses of total discharge control of land basedpollutants in Qingdao was established and improved. Based on the advancedexperience of US, European Union and Japan, and considering the current situation oftotal discharge control in Qingdao, the management processes of total dischagecontrol of land based pollutants in Qingdao was established and improved. TheEnvironmental Protection Department of Qingdao plays the integrated charging role,the management processes contained seven sections, which were identification of theimpared waterbodies, identification of the discharge responsibility unit, datamanagement, the quantitative management indicators system for pollutants control,the determination of the pollutants reduction, the measures for the pollutants reductionand effective evaluation. Data management, the quantitative management criteriasystem and the pollutants discharge identification were the key links of the process.
     Data management were not only capable of the data collection, aggregation,processing, but also pre-processing such as data filtering, checking and integrating. The discharge calculations fof districts and sewerage units were the crucial task, theformer can generally be solved by the direct statistical method, and the later can beachived by both direct and indirect methods. The results showed that the averagedifference between the load of administrative regions and the sum of the sewage unitsdischarge was about26.7%, and an average difference of47.4%when compared tothe result calculated based on the numerical model.
     The quantitative criteria system, the restrictive targets for the total load controlmanagement of the twelve districts and12735sewage units in Qingdao, was a serialcriteria consisted of a main target and plenty of supplymentary ones. The "maintarget" was the allocation capacity. To the administrative regions, they were theallocation of the environmental capacity, when considering the economy, population,the discharge intensity of pollution, and control technology. To the sewage units, theywere calculated based on the discharge intensity of the sewage units and measureelements, such as economy and population. Supplymentary targets were the necessaryor sufficient conditions for achieving quantitative management objectives, includingthe economy, population, the discharge intensity of pollution, the structure ofpollution sources, and discharge reduction projects (non-) binding targets.
     Pollutants discharge identification determined the management level of theadministrative regions and sewage units based on the exceeding discharge rate of thepollutant. The management level generally included five levels as red, orange, yellow,green and blue, which considered0%as the discriminant benchmark, and±25%asthe range of rating classification. The result showed that only the exceeding dischargerate of Chengyang District was greater than50%, and the orange management levelneeded to be implemented, other regions, which were less than50%, can be indentifedas yellow, green or blue level.15%of the community-level administrative regionsshould be identified as the red or orange management level, which mainly distributedin Chengyang, Lichang and Laixi districts, and the remaining85%were identified asyellow, green or blue management.
     (2) According to the requirements of the management process, the framework ofland based pollutants total discharge control network management platform in Qingdao was esteblished, In order achieve the whole process of dynamic managementof total discharge control, and solve the practical problems in the transition from thetarget total discharge control to the capacity total discharge control, such as dataintegration and sharing between different departments, establishing the quantitativeindex system, and the effect evaluation and feedback of the total discharge control, theframework were badly needed. An operating module was added to the existingtwo-ground framework, which was controlled by the environmental protectionadministrative department, and combined the professional data and basical datamodules together as the data center module, and separated the information productmodule from user interface to generate functional product layer, grouped into themiddle framework. The operating module had specialized functions such as datamanagement, functional product management, and system operation management inaddition to the regular features such as user management and security management. Inthis way, the function management module can call the model or method, andprofessional or public data from the data center module, to generate kinds offunctional information products. And the system operation management module canupdate the content of the data center module, achieve the adjustment of the functionalproducts of different user interface module, and so on.
     (3) The main functions of the pollutant total discharge control managementplatform were developed and operated. The management platform was built onWindows Server2003as the operating operating platform, the SQL Server2005asdatabase platform, Microsoft. NET Framework as the system developping platformand used C#language for system development. Conponents secondary developmentintegrated GIS component and the data centre modules. The functions of totaldischarge calculation and the total discharge control effect evaluation weredevelopped.
     All in all, the management processes of land based pollutants total dischargecontrol was established and improved accordance with the requirements of thecapacity total discharge control in this research, and on this basis a framework of theland based pollutants total discharge control network management platform of Qingdao was esteblished. The innovation point of this paper was mainly reflects bythe " Three-ground " management platform architecture, which can not only help theEnvironmental Protection Administrative Department esteblishing the integratedmanagement from the sewage unit monitoring to the effect assessment of totaldischarge control, but also meet the demond of the transition from the target totaldischarge control to the capacity total discharge control. Meanwhile, datamanagement, quantitative criteria system, and pollutant discharge identification allimplied the distinguish characteristic of this paper.
引文
[1] Andreu, J. and Capilla, J. Optimization and simulation models applied to the Segura waterresources system. In: J.B. Marco, R. Harboe and J.D. Salas (Editors), Stochastic Hydrologyand its Use in Water Resources Systems Simulation and Optimization. Kluwer Academic,Dordrecht,1993,14pp.
    [2] Andreu, J., Capilla, J., and Sanchis, E. Aquatool, a generalized decision support system forwater resources planning and operational management. Journal of Hydrology,1996,177:269-291.
    [3] Barnikow, A.-M., Behrendt, U., Hartmann, K., and Scharni, M. DICTUM: DecisionSupport System for Analysis and Synthesis of Large-scale Industrial Systems. Computersin Industry,1992,18(2):135-153.
    [4] Beulens, A.J.M., van Nunen, J.A.E. The Use of Expert System Technology in DSS.Decision Support Systems,1988,4(4):421-431.
    [5] BfG (Bundesanstalt fuer Gewaesserkunde, German Federal Institute of Hydrology).Towards a Generic Tool for River Basin Management-Feasibility study, Koblenz,2001.
    [6] Boknam, L. Total maximum daily load (TDML) calculation allocation decision supportsystem (TCADSS) watershed TMDL development.2006.
    [7] Chen, C.W., Herr, J., Ziemelis, L., et al. Decision Support System for Total MaximumDaily Load. Journal of Environmental Engineering, ASCE,1999,125(7):653-659.
    [8] Chesapeake Bay Program,2010. http://stat.chesapeakebay.net
    [9] Corte′s, U., Sa`nchez-Marre`, M., Sangu¨ esa, R., Comas, J., R-Roda, I., Poch, M., Rian o,D. Knowledge management in environmental decision support systems. AICommunications,2001,14(1):3-12.
    [10] Cortés, U., Sanchez-Marrè, M. and Ceccaroni, L. Artificial Intelligence and EnvironmentalDecision Support Systems. Applied Intelligence,2000,13(1):77-91.
    [11] de Jonge, V. N., de Jong, D. J. Policy plans and management measures to restore eelgrass(Zostera marina L.) in the Dutch Wadden Sea. Helgoland Marine Research,2000,54:151-158.
    [12] Duarte E. A., Neto I., Alegrias M., R. Barroso."Appropriate technology" for pollutioncontrol in corrugated board industry-the Portuguese case. Water Science and Technology,1998,38(6):45-53.
    [13] Ducrotoy, J.P., Elliott, M. The science and management of the North Sea and the Baltic SeaNatural history, present threats and future challenges. Marine Pollution Bulletin,2008,57:8-21.
    [14] Elbir, T. A GIS based decision support system for estimation,visualization and analysis ofair pollution for large Turkish cities. Atmospheric Environment,2004,38:4509-4517.
    [15] Engelen, G., White, R., Uljee, I., Drazan, P. Using cellular automata for integratedmodelling of socio-environmental systems. Environ Monit Assess,1995,34:203-214.
    [16] Fassio, A., Giupponi, C., Hiederer, R., Simota, C. A decision support tool for simulating theeffects of alternative policies affecting water resources: an application at the European scale.Journal of Hydrology,2005,304:462–476.
    [17] Fedra, K., Jamieson, D.G. The 'WaterWare' Decision-Support System for River-Basinplanning.2. Planning capability. Journal of Hydrology,1996,177:177–198.
    [18] Frysinger, S. P. Environmental Decision Support Systems: A Tool for EnvironmentallyConscious Management. S. P. Frysinger. Invited chapter in C. N. Madu (Ed.), Handbook ofenvironmentally conscious manufacturing.2001.
    [19] Giupponia, C. Decision Support Systems for implementing the European Water FrameworkDirective: The MULINO approach. Environmental Modelling and Software,2007,22:248-258.
    [20] Gough, J.D., and Ward, J. C. Environmental decision making and lake management.Journal of Environmental Management,1996,48(1):1-15.
    [21] Haagsma, I.G., Johanns, R.D. Decision support systems: an integrated approach. In:Zannetti, P.(Ed.), Environmental Systems,1994,2:205-212.
    [22] Hakanson, L. The role of characteristic coefficients of variation in uncertainty andsensitivity analyses, with examples related to the structuring of lake eutrophication models.Ecological Modeling,2000,131(1):1-20.
    [23] Haseman, W. D. GPLAN: An operational DSS. Data Base,1977,8(3):73-78.
    [24] Horth, H., France, S., and Zabel, T. Pollution reduction programmes in Europe.2003.http://ec.europa.eu/environment/water/water-dangersub/lib_dang_substances.htm#studies
    [25] Jamieson, D.G., Fedra, K. The 'WaterWare' Decision-Support System for River-Basinplanning.1. Conceptual Design. Journal of Hydrology,1996,177:163–175.
    [26] Jamieson, D.G., Fedra, K.. The 'WaterWare' Decision-Support System for River-Basinplanning.3. Example applications. Journal of Hydrology,1996,177:199–211.
    [27] Jensen, S. S., Berkowicz, R., Hansen, H. S., et al. A danish decision-support GIS tool formanagement of urban air quality and human exposures. Transportation Research Part D,2001,6(4):229-241.
    [28] Kainuma, M., Nakamori, Y., Morita, T. Integrated decision support system forenvironmental planning. IEEE Trans. on Systems, Man and Cybernetics,1990,20(4):777-790.
    [29] Kainuma, M., Nakamori, Y., Morita, T. Integrated decision support system forenvironmental planning. IEEE Transactions on Systems, Man and Cybernetics,1990,20(4):777-790.
    [30] Karjalainen, S.M., Heikkinen, K. The RiverLife project and implementation of the WaterFramework Directive. Environmental Science and Policy,2005,8:263-265.
    [31] Keen, P.G. and Scott-Morton, M.S. Decision Support Systems: An OrganizationalPerspective. Reading, Massachusetts: Addison-Wesley,1978.
    [32] Kudo, E., Ostrowski, M. A Decision Support Systems Using A Combined Dynamic ModelFor Integrated Watershed Management. EGS XXVII General Assembly, Nice,2002,21-26.
    [33] Labadie, J.W., Brazil, L.E., Corbu, I. and Johnson, L.E. Computerized Decision SupportSystems for Water Managers. American Society of Civil Engineers, New York,1989,978pp.
    [34] Lahlou, M. L., et al. User’s manual: Better assessment science integrating point andnonpoint sources—BASINS, Version1.0. Publ. EPA-823-R-96-0011, EnvironmentalProtection Agency, Athens, Ga.1996.
    [35] Ortolano, L. Environmental Planning and Decision Making. New York,1984.
    [36] Letcher, R.A., Giupponi, C. Policies and tools for sustainable water management in theEuropean Union. Environmental Modelling and Software,2005,20(2):93-98.
    [37] Liu, S.M., Zhang, J., Chen, S.Z, et al. Inventory of nutrient compounds in the Yellow Sea.Continental Shelf Research,2003,23:1161-1174.
    [38] Local Authorities Systems Development Centre. Research Report on Planning SupportSystems in the Local Authorities. The Local Authorities, The Local Authorities Systems,Development Centre in Japan.1977.
    [39] Loucks, D.P. and da Costa, J.R. Decision Support Systems. Water Resources Planning.Springer, Berlin,1991,574pp.
    [40] MARE. Nest–a decision support system for management of eutrophication in the BalticSea,A user’s manual,Version3.http://www.mare.su.se/ENG/eng-systemet/eng-systemet.html
    [41] Matthies, M., Berlekamp, J., Lautenbach, S., Graf, N., and Reimer, S. System analysis ofwater quality management for the Elbe river basin. Water Science and Technology,2006,43:231–238.
    [42] MOE (Ministry of the Environment Government of Japan). Guidance for Introducing theTotal Pollutant Load Control System (TPLCS).2011. http://www.env.go.jp/en/water.
    [43] Moore, J.H. and Chang, M.G. Design of decision support systems. Data Base,1980,12(1-2):8-14.
    [44] Mullinix, C., Phillips, S., Shenk, K., Hearn, P., and Devereux, O. Facilitating adaptivemanagement in the Chesapeake Bay watershed through the use of online decision supporttools, in proceedings of The Third Interagency Conference on Research in the Watersheds,Estes Park, CO.,2008, pp.213–217.
    [45] Murray, T.L. Application of the Water Quality Management Decision Support System(WQMDSS) in an Illustrative Watershed Management Study. Civil and EnvironmentalEngineering,2001.
    [46] Mysiak, J., Giupponi, C., and Fassio, A. Decision support for water resource management:an application example of the MULINO DSS, in proceedings of Conference IEMSS2002—Integrated Assessment and Decision Support, IEMSS, Lugano,2002, pp.138–143.
    [47] Nakamori, Y., Sawaragi, Y. Methodology and systems for environmental decision support.Annual Reviews in Control,1996,20:143-154.
    [48] Nakamori, Y. Development and Application of an Interactive Modeling Support Systems.Automatica,1989,25(2):185-206.
    [49] Nauta, T. A., Bongco, A. E., and Santos-Borja, A. C. Set-up of a decision support system tosupport sustainable development of the laguna de bay, Philippines. Marine PollutionBulletin,2003,47(1-6):211-218.
    [50] Obropta, C.C., Niazi, M., Kardos, J.S. Application of an Environmental Decision SupportSystem to a Water Quality Trading Program Affected by Surface Water Diversions.Environmental Management,2008,42:946-956.
    [51] Osmond, D.L., Gannon, R.W., Gale, J.A., et al. WATERSHEDSS: A decision supportsystem for watershed-scale nonpoint source water quality problems. Journal of theAmerican Water Resources Association,1997,33(2):327–341.
    [52] Parandekar, A.V. Development of a Decision Support Framework for IntegratedWatershed Water Quality Management and a Genetic Algorithm Based Optimizer. MSThesis, Department of Civil Engineering, North Carolina State University.1999.
    [53] Parker, B.J., Al-Utabi, G.A. Decision Support Systems: the reality that seems hard to accept,OMEGA,1986,14(2):135-43.
    [54] Poch, M., Comas, J., Rodríguez-Roda, I., et al. Designing and building real environmentaldecision support systems. Environmental Modelling and Software,2004,19(9):857-873.
    [55] Power, D.J., Sharda, R. Decision Support Systems. Handbook of Automation,2009, pp.1539-1548.
    [56] Rizzoli, A. E. and Young, W. J. Delivering environmental decision support systems:software tools and techniques. Environmental Modelling and Software,1997,12(2/3):237-249.
    [57] Sprague, R.H., McNurlin, B.C. Information Systems Management in Practice,3rd ed.,Englewood Cliffs, NJ: Prentice Hall, New Jersey,1993.
    [58] Tufekci, S. An integrated emergency management decision support system for hurricaneemergencies. Computer and Information Science,1995,20(1):39-48.
    [59] USEPA. CHESAPEAKE BAY TMDL EXECUTIVE SUMMARY.http://www.epa.gov/reg3wapd/tmdl/ChesapeakeBay/tmdlexec.html
    [60] USEPA. Overview of current total maximum daily load-tmdl-program andresaations[EB/OL].[2007-04-13]. http://www.epa.gov/owow/tmdl/intro.html.
    [61] USEPA. TMDL program implementation strategy. Washington DC:W atershed Branch,USEPA,1996.
    [62] USEPA. User’s manual: Better assessment science integrating point and nonpointsources—BASINS, Version3.0. Publ. EPA-823-R-01-001, Environmental ProtectionAgency, Athens, Ga.2001.
    [63] USEPA.Guidance for water quality-based decisions:the TMDL process. Washington DC:Watershed Branch, USEPA,1991.
    [64] Weintraub, L.H.Z., Chen, C.W., and Herr, J. Demonstration of WARMF: a decision supporttool for TMDL Development, in proceedings of WEF TMDL Science Issues Conference, St.Louis, MO.,2001.
    [65] Westmacott, S. Developing decision support systems for integrated coastal management inthe tropics: Is the ICM decision-making environment too complex for the development of auseable and useful DSS?. Journal of Environmental Management,2001,62:55-74.
    [66] Xu, Z.X., Ito, K., Jinno, K., Kojiri, T.. Development of a Decision Support System forIntegrated Water Management in River Basins. Computer Science,1998,1416:678-686.
    [67] Yakowitz, D.S., Imam, B., and Lane, L. J. Effects of Optional Averaging Schemes on theRanking of Alternatives by the Multiple Objective Component of a U.S. Department ofAgriculture Decision Support System, in: S.A. El-Swaify and D.S. Yakowitz (Ed.),Multiple Objective Decision Making for Land, Water, and Environmental Management.Lewis Publishers,1998a,217-232.
    [68] Yakowitz, D.S., Stone, J.J., et al. Evaluation of a Prototype Decision Support System forRangelands in the Southwest United States, in: S.A. El-Swaify and D.S. Yakowitz (Ed.),Multiple Objective Decision Making for Land, Water, and Environmental Management.Lewis Publishers,1998b,363-378.
    [69] Zografos, K.G., Androutsopoulos, K.N. A decision support system for integrated hazardousmaterials routing and emergency response decision. Transportation Research Part C:Emerging Technologies,2008,16(6):684-703.
    [70] Zografos, K.G., Vasilakis, G.M., Giannouli, I.M. Methodological framework for developingdecision support systems (DSS) for hazardous materials emergency response operations.JournalofHazardousMaterials,2000,71(1-3):237-249.
    [71]白云,王静斌.控制水污染的有效途径-污染物排放总量控制.地域研究与开发,1990,9(2):17-20.
    [72]包存宽,张敏,尚金城.流域水污染物排放总量控制研究——以吉林省松花江流域为例.地理科学,2000,20(1):61-64.
    [73]陈波,葛永慧.环境风险应急管理决策支持系统的设计与实现.测绘工程,2010,19(5):67-70.
    [74]陈洪涛,陈淑珠,张经,等.南黄海海水中各种形态磷的分布变化特征.海洋环境科学,2000,21(1):9-13.
    [75]陈加兵,曾从盛,章宪.罗源湾海洋环境信息系统的设计与实现.福建师范大学学报(自然科学版),2003,19(3):103-106.
    [76]程子峰,魏斌.我国环境信息技术应用回顾与展望.环境保护,2000,4:22-25.
    [77]崔磊,赵璇,王本.区域水环境信息管理系统的开发和应用.清华大学学报(自然科学版),2008,48(3):440-444.
    [78]崔正国.环渤海13城市主要化学污染物排海总量控制方案研究.[博士学位论文].青岛:中国海洋大学,2008.
    [79]杜鹏飞,宋科,张大伟,等.流域非点源污染控制决策支持系统.清华大学学报(自然科学版),2003,43(10):1343-1346.
    [80]高鹏飞.基于情景分析方法的流域水污染控制决策支持系统研究.[硕士学位论文].黑龙江:哈尔滨工业大学,2007.
    [81]谷国传,胡方西,胡辉,等.长江口外高盐水入侵分析.东海海洋,1994,12(3):1-11.
    [82]郭丕斌,陈红,陈建斌,等.河流水污染物总量控制管理系统分析与设计.华北工学院学报,2005,26(1):61-64.
    [83]国家环保部.“十二五”主要污染物总量控制规划编制指南.2010.
    [84]国家环保部.中国近岸海域环境质量公报(2005-2010)[EB/OL].http://jcs.mep.gov.cn/hjzl/jagb/
    [85]国家环保部.主要水污染物总量分配指导意见.2006.http://www.mep.gov.cn/gkml/zj/wj/200910/t20091022_172432.htm
    [86]国务院第一次全国污染源普查领导小组办公室.第一次全国污染源普查水产养殖业污染源产排污系数手册.2009.
    [87]韩保新,林奎.沿海水环境决策支持系统的研制与应用.海洋环境科学,1998,17(4):70-74.
    [88]汉红燕.胶州湾陆源污染物排海总量控制行政区量化管理研究.[博士学位论文].青岛:中国海洋大学,2011.
    [89]胡方西,胡辉,谷国传,等.长江河口盐度锋.海洋与湖沼,1995,S1期.
    [90]胡辉,胡方西.长江口的水系和锋面.中国水产科学,1995,2(1):81-90.
    [91]黄渤海环境质量与生态变化研究编写组.黄渤海环境质量与生态变化研究.青岛:中国水产科学院黄海水产研究所,1996.
    [92]黄平.水环境管理决策支持系统的研究和应用.中山大学学报(自然科学版),2000,39(3):97-101.
    [93]黄清辉,沈焕庭,刘新成,等.人类活动对长江河口硝酸盐输入通量的影响.长江流域资源与环境,2001,10(6):564-569.
    [94]季民,孙志伟,王泽良,等.纳污海水中COD生化降解过程的模拟试验研究.海洋与湖沼,1999.30(6):731-736.
    [95]贾海峰,孔萌萌,郭羽.水环境决策支持系统框架下的密云水库水质模型.清华大学学报(自然科学版),2010,50(9):1383-1386.
    [96]李岸昀,潘瑜春,王燕.SaaS模式下的农田环境管理与空间决策支持系统.农业工程学报,2008,24:63-67.
    [97]李克强.胶州湾主要化学污染物海洋环境容量研究——在多介质海洋环境中主要迁移-转化过程-三维水动力输运耦合模型建立与计算.[博士学位论文].青岛:中国海洋大学,2007.
    [98]李莉.青岛市环胶州湾污染控制单元主要化学污染物分配容量计算.[硕士学位论文].青岛:中国海洋大学,2009.
    [99]李月辉,胡志斌,肖笃宁,等.城市生态环境质量评价系统的研究与开发—以沈阳市为例.城市环境与城市生态,2003,16(2):53-55.
    [100]梁博,王晓燕,曹利平.最大日负荷总量计划在非点源污染控制管理中的应用.水资源保护,2004,4:37-41.
    [101]梁博,王晓燕.我国水环境污染物总量控制研究的现状与展望.首都师范大学学报(自然科学版),2005,26(1):93-98.
    [102]刘国材,宿华.国外水污染控制与管理政策.水资源保护,1993,(2):52-56.
    [103]刘洁,冯银厂,朱坦.总量控制在环境管理中应用.城市环境与城市生态,2003,16(1):59-61.
    [104]刘婷婷.基于GIS的流域水环境管理决策信息系统研究.[硕士学位论文].北京:北京林业大学,2008.
    [105]刘玉亮,侯国祥,翁立达,等.基于GIS的汉江水污染信息管理系统的结构设计.环境科学与技术,2003,26(3):27-29.
    [106]吕俊.基于GIS的杭州市水环境容量计算及总量分配系统研制.[硕士学位论文].南京:河海大学,2007.
    [107]孟伟,王海燕,王叶耀.流域水质目标管理技术研究(Ⅳ)——控制单元的水污染排放限值与削减技术评估.环境科学研究,2008,21(2):1-9.
    [108]孟伟,张楠,张远,等.流域水质目标管理技术研究(Ⅰ)——控制单元的总量控制技术.环境科学研究,2007,20(4):6-12.
    [109]孟伟.流域水污染物总量控制技术与示范.北京:中国环境科学出版社,2008.
    [110]彭志良,林奎,曾凡棠.环境管理决策支持系统的研究.环境科学,1996,17(5):48-52.
    [111]乔旭东.胶州湾排污管理区及其主要排海化学污染物分配容量的准确计算研究.[博士学位论文].青岛:中国海洋大学,2009.
    [112]青岛市海洋与渔业局.2009年青岛市海洋环境质量公报[EB/OL].[2010-05-19].http://ocean.qingdao.gov.cn/
    [113]青岛市环保局.2010年青岛市环境状况公报[EB/OL].[2011-05-27].http://www.qepb.gov.cn/News/ShowNews.aspx?id=67380
    [114]青岛市水利局.2007年青岛市水资源公报[EB/OL].[2009-04-02].http://slj.qingdao.gov.cn/Item/1001.aspx.
    [115]宋国君.论中国污染物排放总量控制和浓度控制.环境保护,2000,(6):11-13.
    [116]孙英兰,孙长青,王学昌,等.青岛海湾大桥对胶州湾潮汐、潮流及余环流的影响预测Ⅰ.胶州湾及邻近海域的潮流.青岛海洋大学学报,1994,8:105-119.
    [117]唐崇杰.基于GIS的区域水环境管理决策支持系统构建理论及应用.[硕士学位论文].广东:暨南大学,2006.
    [118]田仁生,邹首民,张治忠.污染物排放总量控制工作的若干思考和建议.上海环境科学,2003,22(7):483-486.
    [119]王博为,郭培源.三峡库区资源环境决策支持系统应用研究.北京工商大学学报(自然科学版),2009,27(5):47-53.
    [120]王金坑,陈克亮,戴娟娟,农家,张婕.我国海域排污总量控制制度建设框架研究.海洋开发与管理,2010,27(9):19-23.
    [121]王金南.国家环境质量决策支持系统的研制与开发.环境科学研究,1991,4(6):25-28.
    [122]王涛.天津市海河水环境容量管理决策支持系统研究.[硕士学位论文].天津:天津大学,2007.
    [123]王同生.莱茵河的水资源保护和流域治理.水资源保护,2002,4:60-62.
    [124]王伟.基于GIS的渭河流域水污染控制决策支持系统.[硕士学位论文].陕西:西北工业大学,2007.
    [125]王伟良.东江惠州段流域水环境容量计算与总量控制研究.[硕士学位论文].湖南:中南大学,2009.
    [126]王修林,李克强,石晓勇.胶州湾主要化学污染物海洋环境容量.北京:科学出版社,2006.
    [127]王修林,李克强.渤海主要化学污染物海洋环境容量.北京:科学出版社,2006.
    [128]王一军.环境决策支持系统的关键技术研究.[博士学位论文].长沙:中南大学,2009.
    [129]王有乐.区域水污染控制多目标组合规划模型研究.环境科学学报,2002,22(1):107-110.
    [130]魏海平,郭建忠,陈涛,等.基于J2EE的水环境决策支持系统的研究与实践.测绘工程,2004,13(3):28-31.
    [131]温永梅.水污染总量控制管理信息系统研究.[硕士学位论文].南京:南京理工大学,2008.
    [132]吴小寅,陈站,余戈,范宇航,陈莉.城市环境智能决策支持系统的开发和应用.广西科学院学报,2004,20(4):297-299.
    [133]夏青,王华东,关伯仁,等.总量控制技术手册.北京:中国环境科学出版社,1990.
    [134]邢乃春,陈捍华.TMDL计划的背景、发展进程及组成框架.水利科技与经济,2005,11(9):534-537.
    [135]徐财江.基于环境容量的污染物排放总量控制与系统构建研究.[硕士学位论文].浙江:浙江大学,2006.
    [136]杨积武.近岸海域实施污染物排放总量控制的理论与实践.海洋信息,2001,2:24-26.
    [137]杨昆,李永强,许泉立.基于ArcGIS的地震灾害应急决策支持系统的设计与实现.地震研究,2006,29(2):203-208.
    [138]杨晓东.实施污染物总量控制的要点和保证.环境科学,1998,19(8):6-12.
    [139]于敏.松花江流域水环境管理系统.[硕士学位论文].上海:同济大学,2008.
    [140]臧淑英,张冬有,冯仲科.黑龙江省森林防火地理信息辅助支持支持系统设计.北京林业大学学报,2005,27:69-74.
    [141]曾凡棠,林奎,沈茜.潮汐河网区环境管理决策支持系统开发与应用研究.水动力学研究与进展,2000,15(3):359-365.
    [142]曾凡棠,林奎,沈茜.环境决策支持系统的设计及其在水质管理中的应用.地理学报,2000,55(6):652-660.
    [143]翟淑华,秦佩瑛.太湖流域河网水质管理决策支持系统.水资源保护,2002,(3):60-62.
    [144]翟宜峰,尚志宏,李彦军.黑龙江省防洪决策支持系统研究与设计.东北水利水电,1999,4:13-15.
    [145]张国森.大气的干、湿沉降以及对东、黄海海洋生态系统的影响.[博士学位论文].青岛:中国海洋大学,2004.
    [146]张鹤松,孙丕武,刘睿.水污染物排放总量控制与管理系统的研究.环境保护科学,2001,27(8):31-33.
    [147]张金良,于志刚,张经,等.黄海西部大气湿沉降(降水)中各元素沉降通量的初步研究.环境科学,2000,19(4):352-356.
    [148]张启龙,翁学传,杨玉玲.南黄海春季水团分析.海洋与湖沼,1996,27(4):421-428.
    [149]张天柱.区域水污染物排放总量控制系统的理论模式.环境科学动态,1990,(1):1-23.
    [150]张卫东,谢庆胜.巢湖流域水污染控制决策GIS支持系统的建设.安徽农业科学,2002,30(4):493-495.
    [151]赵冬至,赵玲,张丰收.GIS在海湾陆源污染物总量控制中的应用.遥感技术与应用,2000,15(1):63-67.
    [152]赵冬至,赵玲.大连湾陆源污染物排海总量控制信息系统概念设计.海洋环境科学,1998,17(1):35-40.
    [153]郑晓阳.基于SDSS的感潮河口城市水灾减灾辅助决策研究.[博士学位论文].上海:华东师范大学,2005.
    [154]朱春龙,周明耀,王文远.城市水环境控制决策支持系统的研究.扬州大学学报(自然科学版),2001,4(1):58-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700