用户名: 密码: 验证码:
油藏内源产表面活性剂微生物的选择性激活
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物表面活性剂的驱油作用是微生物采油的主要机理。目前生物表面活性剂在微生物采油技术中的应用主要采取向油藏注入地面发酵的产品(地面法)和外源菌种(外源微生物驱)的方式。相对地面法和外源微生物驱,内源微生物驱油技术更能体现微生物采油“低成本、工艺简单、环保”三大优势,但是,关于如何全面准确地识别油藏中产表面活性剂的微生物,尤其是能否实现油藏内源产表面活性剂微生物的定向调控,目前研究较少。
     本论文应用油藏内源产表面活性剂微生物功能基因定性定量分析方法,在对胜利油田油藏产表面活性剂微生物分析的基础上,选取沾3区块开展油藏内源产表面活性剂微生物选择性激活研究并获得激活剂配方;研究了油藏内源产表面活性剂微生物激活后对油藏相对渗透率曲线和岩石润湿性的影响以及提高原油采收率的贡献;最后对激活油藏内源微生物产生的表面活性剂的理化性质和结构进行分析。主要研究成果及结论如下:
     1、设计应用分别与枯草芽孢杆菌(Bacillus subtilis)和地衣芽孢杆菌(Bacilluslicheniformis)等菌属脂肽类表面活性剂代谢调节相关的合成基因(srfA3/licA3)以及与假单胞菌属(pseudomonas)鼠李糖脂类表面活性剂代谢调节相关的基因(rhlR)对应的简并引物,在功能基因水平上对胜利油田的5个区块共10个油井产出液进行了产脂肽和糖脂类表面活性剂微生物的分析;应用培养法和克隆测序方法在微生物种属方面进行了辅助分析。结果表明,多数油藏样品中检测出芽胞杆菌和脂肽类表面活性剂代谢调节相关的合成基因(srfA3/licA3),产脂肽类表面活性剂的微生物是激活油藏内源微生物产表面活性剂的主要方向。
     2、以油藏产脂肽类微生物的分子生物学定量检测为目标,应用Real-TimePCR技术成功的建立了以(srfA3/licA3)为标准,针对油藏样品的脂肽合成代谢基因的定量分析方法,并对荧光定量PCR的反应条件进行了优化。结果表明,本研究成功构建的脂肽合成基因实时荧光定量PCR方法具有快速、灵敏、特异性好的特点,适合实验室研究及现场跟踪检测的应用。
     3、开展了激活沾3油藏微生物产表面活性剂的可行性实验,通过对脂肽合成基因实时荧光定量PCR和克隆测序结果综合分析,推断沾3油藏脂肽合成基因与地衣芽孢杆菌(Bacillus licheniformis)相关。在此基础上,筛选得到有机氮激活剂配方(JHJ-1:0.4%玉米浆干粉,0.5%葡萄糖,0.2%可溶性淀粉,0.4%蛋白胨),该配方激活沾3油藏样品,脂肽合成基因最高达2.6×10~6copies/μLDNA;表面张力最低达38.0mN/m;扩油圈直径最大达7.0cm;但乳化指数小于5%。无机氮激活剂配方(JHJ-2:蔗糖2,NH_4Cl0.6,酵母粉0.03,玉米浆干粉0.05,KH_2PO_40.06,Na_2HPO_40.2)激活沾3油藏样品,脂肽合成基因最高达1.6×105copies/μLDNA;乳化指数达96%。克隆测序结果表明,JHJ-1激活后样品结构单一,优势菌为Bacillus licheniformis,而JHJ-2激活后样品相对复杂,优势菌为Bacillus licheniformis和Bacillus thermoamylovorans等。
     4、研究了激活油藏内源产表面活性剂微生物驱对相渗曲线和润湿性的影响,并对提高采收率能力进行了物理模拟评价。研究发现:微生物驱后,油水相对渗率透曲线等渗点右移,岩心亲水性增强;当含水饱和度较高时,油相相对渗透率明显高于常规水驱,激活产表面活性剂微生物能够起到较好的驱动残余油的效果。沾3区块岩心注入激活剂激活处理后岩心相对润湿指数明显增加,亲水性增强。采用物理模拟方法模拟沾3区块油藏条件,在一次水驱的基础上,激活剂JHJ-1和JHJ-2激活油藏内源产表面活性剂微生物分别提高采收率10%和13.6%。
     5、对激活剂JHJ-2激活样品中的表面活性剂进行了理化性质研究和组成分析,其表面活性剂的产率为0.47g/L,临界胶束浓度为33.3mg/L,对应的表面张力为38.5mN/m。乳化活性强,稀释100倍后,乳化活性仍达到1.25U。对激活剂JHJ-2激活样品中表面活性剂进行薄层层析(TLC)、红外光谱(IR)、高效液相色谱(HPLC)、质谱(MS)分析,结果表明其主要成分是脂肽。
     本论文研究成果为油藏内源微生物定向调控提高采收率提供了一定理论基础。另外,本论文针对胜利油田沾3区块进行研究,研究成果为该区块实施内源微生物驱油技术提供了理论和技术支撑。
The biosurfactant production is one of the dominant mechanisms of microbialenhanced oil recovery (MEOR). At present, there are mainly two kinds of applicationof biosurfactants in MEOR, which are the injection of fermentation production(ground method) and exogenous microorganisms (exogenous microbial flooding),respectively. Compared with ground method and ex-situ microbial flooding, in-situmicrobial flooding is more inexpensive, process simple, and environmental friendly.However, there are few studies concerning the detection of biosurfactant-producingmicrobes accurately. Especially,it is hard to regulate and control the indigenousbio-producing microbes rationaly.
     In this paper, a new method was constructed, which can analyse function genes ofindigenous biosurfactant-producing microbes of oil reservoir qualitatively andquantitatively. Based on the analysis to the bio-producing microbes of Shengli OilField, the Zhan3block was choosen as the object of study to selectively stimulateindigenous biosurfactant-producing microbes. As the result, a formula of activatorswas determined. This paper showed the influence of the stimulationbiosurfactant-producing microbes to the relative permeability profile, rock wettability,and oil recovery. Finally, the physicochemical properties and structure of thebiosurfactants produced by indigenous microorganisms were also analysed. The mainresults are as followings.
     1、There are two types of degenerate primers which are the surfactin/lichenysin(srfA3/licA3) gene involved in lipopeptide biosurfactant production in members ofBacillus subtilis/licheniformis group and the rhlR gene involved in regulation ofrhamnolipid production in pseudomonads. There were ten well produced fluids fromfive blocks of Shengli Oil Field, which were detected and analysed concerninglipopeptid/glycolipid biosurfactant-producing microbes. The methods of culture andcloning and sequencing were used subsidiarily to judge the species of the microorganisms. The results were as followings, The srfA3/licA3gene involved inlipopeptide biosurfactant production has been detected in most of the reservoir brinesand lipopeptide biosurfactant-producing microbes should be the target to biostimulatethe production of lipopeptide biosurfactants by indigenous microorganisms.
     2、Target at the detection of lipopeptid-producing microbes, the technology ofReal-Time PCR was applied into quantitative analysis of lipopeptid-biosynthesis genewhich was standardized with srfA3/licA3gene. The real-time fluorescence quota PCRmethod which was for the test of lipopeptid-biosynthesis gene were fleet, sensitive,and specific, which can be used into laboratory and field tests.
     3、 The feasibility study about biosurfactants biosynthesized by indigenousmicroorganisms was applied at Zhan3block, the comprehensive results of real-timefluorescence quota PCR and cloning and sequencing showed thatlipopeptid-biosynthesis gene has something to do with Bacillus licheniformis. Withthe addition of external carbon source, the stimulating agent formulas of inorganic andorganic nitrogen sources were selected through Orthogonal experimental design,respectively. The formula of organic nitrogen source was determined as corn syrupdry powder0.4%, glucose0.5%, soluble starch0.2%, peptone0.4%, which wasnamed as JHJ-1. The experiment result of the application of JHJ-1to Zhan3blockwas that lipopeptid-biosynthesis gene was maximized as2.6×106copies/uLDNA,surface tension was reduced to38.0mN/m minimally, the biggest diameter ofexpanding oil circle was7.0cm, emulsification index was less than5%. The formulaof inorganic nitrogen source named as JHJ-2was that sucrose2%, NH_4Cl0.6%, yeastextract powder0.03%, corn syrup dry powder0.05%,KH_2PO_40.06%, Na_2HPO_40.2%.With the application of this formula, lipopeptid-biosynthesis gene was maximized as1.6×10~5copies/uLDNA, emulsification index reached up to96%.After thebiostimulation of JHJ-1, the sample had simples microbial community, and thepredominant bacterium was Bacillus licheniformis. Nevertheless, after thebiostimulation of JHJ-2, there would be more complex result, the predominantbacteria were Bacillus licheniformis and Bacillus thermoamylovorans.
     4、The influences to the relative permeability curve and wettability were studied,after the biostimulation of biosurfactant-producing microbes. The model test was alsoexperimentalized to evaluate the biostimulation to oil recovery.The oil-water relativepermeability curves of Zhan3reservoir before and after biostimulation ofbiosurfactant-producing microbes by JHJ-1and JHJ-2were measured under thereservoir condition.The result show that the equal-permeability point on the curve ismoving to the right which indicate the core hydrophilicity is increased after microbeflooding. The oil-phase relative permeability is much higher than water flooding.Biostimulation of biosurfactant-producing microbes can drive residual oil effectively.The rock relative wettability indexs are increased which indicate cores hydrophilicityare increased after microbe flooding.The ability of improving oil discovery bybiostimulation of biosurfactant-producing microbes is estimated using core floodingexperiments. Biostimulation of biosurfactant-producing microbes with JHJ-1andJHJ-2can improve oil discovery10%and13.6%respectively on the basis ofwater-flooding under the conditions of Zhan3reservoir.
     5、The physicochemical properties and the structure of the biosurfactant in thesample which was biostimulation by JHJ-2was analyzed.The yield of biosurfactant inthe sample is0.47g/L.Critical micelle concentration(CMC) of the biosurfactant is33.3mg/L,at the concentration,the surface tension of the biosurfactant solution is38.5mN/m. The emulsifying activity index is1.25U with the sample was diluted100timeswhich indicate the sample emulsifying activity is strong.By means of TLC、IR、HPLCand MS,the structure of the biosurfactant in the sample which was biostimulation byJHJ-2was elucidated to be a type of lipopeptide.
     The results of this study will privide the technologic support for directionalcontrol of reservoir indigenous microorganism for improving oil discovery.Inaddition,it will provide the theoretical and technologic support for indigenousmicroorganism oil displacement technology bring into practice in Zhan3block.
引文
[1]http://www.netl.doe.gov/technologies/oil-gas/EP_Technologies/ImprovedRecovery/EnhancedOilRecovery/eor.htm
    [2] PRIME Workshop (A Long Term E&P Initiative),2001.10.21.Houston Texas
    [3] National Petroleum Technology Office,realized and optional economic benefits.
    [4] U.S. Department of Energy,Fossil Energy Techline, June26,1998DOE Selects EightAdvanced Recovery Projects, Seeks Cost-Effective Methods to Produce Domestic Oil
    [5] U.S. Department of Energy,Fossil Energy Techline, March12,2002, New Projects to StudyWays to Recover Vast Quantities of "Left Behind" Oil
    [6] U.S. Department of Energy, Office of Public Affairs, Washington, D.C. December8,2004NewOil and Gas Projects to Enhance Energy Security, Reduce Greenhouse Gas Emissions
    [7] U.S. Department of Energy, Office of Public Affairs, Washington, D.C. October17,2005.DOEAdds Projects to Boost Domestic Oil and Gas Production
    [8]牟伯中.微生物采油技术现状与发展趋势.中国东部油田三次采油技术研讨会.青岛,2006.
    [9] http://www.inmi.ru/events.php
    [10] Ю.А.Котенев,Л.Н.Загидуллина,В.Е.Андреев, etc.微生物工业清洗设备的费液沉淀出的淤泥为基础的微生物提高油层采收率的方法.石油业,2004,04
    [11] Nazina TN, Grigor'ian AA, Feng Ts, Shestakova NM, Babich TL, Pavlova NK, Ivo lov VS,Ni F, Wang J, She Y, Xiang T, Mei B, Luo Z, Beliaev SS, Ivanov MV. Microbiological andproduction characteristics of the high-temperature Kongdian bed revealed during field trial ofbiotechnology for the enhancement of oil recovery. Mikrobiologiia.2007May-Jun;76(3):340-53.
    [12] Rozanova EP, Borzenkov IA, Tarasov AL, Suntsova LA, Dong ChL, Beliaev SS, Ivanov MV.Microbiological processes in a high-temperature oil field. Mikrobiologiia.2001Jan-Feb;70(1):118-27. Article in Russian
    [13] APPL. ENVIRON. MICROBIOL.2003,10:6143–6151
    [14] Grabowski A, Nercessian O, Fayolle F, Blanchet D, Jeanthon C. Microbial diversity inproduction waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol.2005Nov1;54(3):427-43
    [15] www.statoil.com.htm
    [16] Takahata Y, Nishijima M, Hoaki T, Maruyama T. Distribution and physiologicalcharacteristics of hyperthermophiles in the Kubiki oil reservoir in Niigata, Japan. Appl EnvironMicrobiol.2000Jan;66(1):73-9
    [17] Fujiwara K, Mukaidani T, Kano S. Research study for microbial restoration of MethaneDeposit with subsurface CO2sequestration into depleted gas/oil fields. SPE101248,2006
    [18] M. Ghazali Abd, Karim,Mat Ali Hj Salim,et. Microbial Enhanced Oil Recovery (MEOR)Technology in Bokor Field, Sarawak.SPE72125
    [19]蔡春霞.秘鲁西北地区微生物强化采油技术.国外油田工程,2006,22(6):4~5
    [20] Kim Ah-You, Moe Suleiman, John Jaworski.Life Sciences Branch, IndustryCanada.Biotechnology and Cleaner Production in Canada
    [21]中华人民共和国科学技术部,中国生物技术发展报告.2004
    [22]中华人民共和国科学技术部,中国生物技术发展中心.中国的生物技术与生物经济.2005.9
    [23] Stephen Rassenfoss.From Bacteria to Barrels: Microbiology Having an Impact on Oil Fields.JPT NOVEMBER2011:32-38
    [24] Steven L. Bryant. Reservoir Engineering Analysis of Microbial Enhanced Oil Recovery SPE63229
    [25] Springham, D. G.:"Microbiological Methods for the Enhancement of Oil Recovery,"Biotechnology and Genetic Engineering Reviews, v. l, p.187,1984
    [26] Eimund Gilje,Egil Sunde. Aerobic Microbial Enhanced Oil Recovery1995. The FifthInternational Conference on Microbial Enhanced Oil Recovery and Related Biotechnology forSolving Environmental Problems
    [27] Grist, D. M.:"Microbial Enhancement of Oil Recovery-An Operator's View," Proceedings ofInternational Conference on Applications of Biotechnologies, p.463,1983
    [28] Brown, M. J., Moses, V., Robinson, J. P. and Springham, D. G.:"Microbial Enhanced OilRecovery: Progress and Prospects," CRC Critical Reviews in Biotechnology,v.3, Issue2,p.159,1986
    [29] Yarbrough, H. F. and Coty, V. F.:"Microbially Enhanced Oil Recovery from the UpperCretaceous Nacatoch Formation, Union County, Arkansas," Proceedings of1982InternationalConference on MEOR, Shangri-La, Afton, Oklahoma, CONF-8205140, Distribution CategoryUC-92a,1983
    [30] Gottschalk, G.: Bacterial Metabolism.2nd Edition, Springer-Verlag, New York,1983
    [31]Mukul M. Sharma,George Georgiou Microbial Enhanced Oil Recovery Research1993FinalReport DOE/BC/14445-12
    [32] Jenneman, G. E., Knapp, R. M., Menzie, D. E, McInerney, M. J., Revus, D. E., Clark, J. B.and Munnecke, D. M.:"Transport Phenomena and Plugging in Berea sandstone UsingMicroorganisms," Proceedings of1982International Conference on MEOR, Shangri-La, Afton,Oklahoma, CONF-8205140, Distribution Category UC-92a,1982
    [33] R.M. Knapp,Microbial Field Pilot Study. DOE/BC/14246-11. Final Report
    [34] Jenneman, G.E., Clark, J.B., Moffltt, P.D., Zornes, D.R., and Young, G.R.:“Design of aMicrobial Enhanced Oil Recove~Project for the North Burbank Unit, Osage County, Oklahoma: aPre-pilot Study,” Biohydrometal lurgical Technologies, Vol II:Fossil Energy, kfaterials,Bioremediation, J4icrobial Physiology, A.E. Torm&M.L. Apel, and C.L. Brierley (eds.), TheMinerals, Metals, and Materials Society, Warrendale, PA (1993)385
    [35] James O. Stephens the utilization of the microflora indigenous to and present in oil-bearingformations to selectively plug the more porous zones thereby increasing oil recovery duringwaterflooding1999doe/bc/14962-24
    [36] L. R. Brown, A. A. Vadie. Slowing Production Decline and Extending the Economic Life ofan Oil Field:New MEOR Technology,SPE59306
    [37] Hae Ok Lee, Jae H. Bae, Keith Hejl. Laboratory Design and Field Implementation ofMicrobial Profile Modification Process. SPE49074
    [38] Sheehy. Recovery oil from reserveior.US patent No:4971151,1990
    [39] N. G. K. KaranthMicrobial. Production of Biosurfactants and Their Importance. finalreport Department of Biochemistry, Indian Institute of Science, Bangalore560012, India
    [40] Jorge Gabitto,Maria Barrufet.Combined microbial surfactant-polymer system for improvedoil mobility and conformance control. final progress report period: SET.2001-AUG.2005
    [41] Stepp, A. K., Bryant; R. S.; Llave, F. M.; Evans, D. B. and Bailey, S. A.,“Microbial methodsfor improved conformance control in porous media,”Proc. of the SPE/DOE Improved OilRecovery Symposium, April21-24,1996,Tulsa, OK, SPE Paper35357,1996
    [42]吕振山,王利峰.扶余油田微生物堵水调剖矿场试验.大庆石油地质与开发.2002年10月,21(5)
    [43]景贵成,刘福海,郭尚平,俞理.微生物局部富集提高原油采收率机理.石油学报2004年9月.25(5)
    [44] Rebecca S.Bryant,Thomas E.Burchfiled,D.M.Dennis,et al.Microbial-EnhancedWaterflooding:Mink Unit Project. SPE17341,1990
    [45] M. A. Maure,F. L. Dietrich,V. A. Diaz,et al. Microbial Enhanced Oil Recovery Pilot Test inPiedras Coloradas Field,Argentina.SPE53715,1999
    [46] James O. Stephens,Lewis R. Brown,Alex A. Vadie. The Utilization Of The MicrofloraIndigenous To And Present In Oil-Bearing Formations To Selectively Plug The More PorousZones Thereby Increasing Oil Recovery During Waterflooding[R]. Hughes Eastern CorporationMtel Centre South Building,1997
    [47] S. S. Belyaev,I. A. Borzenkov, T. N. Nazina,et al. Use of Microorganisms in theBiotechnology for the Enhancement of Oil Recovery. Microbiology,2004,73(5):590–598
    [48] Bob Zahner,Alan Sheehy,Brad Govreau. MEOR Success in Southern California. ReservoirEvaluation﹠Engineering,SPE129742,2010
    [49] K.Town,Husky Energy,A.J.Sheehy,B.R.Govreau. MEOR Success in SouthernSaskatchewan.SPE124319,2010
    [50] D. Randall Simpson, Nisha Ravi Natraj,Michael J. McInerney, et al. Biosurfactant-producingBacillus are present in produced brines from Oklahoma oil reservoirs with a wide range ofsalinities. Appl Microbiol Biotechnol,2011,91(4):1083-1093
    [51] Marsh T L.Mechanisms of microbial oil recovery by clostridium acetobutylicum and bacillusstrain JF-2[C], Microbial Enhanced Oil Recovery&Related Biotechnol For SolvingEnvironmental Rrobal INF CONF PROC (US Doerep No conf-9509173),1995,393-610
    [52] Sarkar A K,Gours J. C. Sharma M M, et al. A critical evaluation of MEOR. process. InSitu,1989,13:207-238
    [53] Evans D B,Steep A K.A improved crude oil recovery by alkaline flooding enhanced withmicrobial hydrocarbon oxidation.SPE39661,Tulsa,Oklahoma,1998,2,19-22
    [54]李道山,廖广志,杨林.生物表面活性剂作为牺牲剂在三元复合驱中的应用研究.石油勘探与开发.2002,29(2):106-109
    [55] Marsh T L.Mechanisms of microbial oil recovery by clostridium acetobutylicum and bacillusstrain JF-2[C], Microbial Enhanced Oil Recovery&Related Biotechnol For SolvingEnvironmental Rrobal INF CONF PROC (US Doerep No conf-9509173),1995,393-610
    [56]余跃惠,张学礼,张凡等.大港孔店油田水驱油藏微生物群落的分子分析.微生物学报,2005,45(3):10—15
    [57] N. Youssef, D. R. Simpson. In-situ biosurfactant production by injected Bacillus strains in alimestone petroleum reservoir. Appl. Environ. Microbiol. doi:10.1128/AEM.02264-06
    [58]余跃惠,张凡,周玲革等.大港油田产生物表面活性剂本源菌研究.石油天然气学报.2005,27(1):88-90
    [59]舒福昌,余跃惠,冯庆贤等.大港孔店油田本源微生物代谢产物监测分析.石油天然气学报.2006,28(5):128-131
    [60]康宏,于冲,李盛贤等.从大庆原油样品中分离和初步筛选菌株.生物技术.2006,16(3):74-76
    [61]周玲革向廷生佘跃惠.青海油田微生物采油技术研究.生物技术.2004,14(6):58-59
    [62]曹书瑜,涂书培,李志伟等.青海七个泉油田油田复合微生物驱油试验.石油天然气学报.2007,29(6):124-127
    [63]张淑琴,同云贵,吴洪斌.微生物驱油注入及其在大港油田的应用.石油钻采工艺,2002,(增):73-77
    [64] Youssef N, Simpson DR, Duncan KE et al. In situ biosurfactant production by bacillus strainsinjected into a limestone petroleum reservoir. Appl Environ Microbiol2007;73:1239-1247
    [65] Krista M.kaster,Kristin Bonaunet,Harald Berland.et al.Characterisation ofculture-independent and depenent microbial communities in a high-temperature offshore chalkpetroleum reservoir.Antonie van Leeuwenhock,2009(96):423-439
    [66] Andrey V.Mardanov,Nikolai V.Ravin et al.Metabolic Versatility and Indigenous Origin ofArchaeon Thermococcus sibiricus,Isolated from a Siberian Oil Reservoir,as Revealed by GenomeAnalysis.APPPLIED AND ENVIRONMENTAL MICROBILOGY,2009(7):4580-4588
    [67] Neil D.Gray,Angela Sherry,Stephen R.Larter,t al.Biogenic methane production in formationwaters from a large gas field in the North Sea. Extremophiles,2009(13):511-519
    [68] Fan Zhang,Yue Hui She,Sha Sha Ma,t al.Response of microbial community structrue tomicrobial plugging in a mesothermic petroleum reservoir in China.Appl MicrobiolBiotechnol,2010(88):1413-1422
    [69] T. N. Nazina,D. Sh. Sokolova,A. A. Grigor’yan,et al. Production of Oil-ReleasingCompounds by Microorganisms from the Daqing Oil Field. Microbiology,2003,72(2):173–178
    [70] Murray R G, Anthony Y, Julia M F. Potential microbial enhanced oil recoveryprocesses:Acritical analysis. SPE114676,2008
    [71] Gandler G L,Gbosi A,Bryant S L,et al. Mechanistic understanding of microbial pluggingfor improved sweep efficiency.SPE100048,2006
    [72] Suthar H,Krushi H,Anjana Det al. Selective plugging strategy based microbial enhanced oilrecover using bacillus licheniformis TT33. Microbiol. Biotechnol.,2009,19(10):1230-1237.
    [73]向廷生,冯庆贤,N.T. Nazina,等.本源微生物驱油机理研究及现场应用.石油学报,2004,25(6):63-67
    [74]修建龙,俞理,郭英.本源微生物驱油渗流场—微生物场耦合数学模型.石油学报,2010,31(6):989-992
    [75] Gittel A, S rensen KB, Skovhus TL, et al. Prokaryotic community structure and sulfatereducer activity in water from high-temperature oil reservoirs with and without nitratetreatment..Appl Environ Microbiol.2009Nov;75(22):7086-96
    [76] Banat IM, Makkar RS, Cameotra SS (2002) Potential commercial application of microbialsurfactants. Appl Microbiol Biotechnol53:495–508
    [77] Lang S, Wullbrandt D (1999) Rhamnolipids—biosynthesis, microbial production andapplication potential. Appl Microbiol Biotechnol51:22–32
    [78] Nerurkar AS (2010) Structural and molecular characteristics of lichenysin and its relationshipwith surface activity. Adv Exp Med Biol672:304–315
    [79] Nguyen T, Youssef N, McInerney MJ, Sabatini D (2008) Rhamnolipid biosurfactant mixturesfor environmental remediation. Water Res42:1735–1743
    [80] Youssef N, Elshahed MS, McInerney MJ (2009) Microbial processes in oil fields: culprits,problems, and opportunities. Adv Appl Microbiol66:141–251
    [81] Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Ivanova AE, Grigoryan AA, LysenkoAM, Belyaev SS (2000) Physiological and phylogenetic diversity of thermophilic spore-forminghydrocarbon-oxidizing bacteria from oil fields. Mikrobiol69:113–119
    [82] Jenneman GE, McInerney MJ, Knapp RM, Clark JB, Feero JM, Revus DE, Menzie DE (1983)A halotolerant, biosurfactantproducing Bacillus species potentially useful for enhanced oilrecovery. Dev Ind Microbiol24:485–492
    [83] Cosmina P, Rodriguez F, de Ferra F, Grandi G, Perego M, Venema G, van Sinderen D (1993)Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis.Mol Microbiol8:821–831
    [84] Konz D, Doekel S, Marahiel MA (1999) Molecular and biochemical characterization of theprotein template controlling biosynthesis of the lipopeptide lichenysin. Bacteriol181:133–140
    [85] Youssef NH, Duncan KE, McInerney MJ (2005) Importance of the3-hydroxy fatty acidcomposition of lipopeptides for biosurfactant activity. Appl Environ Microbiol71:7690–7695
    [86] Sen R (2010) Surfactin: biosynthesis, genetics and potential applications.Adv Exp Med Biol672:316–323
    [87] McInerney MJ, Javaheri M, Nagle DP (1990) Properties of the biosurfactant produced byBacillus licheniformis strain JF-2. Ind Microbiol5:95–102
    [88] Lin SC, Minton MA, Sharma MM, Georgiou G (1994) Structural and immunologicalcharacterization of a biosurfactant produced by Bacillus licheniformis JF-2. Appl EnvironMicrobiol60:31–38
    [89] Maudgalya S, Knapp RM, McInerney MJ et al.(2004) Development of a bio-surfactant-basedenhanced oil recovery procedure. SPE89473. Proceedings of the SPE/DOE Improved OilRecovery Symposium. Society of Petroleum Engineers, Richardson Texas
    [90] Maudgalya S, McInerney MJ, Knapp RM et al.(2005) Tertiary oil recovery with microbialbiosurfactant treatment of lowpermeability Berea sandstone cores. SPE94213. Proceedings ofSociety of Petroleum Engineers Production and Operations Symposium. Society of PetroleumEngineers, Richardson Texas
    [91] Grünewald J, Marahiel MA (2006) Chemoenzymatic and templatedirected synthesis ofbioactive macrocyclic peptides. Microbiol Mol Biol Rev70:121–146
    [92] Ochsner UA, Fiechter AJ, Reiser J (1994a) Isolation, characterization,and expression inEscherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferaseinvolved in rhamnolipid biosurfactant synthesis. Biol Chem269:19787–19795
    [93] Ochsner UA, Koch AK, Fiechter A, Reiser J (1994b) Isolation and characterization of aregulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa.Bacteriol176:2044–2054
    [94] Bouchez-Na tali, M., et al., Evidence for interfacial uptake in hexadecane degradation byRhodococcus equi: the importance of cell flocculation.Microbiology,2001.147(Pt9): p.2537-43
    [95] Ivshina, I.B., M.S. Kuyukina, and N. Christofi, Oil desorption from mineral and organicmaterials using biosurfactant complexes produced by Rhodococcus species.Microbiol. Biotechnol.,1998.14: p.711-717
    [96] Rosenberg, E. and E.Z. Ron, High-and low-molecular mass microbial surfactants. Appl.Microbiol. Biotechnol.,1999.52: p.154-162
    [97] García-Junco, M., E. De Olmedo, and J.J. Ortega-Calvo, Bioavailability of solid andnon-aqueous phase liquid (NAPL)-dissolved phenanthrene to the biosurfactant-producingbacterium Pseudomonas aeruginosa19SJ. Environ.Microbiol.,2001.3(9): p.561-9
    [98] Higuchi R,Fockler C,Dollinger G,et al. Kinetic PCR analysis:real-time monitoring of DNAamplification reactions. Nature Biotechnology,1993,11:1026-1130
    [99] De Francesco L. Real-time PCR takes center stage. Analytical Chemistry,2003,75:175A-179A
    [100] Grajkowska L T,Pedras-Vasconcelos J A,Sauder C,et al.High-throughput real-time PCRfor early detection and quantitation of arenavirus Tacaribe. Journal of Virological Methods,2009,159:239-243
    [101] Silberberg G,Baruch K,Navon R. Detection of stable reference genes for real-time PCRanalysis in schizophreniaand bipolar disorder. Analytical Biochemistry,2009,391:91-97
    [102] Hermansson A,Lindgren P. Quantification of ammonia-oxidizing bacteria in arable soil byreal-time PCR. Applied and Environmental Microbiology,2001,67:972-976
    [103] Skovhus T L,Ramsing N B,Holmstr m C,et al. Real-time quantitative PCR for assessmentabundance of Pseudoalteromonas species in marine samples. Applied and EnvironmentalMicrobiology,2004,70:2373-2382
    [104] Godhe A,Asplund M E,H rnstr m K,et al. Quantification of diatom and dinoflagellatebiomasses in coastal marine seawater samples by real-time PCR. Applied and EnvironmentalMicrobiology,2008,74:7174-7182
    [105] Okano Y,Hristova K R,Leutenegger C M,et al. Application of real-time PCR to studyeffects of ammonium on population size of ammonia-oxidizing bacteria in soil.Applied andEnvironmental Microbiology,2004,70:1008-1016
    [106] Zhang T,Fang H H P. Applications of real-time polymerase chain reaction for quantificationof microorganismsin environmental samples. Applied Microbiology andBiotechnology,2006,70:281-289
    [107] Morrison T M,Weiss J J,Wittwer C T. Quantification oflowcopy transcripts by continuousSYBR green I monitoring during amplification. Biotechniques,1998,24:954-962
    [108] Sharkey F H,Banat I M,Marchant R. Detection andquantification of gene expression inenvironmental bacteriology. Applied and Environmental Microbiology,2004,70:3795-3806
    [109] Benveniste O,Vaslin B,Villinger F,et al. Cytokine mRNA levels in unmanipulated(exvivo)and in vitro stimulated monkey PBMCs using a semiquantitative RT-PCR and highsensitivity fluorescence-based detection strategy. Cytokine,1996,8:32-41
    [110] Bengtsson M,Karlsson H J,Westman G,et al. A newminor groove binding asymmetriccyanine reporter dye for realtime PCR. Nucleic Acids Research,2003:31-45
    [111] Holland P M,Abramson R D,Watson R,et al. Detection of specific polymerase chainreaction product by utilizing the5′-3′exonuclease activity of Thermus aquaticus DNApolymerase. Proceedings of the National Academy of Sciences of the United States of America,1991,88:7276-7280
    [112] Heid C A,Stevens J,Livak K J,et al. Real time quantitative PCR. Genome Research,1996,6:986-994
    [113]Wilson P E,Kazadi W,Kamwendo D D,et al. Prevalence of pfcrt mutations in Congoleseand Malawian Plasmodium falciparum isolates as determined by a new Taqman assay. ActaTropica,2005,93:97-106
    [114] Tyagi S,Kramer F R. Molecular beacons:probes that fluoresce upon hybridization. NatureBiotechnology,2006,14:303-308
    [115] Mhlanga M M, Malmberg L. Using molecular beacons todetect single-nucleotidepolymorphisms with real-time PCR. Methods,2001,25:463-471
    [116] Kolb S,Knief C,Stubner S,et al. Quantitative detection of methanotrophs in soil by novelpmoA-targeted real-time PCR assays. Applied and Environmental Microbiology,2003,69:2423-2429
    [117]中国石油天然气总公司.SY/T5329-2012.碎屑岩油藏注水水质指标及分析方法.北京;石油工业出版社,2012-01-01
    [118]中华人民共和国国家发展和改革委员会.SY/T5523—2006.油田水分析方法.北京;石油工业出版社,2007-01-01
    [119]国家环境保护局.GB11894-1989.水质总氮的测定碱性过硫酸钾消解紫外分光光度法.北京;中国标准出版社,1990-07-01
    [120]国家环境保护局.GB11893-1989水质总磷的测定钼酸铵分光光度法.北京;中国标准出版社,1990-07-01
    [121]中华人民共和国国家质量监督检验检疫总局. GB/T14924.12-2001实验动物配合饲料矿物质和微量元素的测定.北京;中国标准出版社,2011-10-01
    [122]国家能源局.SY/T0541-2009.原油凝点测定法.北京;石油工业出版社.2010-05-01
    [123]国家发展和改革委员会.SY/T0520-2008.原油粘度测定旋转粘度计平衡法.北京;中国标准出版社,2008-12-01
    [124]国家发展和改革委员会. SY/T5119-2008.岩石中可溶有机物及原油族组分分析.北京;石油工业出版社.2008-12-01
    [125]张明露,马挺,李国强,等.株耐热石油烃降解菌的细胞熟水性及乳化、润湿作用研究[J].微生物通报.2008,35(9):1348-1352
    [126]国家石油和化学工业局.SY/T5370-1999.表面及界面张力测定方法.北京;石油工业出版社,1999-12-01
    [127]张天盛.生物表面活性剂及其应用.北京:化学工业出版社,2005.150~160
    [128]廖海洋,张德良,范起东等.利用相对渗透率曲线计算油田采收率方法浅探.石油天然气学报,2010,32(1):309-311
    [129]阳晓燕,杨胜来,李武广等.气水相对渗透率曲线对支撑剂优选研究—以石英砂和树脂砂为例.天然气勘探与开发,2011,34(3):35-37
    [130]熊健,梁蕊,蔡洪等.利用相对渗透率曲线计算油田采收率.重庆科技学院学报(自然科学版),2011,13(3):84-86
    [131]杜荣光.微生物驱相对渗透率曲线测定.西安石油大学学报(自然科学版),2011,26(5):64-68
    [132]刘怀珠,李良川,孙桂玲等.油藏润湿性对提高原油采收率的影响.化学工程与装备,2009,10:74-76
    [133]宋新旺,程浩然,曹绪龙等.油藏润湿性对采收率影响的实验研究.石油化工高等学校学报,2009,22(4):49-52
    [134]程林松,李丽,李春兰.考虑水驱油藏润湿性变化的数值模拟方法.水动力学研究与进展,2003,18(6):786-791
    [135]张枫,王振升,程岩等.油藏数值模拟中油水相对渗透率曲线处理方法.天然气地球科学,2010,21(5):859-862
    [136]潘举玲.油藏数值模拟中油水相对渗透率曲线处理方法.油气地球物理,2007,5(4):17-19
    [137]宋智勇,郭辽原,袁书文,等.高温油藏内源微生物的堵调及种群分布.石油学报,2010,31(6):975-979
    [138] Grabowski A, Nercessian O, Fayolle F, et al. Microbial diversity in production waters of alow temperature biodegraded oil reservoir. FEMS Microbiol Ecol,2005,54:427-443
    [139]李永民.生物质谱.分析测试技术与仪器,2002,8(3):131-135
    [140] Lin S C,Chen Y C,Lin Y M. General approach for the development of high-performanceliquid chromalography methods for biosurfactant analysis and purification. Joumal of Chromatography A,1998,825:149-159
    [141]高学文,姚仕义.枯草芽孢杆菌B2菌株产生的表面活性素变异体的纯化和鉴定.微生物学报,2003,43(5):647-652
    [142]周俊,谭宁华.植物环肽的薄层化学识别新方法及其在植物化学研究中的应用.科学通报,2000,45(10):1047-1051
    [143]叶和松,盛下放,江春玉.重金属镉抗性菌株的筛选机器对镉活化作用.环境科学学报,2006,26(10):1631-1636
    [144] Ahimu F, Jacques Philippe, Deleu Magali, et al. Surfactin and iturin A effects on Bacillussubtilis surface hydrophobicity. Enzyme and Microbial Technology,2000,27(10):749~754.
    [145] D.K. Jain, D.L. Coilins-Thompson, H Lee et al. A drop-collapsing test for screeningsurfactant-producing microorganisms. Microbiol Methods.1991,13:271~279
    [146]艾嘉,陆兆新等.高效液相色谱法测定发酵液中表面活性素的含量,食品科学,2009,30(6):188-190

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700