用户名: 密码: 验证码:
生物质热解油雾化燃烧及气化的实验研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机及环境问题随着人类社会的快速发展日益严重,迫切需要开发可再生能源并实现产业化应用。生物质能作为唯一可再生碳源,具有可储存运输的特点,通过快速热解可以转化为生物油、可燃气以及炭粉。生物油的品质较差,与传统化石燃料具有较大差异且不能互溶,最为经济和方便的应用方法是直接燃烧,最具有前景的高品位应用方法是生物油分散制造、集中气化合成车用燃料。基于此背景,本学位论文通过实验和数值模拟技术较为系统地研究了生物油的雾化燃烧及气化特性,设计建立了生物油燃烧和气化应用装置。
     在空气气氛下采用热失重技术研究生物油及其与小分子醇的混合燃料的燃烧性能,并与柴油和重油的燃烧性能进行对比。结果表明:生物油及其与小分子醇的混合燃料的燃烧都可分为三个阶段,即轻组分挥发、重组分裂解和焦炭燃烧;混合燃料中小分子醇质量分数不宜超过26%,否则其燃烧段的活化能增大,且热解焦炭所含有机官能团强度变弱,燃烧性能反而变差;生物油挥发性能及其焦炭燃烧性能均优于重油
     采用相位多普勒粒子分析仪,研究生物质热解油喷雾特性。生物油的索特平均直径沿着轴向距离的增加呈先减小后增大的趋势,而沿着径向呈单向增大的趋势;随着气液质量流量比的增加,液滴的平均直径不断减小,但减小趋势变缓;柴油雾化性能最好,生物油最差,添加甲醇或乙醇能增强生物油的雾化性能;利用试验数据拟合得到了生物油索特平均直径的经验公式。
     利用流体力学软件FLUENT分别对重油和生物油在旋流燃烧室内的燃烧进行了数值模拟,对比研究了两种燃料的燃烧和污染物排放特性,考察了旋流强度对生物油燃烧特性的影响。模拟结果表明:旋流燃烧室内存在中心回流区,生物油燃烧时回流区面积和回流量均小于重油重油燃烧的气体组分分布的模拟结果与文献测量值较吻合,炉膛最高温度比生物油燃烧高300K,CO和NO的排放量均比生物油高;随着空气旋流强度的增加,生物油燃烧时炉膛内回流区和回流量增大,CO的排放得到有效抑制,而NO排放量先升高后降低;生物油可以替代重油燃烧应用于很多工业场合。
     对实验室自砌小型窑炉装置内生物油的燃烧进行三维数值模拟,获得了炉膛流场、温度场、组分分布、火焰形状及污染物排放的详细信息,揭示了炉膛内部流动、燃烧及传热传质过程的特点。模拟结果与试验数据吻合良好,验证了模型的可靠性。根据实验和模拟结果对窑炉燃烧系统进行优化,缩小了炉膛体积,简化了炉膛结构,更换了雾化喷嘴。进一步的燃烧实验和模拟结果表明:改造后的窑炉燃烧系统达到同样雾化效果所需的雾化空气量显著降低;虽然生物油流量减小,但燃烧室的最高温度(1450K)高于改造前的窑炉;雾化空气流量的增加可以减小雾化平均粒径、增强油气混合,从而缩短液相停留时间,增加燃尽程度;但雾化空气流量过大时,会携带燃料快速移动,导致部分未燃尽组分直接逃逸出炉膛;空气雾化流量2.0kg/h时,烟气中的一氧化碳浓度最小随着过量空气系数的增加,区域内氧气浓度、混合气体的速度增加,湍流和燃烧质量提高,CO浓度不断降低,NO浓度升高;在最佳过量空气系数1.22时,CO和NO浓度都在一个较低的水平。温度和污染物的排放浓度的模拟值和测量值吻合较好。
     根据生物油燃烧特性的研究结果设计建立了一套模拟燃油锅炉的生物油燃烧装置,并进行了燃烧实验,获得了最佳运行参数。生物油燃烧前需要将炉膛预热到250℃,在有明火的条件下喷入生物油,即可点燃,但此时的燃烧不稳定,火焰位置较靠下游。随着燃烧时间的增加,火焰向前移动,监测点的温度增加,当燃烧约25分钟后,距喷口1.5m处的温度基本保持不变,此时燃烧稳定,污染物排放低于排放标准。
     生物油在氮气下的热失重曲线表明气化分为挥发和热解两个阶段,升温速率的增加能减少固定碳的生成,增加气化效率。建立了生物油小型气化装置,通过实验和FLUENT模拟研究生物油的气化特性。气化炉内温度分布的模拟结果与实验值吻合较好;相同生物油流量下,载气可以阻止生物油组分间的反应炭化,但载气较大时会减小气化气体反应时间,使得气化不完全;通过计算,气体停留时间约1s以上时气化质量较高。部分供氧气化试验结果表明,CO2的产率随着当量比增加而线性增加,可燃气体产率随着当量比的增加先减小后增加,碳转化率提高,这是因为氧化反应使得局部区域反应温度上升。实验和模拟结果表明,部分生物油完全燃烧为其他生物油的气化提供热源是实现自热式高效气化的关键。
     对生物质热解液化技术进行了经济性分析,证明了该技术实现产业化后具有良好的经济性:生物油替代化石燃油燃烧应用具有较好的经济效益;在费托合成工厂规模较大时,生物油气化替代生物质气化制备合成气的成本较低。此外,生物油的生产和利用还将带来显著的社会效益和环境效益。
With the rapid development of human society, increasing environmental concerns and the rising demand for fossil fuel have increased the necessity in developing and manufacturing alternative source of energy, which is renewable in nature. Biomass is the only renewable carbon source that can be storage and handling. Solid Biomass can be converted into carbon-rich liquid bio-oil, solid chars and non-condensable gas through a process called pyrolysis. The chemical and physical properties of bio-oil have much more differences with traditional fossil fuel and cannot dissolve each other. The most simple and feasible application of bio-oil is combustion. The most promising refined technology of bio-oil is to produce syngas via gasification, after that syngas is used to synthesize high-grade vehicle fuel. Based on this background, a series of experiments and numerical simulation were presented to integrally investigate bio-oil spraying properties, combustion and gasification characteristic. The bio-oil combustion and gasification plants were design and built.
     Thermal weight loss curves of bio-oil and its blends with low molecular weight alcohols were determined by TG-DTA method in the oxygen atmosphere and compared with traditional fossil fuel diesel and heavy fuel oil. The thermo gravimetric cures of bio-oil and its blends with alcohols can be divided into three steps:volatilization, secondary char formation, and char combustion. With the increasing of alcohols content in the blend fuels, the active energies of volatilization and char combustion both decreased first and then increased. The mass fraction of alcohols should not exceed26%, otherwise the active energy of char combustion increased and the contained organic function groups in char decreased, which indicated higher stability and lower combustibility of the char. The volatility and char combustibility of bio-oil is better than heavy fuel oil.
     The spray characteristics of bio-oil for combustion were investigated with Phase Doppler Anemometry (PDA) with Sauter mean diameter (SMD) as evaluating indicator. The results showed that SMD of bio-oil spray droplets exhibited a tendency to first decrease and then increase along axial direction and increased continuously along radial direction. The SMD diminished with the increase of gas-liquid flow ratio and had little variation when the gas-liquid flow ratio exceeded a certain value. Among three kinds of fuels, the atomizing quality of diesel was the best, while that of the bio-oil was the worst. By adding methanol or ethanol to the bio-oil, the atomizing quality was improved. The empirical equation for the SMD was derived. The predicted results were found to be in a good agreement with the experiment results.
     FLUENT was used to simulate the combustion process of bio-oil and heavy fuel oil with the same heating value flow in a swirl combustion chamber. Combustion and emission characteristics of them were comparative study to provide useful data for the application of bio-oil, and the effects of swirl number on the bio-oil combustion were simulated. The results indicate that there existed central recirculation region, the recirculation area and flow of bio-oil combustion were smaller than heavy fuel oil combustion. The maximum furnace temperature of heavy fuel oil combustion is300K higher than bio-oil. The predicted gas species distributions of heavy fuel oil combustion were found to be in a reasonable agreement with the measurements, and heavy fuel oil release more CO and NO than bio-oil combustion in the flue gas. With the increase of swirl number, the recirculation area and flow increased, and the formation of CO can be effectively reduced, but the NO concentration in the outlet increased at first and then decreased. Bio-oil can replace heavy fuel oil combustion in the boiler.
     Three-dimensional numerical simulation performed to obtain detailed information to reveal the characteristics of the flow, combustion, heat and mass transfer process in the kiln. The simulation results agreed well with the experimental results, which confirmed the reliability of the model. According to the experimental and simulated results, the kiln experimental combustion system optimized for reducing size and simplifying structure, a new atomizing nozzle employed. Combustion experiments and simulation results show that atomizing air flow rate achieving the same spraying quality significantly reduces. Although the oil flow rate decrease, measured combustion temperature (exceeds1450K) is higher than original kiln. Changing the atomizing air flow rate can be an optimizing factor in improving atomizing quality and liquid-oxygen mixing in central axis lead to short residence time to burn-out. The minimum CO and maximum NO concentration in flue gas obtained when air atomizing flow rate is2.0kg/h. With the increasing of equivalence ratio, the reacting oxygen concentration, turbulence and combustion quality is increased, combustion zone get downstream. The CO concentration in flue gas inhibited, while the formation of NO is increased. The optimum equivalence ratio is 1.22that CO and NO emissions both within a low level. The predicted temperature, CO and NO concentrations were in a reasonable agreement with the experiment data, which confirmed the reliability of the model.
     Based on experimental and simulation results, taking into account the fuel characteristics of bio-oil, a bio-oil combustion device was build. The bio-oil could be ignited while the combustion chamber was preheated up to about250℃and existed naked flame. The flame was not stable at the beginning because the temperature of furnace was too low to evaporate bio-oil quickly. With the increase of burn time, the flame move downstream. After25min, the temperature at location1.5m from injection slightly increased from900K to1350K, the combustion flame became steady and the pollutant emissions were lower than emission standard.
     The thermo gravimetric cures of bio-oil in the nitrogen atmosphere can be divided into two steps:volatilization and carbonization. The increasing of heating rate can reduce the formation of carbon, increase gasification efficiency. A bio-oil gasification device was build, a serious of experiments and simulation by FLUENT were presented. The experimental and predicted temperatures in gasification reactor are in reasonable agreement. The carrier gas N2inhibit the carbonization reaction between bio-oil components, but the high flow rate of carrier gas lead bio-oil gasification reaction time and gasification efficiency reduce. The gasification reaction time need be more than1s. With the increase of equivalence ratio, the combustible gas production decrease firstly and then increase, CO2production and carbon conversion increase because the oxidation reaction increase the gasification temperature. The experimental and simulation results indicate that part of the bio-oil complete combustion is the key to achieve effectively auto thermal gasification.
     The economic analysis of biomass pyrolysis technology proves that the technology has a good economy for industrialization. The combustion application of bio-oil as a substitute for fossil fuel oil has good economic benefits. In a large Fischer-Tropsch synthesis plant, the cost of bio-oil gasification to produce synthesis gas is lower than biomass gasification. The production and utilization of bio-oil will bring significant social and environmental benefits.
引文
[1]BP世界能源统计报告[R].2011. http://www.bp.com/productlanding.docategoryld=9025442
    &contentld=7047113
    [2]薛进军.2011年中国低碳发展报告[R].2011.
    [3]吴创之,袁振宏,马隆龙.2009-2010年中国生物质能产业发展报告[R].2010.
    [4]农业部教科文司.全国农作物秸秆资源调查与评价报告[R].2010.12. http://www.fjagri.
    gov.cn/upload/File/20110217103019.pdf
    [5]朱锡锋.生物质热解原理与技术[M].合肥:中国科学技术大学出版社,2006.
    [6]刘荣厚,鲁楠.旋转锥反应器生物质热裂解工艺过程及实验[J].沈阳农业大学学报,1997,28(4):307-311.
    [7]陈明强,颜涌捷,任铮伟,等.导向喷动流化床生物质快速裂解制取液体燃料[J].华东理工大学学报(自然科学版),2004,30(2):143-147.
    [8]傅旭峰,仲兆平,肖刚,等.生物质在流化床中热裂解的试验研究[J].动力工程,2009,29(6):585-589.
    [9]刘宇,李颖.利用小型流化床的生物质热裂解影响因素分析[J].农业工程学报,2008,24(8):206-209.
    [10]李志合,易维明,李永军.等离子体加热流化床反应器的设计与实验[J].农业机械学报,2007,38(4):66-68.
    [11]商辉,路冉冉,孙晓锋.微波热解生物质废弃物的研究[J].可再生能源,2011(3):25-29.
    [12]陆强.生物质选择性热解液化的研究[D].中国科学技术大学博士学位论文,2010.
    [13]朱锡锋,陆强,郑冀鲁,等.生物质热解液化与生物油特性研究[J].太阳能学报,2006,27(12):1285-1289.
    [14]Bridgwater A V, Peacocke G V C. Fast pyrolysis processes for biomass[J]. Renewable & Sustainable Energy Reviews,2000,4(1):1-73.
    [15]Deng C J, Liu R H, Cai J M. State of art of biomass fast pyrolysis for bio-oil in China:a review[J]. Journal of the Energy Institute,2008,81(4):211-217.
    [16]杨海平,陈汉平,陈应泉,等.热解过程中棕榈壳焦的物化结构演变特性[J].中国电机工程学报,2008,28(32):106-110.
    [17]Bilbao R, Mastral J F, Aldea M E, et al. Experimental and theoretical study of the ignition and smoldering of wood including convective effects[J]. Combustion and Flame,2001, 126:1363-1372.
    [18]Luo Z Y, Wang S R, Liao Y F, et al. Research on biomass fast pyrolysis for liquid fuel[J]. Biomass & Bioenergy,2004,26:455-462.
    [19]朱锡锋,郑冀鲁,陆强,等.生物质热解液化装置研制与试验研究[J].中国工程科学,2006,8(10):89-93.
    [20]Altun N E, Hicyilmaz C, Kok M V. Effect of particle size and heating rate on the pyrolysis of Silopi asphaltite[J]. Journal of Analytical and Applied Pyrolysis,2003,67:369-379.
    [21]Butt D A E. Formation of phenols from the low-temperature fast pyrolysis of Radiata pine (Pinus radiata):Part I. Influence of molecular oxygen [J]. Journal of Analytical and Applied Pyrolysis,2006,76(1-2):38-47.
    [22]Garcia-Pereza M, Chaalab A, Pakdela H, et al. Vacuum pyrolysis of softwood and hardwood biomass:Comparison between product yields and bio-oil properties [J]. Journal of Analytical and Applied Pyrolysis,2007,78(1):104-116.
    [23]Bridgwater A V. Biomass Fast Pyrolysis[J]. Thermal Science,2004,8:21-49.
    [24]Bouehera M E, Chaalab A, Roy C. Bio-oil obtained by vacuums Pyrolysis of softwood bark as a liquid fuel for gas turbines. Part 1:Properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase[J]. Biomass & Bioenergy,2000,19:337-350.
    [25]洪军.生物质热裂解制油机理试验研究及流化床闪速热裂解装置设计[D].浙江大学硕士学位论文,2002.
    [26]陈明强.生物质在喷动流化床内快速裂解制液体燃料的基础研究[D].华东理工大学博士学位论文,2003.
    [27]Milne T A, Agblevor F, Davis M. Developments in thermochemical biomass conversion(ed. Bridgwater A V)[M]. London:Blackie Academic and Professional,1997:409-424.
    [28]Branea C, Giudieianni P, Di Blasi C. GC/MS characterization of liquids generated from low-temperature pyrolysis of wood[J]. Industrial & Engineering Chemistry Research,2003, 42(14):3190-3202.
    [29]Perez G M, Chaala A, Pakdel H, et al. Evaluation of the influence of stainless steel and copper on the aging process of bio-oil[J]. Energy & Fuels,2006,20:786-795.
    [30]Chaala A, Ba T, Perez G M, et al. Colloidal Properties of bio-oil obtained by vacuum Pyrolysis of softwood bark:Aging and thermal stability[J]. Energy & Fuels,2004,18: 1535-1542.
    [31]Li D W, Cheng D Y, Zhu X F. Reduction in time required for synthesis of high specific surface area silica from pyrolyzed rice husk by precipitation at low pH[J]. Bioresource Technology.2011,102(13):7001-7003.
    [32]Li D W, Zhu X F. Short-period synthesis of high specific surface area silica from rice husk char[J]. Materials Letters.2011,65(11):1528-1530.
    [33]李大伟,陈登宇,朱锡锋.稻壳炭基高比表面多孔氧化硅的表征及Cu(Ⅱ)吸附特性[J].化工学报,2011,12:3434-3439.
    [34]Sturzl R. The commercial co-firing of RTPTM bio-oil at the manitowoc public utilities power gen-eration station[EB/OL]. http://www.ensyn.com,2008-03-12.
    [35]Nurul Islam F, Ramlan Zailani, Farid Nasir Ani. Pyrolytic oil from fluidized bedpyrolysis of oil palm shell and its characterization[J]. Renewable Energy,1999,17:73-84.
    [36]Kai Sipila, Eeva Kuoppala, Leena Fagernas, et al. Characterization of biomass-based flash pyrolysis oils[J]. Biomass & Bioenergy,1998,4(2):103-113.
    [37]Calabria R, Chiariello F, Massoli P. Combustion fundamentals of pyrolysis oil based fuels[J]. Experimental Thermal and Fluid Science,2007,31(5):413-420.
    [38]Freel B A, Graham R G, Huffman D R. Commercial aspects of rapid thermal processing(RTP)[J]. Fuel and Energy Abstracts,1997,38(1):36-41.
    [39]Oasmaa A, Kyto M, Sipila K. Pyrolysis oil combustion tests in an industrial boiler[M]. Oxford:Blackwell Science,2001,1468-1481.
    [40]朱锡锋,郭涛,陆强,等.生物油雾化燃烧特性试验[J].中国科学技术大学学报,2005,35(6):856-860.
    [41]刘承运,陆强,孙书生,等.稻壳生物油的燃烧及污染物排放特性研究[J].燃料化学学报,2008,36(5):577-582.
    [42]Czernlk S, Bridgwater A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy & Fuels,2004,18:590-598.
    [43]Ikura M, Stanciulescu M, Hogan E. Emulsification of pyrolysis derived bio-oil in diesel fuel[J]. Biomass & Bioenergy,2003,24:221-231.
    [44]Chiaramonti D, Oasmaa A, Solantausta Y. Power generation using fast pyrolysis liquids from biomass[J]. Renewable and Sustainable Energy Reviews,2007(11):1056-1086.
    [45]Strenziok R, Hansen U, Kunstner H. Combustion of bio-oil in a gas turbine[M]. In Progress in Thermochemical Biomass Conversion, Oxford,2001.
    [46]Wu H, Li J, Yi H L, et al. The tribological behavior of diester-containing polysulfides as additives in mineral oil[J]. Tribology International,2007,40, (8):1246-1252.
    [47]Dynamotive Energy Systems Corporation. Fast pyrolysis of biomass for green power generation[C]. First World Conference and Exhibition on Biomass for Energy and Industry, 2000.
    [48]Chairamonti D, Bonini M, Fratini E, et al. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines-part 2:test in diesel engines [J]. Biomass & Bioenergy,2003,25:101-111.
    [49]孙书生,张健,李文志,等.生物油/柴油乳化燃料用于柴油机试验研究[J].太阳能学报,2009,12:1718-1722.
    [50]Morris K W. Fast pyrolysis of bagasse to produce bio-oil fuel for power generation [J]. International Sugar Journal,2001,103:259-263.
    [51]Shihadeh A, Hochgreb S. Impact of biomass pyrolysis oils process conditions on ignition delay in compression ignition engines[J]. Energy & Fuels,2002,16(3):552-561.
    [52]Solantausta Y, Nylund N, Westerholm M, et al. Wood pyrolysis oil as fuel in a diesel power plant[J]. Bioresource Technology,1993,46(1-2):177-188.
    [53]Suppes G J, Natarajan V P, Chen Z. Autoignition of select oxygenate fuels in a simulated diesel engine environment[C]. AIChE National Meeting, New Orleans,1996.2.
    [54]Suppes G J. Ignition delay time analysis of two fuels [R]. Final Report for NREL Contract, 1996.10.
    [55]Lu Q, Zhang Z B, Liao H T, et al. Lubrication properties of bio-oil and its emulsions with diesel oil[J]. Energies,2012,5(3),741-751.
    [56]Chiaramonti D, Bonini M, Fratini E, et al. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines(2):Tests in diesel engines[J]. Biomass & Bioenergy,2003,25(1):101-111.
    [57]Meier D, Schoell S. New ablative pyrolyser in operation in Germany[J]. PyNe Newsletter, 2004,17:1-2.
    [58]Lu Q, Zhang J, Zhu X F. Corrosion properties of bio-oil and its emulsions with diesel[J]. Chinese Science Bulletin,2008,53(23):3726-3734.
    [59]Lopez Juste G, Salva Monfort G. Preliminary test on combustion of wood derived fast pyrolysis oils in a gas turbine combustor[J]. Biomass & Bioenergy,2000,19:119-128.
    [60]朱锡锋.生物质液化制备合成气的研究[J].可再生能源,2003(1):11-14.
    [61]Wang X, Kersten S R A, Prins W, et al. Biomass-syngas from fast pyrolysis vapors or liquids[C].12th European Conference on Biomass for Energy, Industry and Climate Protection, 17-21 June 2002, Amsterdam, the Netherlands.
    [62]Panagiotis N, Kechagiopoulos, Spyros S, et al. Hydrogen production via steam reforming of the aqueous phase of bio-oil in a fixed bed reactor[J]. Energy & Fuels,2006,20(5): 2155-2163.
    [63]Venderboshch R H, Prins W. Entrained flow gasification of bio-oil for synthesis gas[A]. Netherlands:BTG Biomass Technology Group,1998.
    [64]Panigrahi N, Chaudhari S T, Bakhshi N N, et al. Production of synthesis gas/high-btu gaseous fuel from pyrolysis of biomass-derived oil[J]. Energy & Fuels,2002,16:1392-1397.
    [65]Panigrahi S, Dalai A K, Chaudhari S T, et al. Synthesis gas production from steam gasification of biomass-derived oil[J]. Energy & Fuels,2003,17:637-642.
    [66]Van Rossum G, Kersten S R A, Van Swaaij WPM. Catalytic and noncatalytic gasification of pyrolysis oil[J]. Industrial & Engineering Chemistry Research,2007,46:3959-3967.
    [67]Wright M M, Brown R C. Modeling and Analysis:Distributed processing of biomass to bio-oil for subsequent production of Fischer-Tropsch liquids[J]. Biofuels, Bioprod. Bioref, 2008,2:229-238.
    [68]Henrich E, Dinjus E, Kdgel A, et al. A two stage process for synfuel from biomass[C].2nd World Biomass Conference:Biomass for Energy, Industry and Climate Protection, Procedure of the Conference held in Roma, I, May 10-14,2004, May 10-14,2004.
    [69]Chaudhari S T, Dalai A K, Bakhshi N N. Production of hydrogen and/or syngas (H2+CO) via steam gasification of biomass-derived chars[J]. Energy & Fuels,2003,17(4):1062-1067.
    [70]Wang T J, Chang J. Lv P M. Synthesis gas production via biomass catalytic gasification with addition of biogas[J]. Energy & Fuels,2005,19(2):637-644.
    [71]Kan T, Xiong J X, Li X L, et al. High efficient production of hydrogen from crude bio-oil via an integrative process between gasification and current-enhanced catalytic steam reforming[J]. International Journal of Hydrogen Energy,2010,35:518-532.
    [72]Wang Z X, Dong T, Yuan L X, et al. characteristics of bio-oil-syngas and its utilization in fischer-tropsch synthesis[J]. Energy & Fuels,2007,21:2421-2432.
    [73]Lv P M, Yuan Z H, Wu C Z, et al. Bio-syngas production from biomass catalytic gasification[J]. Energy Conversion and Management,2007,48:1132-1139.
    [1]Chiaramonti D, Oasmaa A, Solantausta Y. Power generation using fast pyrolysis oils[J]. Renewable & Sustainable Energy Reviews,2007,11:1056-1086.
    [2]朱锡锋,陆强.生物质快速热解制取生物油[J].科技导报,2007,25(21):69-75.
    [3]Czernik S, Bridgwater A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy and Fuels,2004,18(2):590-598.
    [4]徐俊明,蒋剑春,孙云娟,等.介孔分子筛反应精馏催化改性生物质裂解油[J].燃料化学学报,2008,36(4):421-425.
    [5]Oasmaa A, Meier D. Norms and standards for fast pyrolysis liquids-1. Round robin test[J]. Journal of Analytical and Applied Pyrolysis,2005,73, (2):323-334.
    [6]Garcia Perez M, Chaala A, Pakdel H, et al. Multiphase structure of bio-oils[J]. Energy & Fuels,2006,20(1):364-375.
    [7]朱锡锋,郭涛,陆强,等.生物油雾化燃烧特性试验[J].中国科学技术大学学报,2005,35(6):856-860.
    [8]任铮伟,徐清,陈明强,等.流化床生物质快速裂解制取液体燃料[J].太阳能学报,2002,23(4):462-466.
    [9]刘荣厚,鲁楠.旋转锥反应器生物质热裂解工艺过程及实验[J].沈阳农业大学学报,1997,28(4):307-311.
    [10]陈明强,颜涌捷,任铮伟,等.导向喷动流化床生物质快速裂解制取液体燃料[J].华东理工大学学报(自然科学版),2004,30(2):143-147.
    [11]朱锡锋,陆强,郑冀鲁,等.生物质热解与生物油的特性研究[J].太阳能学报,2006,27(12):1285-1289.
    [12]王树荣,骆仲泱,董良杰,等.几种农林废弃物热裂解制取生物油的研究[J].农业工程学报,2004,20(2):246-249.
    [13]朱锡锋,陆强,郑冀鲁,等.生物质热解与生物油的特性研究[J].太阳能学报,2006,27(12):1285-1289.
    [14]Darmstadt H, Garcia-Perez M, Adnot A, et al. Corrosion of metals by bio-oil obtained by vacuum pyrolysis of softwood bark residues, An X-ray photoelectron spectroscopy and auger electron spectroscopy study[J]. Energy & Fuels,2004,18 (5):1291-1301.
    [15]Lu Q, Zhang J, Zhu X F. Corrosion properties of bio-oil and its emulsions with diesel[J]. Chinese Science Bulletin,2008,53 (23):3726-3734.
    [16]张素萍,颜涌捷,李庭深,等.生物质裂解焦油的燃烧特性及动力学模型[J].华东理工大学学报(自然科学版),2002,28(1):104-106.
    [17]李理,阴秀丽,吴创之,等.生物油热解及燃烧特性分析[J].太阳能学报.2008,27(6):733-737.
    [18]王贤华,贺瑞雪,杨海平,等.生物油热解气化的TG-FTIR分析[J].太阳能学报,2010,31(5):545-549.
    [19]Garcia-Perez M, Chaala A, Pakdel H, et al. Characterization of bio-oils in chemical families[J]. Biomass & Bioenergy.2007,31(4):222-242.
    [20]胡荣祖,高胜利,赵凤起,等.热分析动力学[M].北京:科学出版社,2008.
    [21]Branca C, Di Blasi C, Russo C. Devolatilization in the temperature range 300-600K of liquids derived from wood pyrolysis and gasification[J]. Fuel,2005,84(1):37-45.
    [22]郭晓亚,颜涌捷.生物质油精制前后燃烧性能比较[J].华东理工大学学报(自然科学版),2005,31(4):476-479.
    [23]杜谋涛,黄勇成,尚上,等.柴油-生物质油乳化燃料最佳HLB值及理化性质研究[J].燃料化学学报,2009,39(6):679-683.
    [24]Stamatov V, Honnery D, Soria J. Combustion properties of slow pyrolysis bio-oil produced from indigenous Australian species[J]. Renewable Energy,2006,31:2108-2121.
    [25]Juste G L, Monfort J J S. Preliminary test on combustion of wood derived fast pyrolysis oils in a gas turbine combustor[J]. Biomass & Bioenergy,2000,19(2):119-128.
    [26]孙学信.燃煤锅炉燃烧试验技术与方法[M].北京:中国电力出版社,2001.
    [27]赵卫东,刘建忠,周俊虎,等.水焦浆/水煤浆燃烧特性对比研究[J].浙江大学学报(工学版),2008,42(10):1795-1800.
    [28]王惺,李定凯,倪维斗,等.生物质压缩颗粒的燃烧特性[J].燃烧科学与技术,2007,13(1):86-90.
    [29]Yu L J, Wang S, Jiang X M, et al. Thermal analysis studies on combustion characteristics of seaweed[J]. Journal of Thermal Analysis and Calorimetry,2008,93(2):611-617.
    [1]刘联胜,杨华,衡国辉,等.气液质量流量比对气泡雾化喷嘴燃烧特性的影响[J].燃烧科学与技术,2007,13(1):10-14.
    [2]杨华,杜聪,周晓芳,等.空气旋流强度对气泡雾化喷雾流场及火焰的影响[J].燃烧科学与技术,2008,14(6):523-528.
    [3]余敬周,张煜盛,姜光军,等.DME/柴油混合燃料闪急沸腾喷雾特性的试验与数值模拟[J].内燃机学报.2010,28(4):324-330.
    [4]袁银南,陈汉玉,张春丰,等.生物柴油喷雾特性试验[J].农业机械学报,2008, 39(7):1-4.
    [5]施爱平,叶丽华,袁银南,等.生物柴油喷射雾化特性试验与分析[J].农业机械学报,2008,39(10):44-47.
    [6]Lu Q, Li W Z, Zhu X F. Overview of fuel properties of biomass fast pyrolysis oils[J]. Energy Conversion and Management,2009,50(5):1376-1383.
    [7]吴创之,周肇秋,阴秀丽,等.我国生物质能源发展现状与思考[J].农业机械学报,2009,40(1):91-99.
    [8]Czernik S, Bridgwater A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy & Fuels,2004,18(2):590-598.
    [9]Chiaramonti D, Oasmaa A, Solantausta Y. Power generation using fast pyrolysis oils[J]. Renewable & Sustainable Energy Reviews,2007,11(6):1056-1086.
    [10]刘承运,陆强,孙书生,等.稻壳生物油的燃烧及污染物排放特性研究[J].燃料化学学报,2008,36(5):577-582.
    [11]LoApez Juste G, SalvaA Monfort J J. Preliminary test on combustion of wood derived fast pyrolysis oils in a gas turbine combustor[J]. Biomass & Bioenergy,2000,19(2):119-128.
    [12]Tzanetakis T, Ashgriz N, James D F, et al. Liquid fuel properties of a hardwood-derived bio-oil fraction[J]. Energy & Fuels,2008(4),22:2725-2733.
    [13]Tzanetakis T, Farra N, Moloodi S, et al. Spray combustion characteristics and gaseous emissions of a wood derived fast pyrolysis liquid-ethanol blend in a pilot stabilized swirl burner[J]. Energy & Fuels,2010,24(10):5331-5348.
    [14]候凌云,候晓春.喷嘴技术手册[M].北京:中国石化出版社,2002.
    [15]Ejim C E, Fleck B A, Amirfazli A. Analytical study for atomization of biodiesels and their blends in a typical injector:surface tension and viscosity effects[J]. Fuel,2007,86:1534-1544.
    [16]刘联胜,吴晋湘,杨华,等.气泡雾化喷嘴颗粒平均直径经验公式的拟合[J].燃烧科学与技术,2002,8(5):464-467.
    [17]Perez G M, Chaala A, Pakdel H, et al[J]. Multi phase structure of bio-oils [J]. Energy & Fuels,2006,20:364-375.
    [18]Tzanetakis T, Ashgriz N, James D F, et al. Liquid fuel properties of a hardwood-derived bio-oil fraction[J]. Energy & Fuels,2008,22:2725-2733.
    [19]Oasmaa A, Leppamaki E, Koponen P, et al. Physical characterisation of biomass based Pyrolysis liquids. Application of standard fuel oil analyses[R]. VTT report, VTT,1997.
    [20]Nguyen D, Honnery D. Combustion of bio-oil ethanol blends at elevated pressure[J]. Fuel, 2008,87(2):232-243.
    [21]钱丽娟,熊红兵,林建忠.液体物性对雾化射流液雾粒径的影响[J].工程热物理学报, 2008,29(2):246-250.
    [22]郑捷庆,罗惕乾,张军,等.气力式雾化喷嘴最佳气耗率的试验[J].农业机械学报.2007,38(10):195-200.
    [23]任兰学,马胜远,王永峰,等.气流式喷嘴雾化特性试验研究[J].热能动力工程,2008,23(5):516-518.
    [24]龚景松,傅维镳.一种新型喷嘴的提出及其流量特性的研究[J].工程热物理学报,2005,26(3):507-510.
    [25]Rahmanm, Amirfazlia, Heidrick T, et al. An experimental study of the atomization of a two-phase industrial nozzle[C]. Proceeding of the International Conference on Mechanical Engineering. Dhaka, Bangladesh,2007.
    [26]Boucher M E, Chaalab A, Roy C. Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part I:Properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase[J]. Biomass & Bioenergy,2000,19(5):337-350.
    [1]姚燕,王树荣,王琦,等.生物油替代动力燃油的研究[J].动力工程,2007,27(3):458-462.
    [2]郑志峰,蒋剑春,戴伟娣,等.生物质能源转化技术与应用(Ⅲ)——生物质热解液体燃料油制备和精制技术[J].生物质化学工程,2007,41(6):67-77.
    [3]赵军,王述洋.我国生物质能源与利用[J].太阳能学报,2008,29(1):90-94.
    [4]温正,石良辰,任毅如.Fluent流体计算应用教程[M].北京:清华大学出版社,2009.
    [5]Eaton A M, Smoot L D, Hill S C, et al. Components, formulations, solutions, evaluation, and application of comprehensive combustion models[J]. Progress in Energy and Combustion Science,1999,25:387-436.
    [6]Adouane B, Hoppesteyn P, Jong W D, et al. Gas turbine combustor for biomass derived LCV gas, a first approach towards fuel-NOx modelling and experimental validation[J]. Applied Thermal Engineering,2002,22:959-970.
    [7]Launder B E, Spalding D B. Lectures in Mathematical Models of Turbulence[M]. Academic Press, London, England.1972.
    [8]Wu S R, Chang W C, Chiao J. Low NOx Heavy fuel oil combustion with high temperature air[J]. Fuel,2005,84:359-369.
    [9]Daniel R, Schneider, Zeljko Bogdan. Effect of heavy fuel oil/natural gas co-combustion on pollutant generation in retrofitted power plant[J]. Applied Thermal Engineering.2007, 27(11-12):1944-1950.
    [10]Hanson R K, Salimian S. Survey of rate constants in H/N/O systems. In:Gardiner WC, Combustion Chemistry [M]. New York:Springer-Verlag,1984.361-369.
    [11]Lu Q, Li W Z, Zhu X F. Overview of fuel properties of biomass fast pyrolysis oils[J]. Energy Conversion and Management,2009,50:1376-1383.
    [12]Demirbas T, Demirbas A H. Bioenergy, green energy, biomass and biofuels[J]. Energy Sources Part A,2010,32 (12):1067-1075.
    [13]Vamvuka D. Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes-An overview[J]. Industrial & Engineering Chemistry Research,2011,35(10):835-862.
    [14]Solantausta Y, Oasmaa A, Sipila K C, et al. Bio-oil production from biomass:steps toward demonstration[J]. Energy & Fuel,2012,26 (1):233-240.
    [15]东明,解茂昭,李素芬.多孔介质燃烧室内湍流流动及燃油喷雾的数值模拟[J].燃烧科学与技术,2008,14(5):453-457.
    [16]周桂娟,毛羽,王娟,等.燃油燃烧器出口液雾燃烧及NOx生成的数值模拟[J].石油炼制与化工,2007,38(2):7-10.
    [17]Saario A, Rebola A, Coelho P J, et al. Heavy fuel oil combustion in a cylindrical laboratory furnace:measurements and modeling[J]. Fuel,2005,84(2005):359-369.
    [18]Oasmaa A, Kuoppala E, Selin J F, et al. Fast pyrolysis of forestry residue and pine:4 improvement of the product quality by solvent addition[J]. Energy & Fuels,2004,18(5): 1578-1583.
    [19]陈兴隆,周立行,张健.旋流扩散燃烧中旋流数对热NO生成的影响[J].工程热物理学报,2001,22(4):511-514.
    [20]杨华,杜聪,周晓芳,等.空气旋流强度对气泡雾化喷嘴流场及火焰的影响[J].燃烧科学技术,2008,14(6):523-28.
    [21]朱锡锋,郑冀鲁,陆强,等.生物质热解液化装置研制与试验研究[J].中国工程科学,2006,8(10):89-93.
    [22]Wang X H, Chen H P, Luo K, et al. The influence of microwave drying on biomass pyrolysis[J]. Energy & Fuel,2008,22(1):67-74.
    [23]Lu Q, Zhu X F, Li W Z, et al. On-line catalytic upgrading of biomass fast pyrolysis products[J]. Chinese Science Bulletin,2009,54(11):1941-1948.
    [24]Demirbas, A. Pyrolysis of biomass for fuels and chemicals[J]. Energy Sources Part A,2009, 31 (12):1028-1037.
    [25]Zheng J L, Kong Y P. Spray combustion properties of fast pyrolysis bio-oil produced from rice husk[J]. Energy Conversion and Management,2010,51 (1):182-188.
    [26]Papadikis A, Bridgwater A V, Gu S. CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors, Part A:Eulerian computation of momentum transport in bubbling fluidised beds[J]. Chemical Engineering Science,2008,63:4218-4227.
    [27]Collazo J, Porteiro J, Patino D, et al. Simulation and experimental validation of a methanol burner[J]. Fuel,2009,88 (2):326-334.
    [28]Boke Y E, Aydin O, Yildizay H D. The comparison of experimental and predicted flame temperature of natural gas combustion[J]. Energy Sources Part A,2011,33 (13):1271-1280.
    [29]李理,阴秀丽,吴创之,等.生物油热解及燃烧特性分析[J].太阳能学报,2008,29(6),733-737.
    [30]刘承运,陆强,孙书生,等.稻壳生物油的燃烧及污染物排放特性研究[J].燃料化学学报,2008,36(5):577-582.
    [31]Garcia-Perez M, Chaala A, Pakdel H, et al. Characterization of bio-oils in chemical families[J]. Biomass & Bioenergy,2007,31(4):222-242.
    [1]Dinjus E, Henrich E, Schingnitz M. Syngas from the gasification of biomass slurries-a progress report[C].14th European Biomass Conference, Paris, France, October 17-21,2005, 1663-1672.
    [2]Kechag P N, Voutetakis S S. Lemonidou A A, et al.Hydrogen production via steam reforming of the aqueous phase of bio-oil in a fixed bed reactor[J]. Energy & Fuels,2006,20(5): 2155-2163.
    [3]Garcia L, French R, Czernik S, et al. Catalytic steam reforming of bio-oils for the production of hydrogen Effects of catalyst composition[J]. Applied Catalysis A:General,2000,201(2): 225-239.
    [4]Rioche C, Kulkarni S, Meunier F C, et al. Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts [J]. Applied Catalysis B:Environmental, 2005,61:130-139.
    [5]Takanabe K, Aika K, Inazu K, et al. Steam reforming of acetic acid as a biomass derived oxygenate:bifunctional pathway for hydrogen formation over Pt/ZrO2 catalysts[J]. Journal of Catalysis,2006,243:263-269.
    [6]Evans R J, Czernik S, French R, et al. Distributed bio-oil reforming[R]. IV.A.13, DOE Hydrogen Program FY 2005 Progress Report,2005.
    [7]李全新,阚涛,袁丽霞,等.水蒸汽气氛中的生物质制氢方法及其串联流化床装置系统[P].中国专利,公开号:CN101475143.
    [8]Kan T, Xiong J X, Li X L, et al. High efficientproduction of hydrogen from crude bio-oil via an integrativeprocess between gasification and current-enhanced catalytic steam reforming[J]. International Journal of Hydrogen Energy,2010,35(2):518-532.
    [9]于海龙,赵翔,周志军,等.氧煤比和煤浆浓度对水煤浆气化影响的数值模拟[J].燃料化学学报,32(4):370-374.
    [10]燕捷,王亦飞,代正华,等.生物质油气化制取合成气模拟研究[J].太阳能学报,2010,11:1379-1384.
    [11]Shen L H, Gao Y, Xiao J. Simulation of hydrogen production from biomass gasification in interconnected fluidized beds[J]. Biomass & Bioenergy,2008,32:120-127.
    [12]吴玉新,张建胜,王明敏,等.用简化PDF模型对气化炉运行特性的分析[J].中国电机工程学报,2007,27(32):57-62.
    [13]王增莹,梁钦锋,张志文,等.撞击气流床气化炉内浓度场和温度场的数值模拟[J].2007,24(10):1329-1333.
    [14]陆强,朱锡锋,李全新,等.生物质快速热解制备液体燃料[J].化学进展,2007.19(8):1064-1071.
    [15]王贤华,陈汉平,贺瑞雪,等.生物质热解油的热解气化实验研究[J].现代化工,2009,29(3):42-45.
    [1]朱锡锋,袁小平.秸秆气化集中供气经济效益分析[J].农村能源,2002,1:28-29.
    [2]吴创之,周肇秋,马隆龙,等.生物质气化发电项目经济性分析[J].太阳能学报,2009,3:368-371.
    [3]郑舜鹏,吴创之,阴秀丽,等.1MW循环流化床谷壳气化发电装置的运行及经济性分析[J].太阳能学报,2000,21(2):140-144.
    [4]樊京春,王永刚,秦世平.生物质能利用技术的经济性分析[J].能源工程,2003,4:19-23.
    [5]樊京春,王永刚,高虎.生物质气化发电的经济效益分析[J].能源工程,2004,(1):20-23.
    [6]黄锦涛,王新雷,徐彤.生物质直燃发电经济性及影响因素分析[J].可再生能源,2008,26(2):95-99.
    [7]顾晓山.秸秆焚烧发电项目的技术经济分析[J].可再生能源,2007,25(4):65-67.
    [8]刘刚,沈镭.中国生物质能源的定量评价及地理分布[J].自然资源学报,2007,22(1):9-19.
    [9]袁振宏,吴创之,马隆龙.生物质能利用原理与技术[M].北京:化学工业出版社,2005.
    [10]赵军,王述洋.我国生物质能资源与利用[J].太阳能学报,29(1):90-94.
    [11]周镕基,皮修平.低碳经济背景下农业能源价值评估的实证研究——以湖南为例[J].中国农学通报,2012,28(08):235-239.
    [12]刘钢,黄明皎.秸秆发电厂燃料收集半径与装机规模[J].电力建设,2011,32(3):72-75.
    [13]蔡亚庆,仇焕广,徐志刚.中国各区域秸秆资源可能源化利用的潜力分析[J].自然科学学报,2011,26(10):1637-1646
    [14]李京京,任东明,庄幸.可再生能源资源的系统评价方法及实例[J].自然资源学报,2001,16:373-380.
    [15]王贤华,王德元,陈汉平,等.生物质能资源收集系统研究[J].太阳能学报,2011,32(11):1666-1671.
    [16]刘岗,郝德海,董玉平.生物质秸秆收集成本研究及实证分析[J].2006,2:85-88.
    [17]邢爱华,刘罡,王垚.生物质资源收集过程成本、能耗及环境影响分析[J].过程工程学报,2008,18(2):305-314.
    [18]Jhuma S, Kok S N. Economic and European Union environmental sustainability criteria assesment of bio-oil-based biofuel systems:refinery integration cases[J]. Industrial and Engineering Chemistry Research,2011,50(11):6794-6808.
    [19]Wright M M, Brown R C. Distributed processing of biomass to bio-oil for subsequent production of Fischer-Tropsch liquids[J]. Biofuels, Bioproduct & Biorefining,2008,2: 229-238.
    [20]Hamelinck C N, Faaij A P C, Uil H D, et al. Production of FT transportation fuels from biomass; technical options, process analysis and optimization, and development potential[J]. Energy,2004,29:1743-1771.
    [21]栾超,由长福.两段式生物质气流床气化制费托燃料的技术经济性分析[J].清华大学学报(自然科学版),2011,51(5):681-686.
    [22]Tijmensen J A M, Faaij A P C, Hamelinck C N. Exploration of the possibilities for production of Fischer-Tropsch liquids and power via biomass gasification[J] Biomass & Bioenerg,2002,23:129-152.
    [23]Henrich E, Raffelt K, Stahl R, et al. Clean syngas from bio-oil/char slurries[C]. Proceedings of the Science in Thermal and Chemical Biomass Conversion Conference, Vancouver Island, Canada, August 30-September 2,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700