用户名: 密码: 验证码:
高稳定性YSZ-LSCF双相中空纤维氧分离膜和反应器性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷氧分离膜是一种正在研究的低成本的制氧新技术,其制氧成本比空分法要下降30%以上,特别是与下游涉氧工艺耦合构建膜反应器,更是具有许多潜在的应用。膜反应器应用需要材料同时具有高的氧渗透性能和在氧化性气氛及强还原性气氛下良好的稳定性,现有的透氧膜材料很难同时达到要求。本论文发明了一种具有良好稳定性的膜材料并将其制备成中空纤维膜,利用纤维膜壁薄,单位面积氧渗透速率高,单位体积膜面积大的优点,在透氧膜应用于膜反应器方面取得了突破性进展。
     第一章主要介绍了陶瓷透氧膜的背景,基本原理以及典型应用,同时介绍了中空纤维膜的研究进展。
     第二章率先提出了一种双相复合的陶瓷透氧膜材料体系:Zl0.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.5O3(YSZ-LSCF),并采用相转换/烧结法制备了该双相材料的中空纤维膜。空气中1430℃烧结10h后的YSZ-LSCF中空纤维膜外径为1.82mm,壁厚为0.34mm,膜管具有典型的非对称结构且达到气密。当一根4.46cm长的中空纤维膜管外侧处于空气中,内侧用30ml/min的纯的CO吹扫时,950℃下的透氧速率高达3.8ml cm-2min-1,且在近500的连续测量中保持稳定。当将膜管降至室温并重新升到950℃时,透氧速率保持一致。测量后的膜管无任何相组成以及微结构的变化,表明膜管具有优异的稳定性和抗热震性。在900℃-1000℃温度范围内,膜管内CO氧化的转化率仅与透过O:量/注入CO量比例有关,即仅与反应化学计量比有关,这表明CO在膜管内的氧化反应属于快反应,能达到化学平衡状态。在此基础上采用等温柱塞流模型结合Wagner方程模拟了中空纤维膜的氧渗透行为,该模拟方法可以得到中空纤维膜轴向上任一处的气体组成和氧渗透速率,对评估中空纤维膜的性能具有重要参考意义。
     第三章研究了在YSZ-LSCF中空纤维膜内部不负载催化剂或负载上LSCF粉体作为催化剂,以及不同质量分数的Ru/LSCF作为催化剂时得到的膜反应器用作CH4催化部分氧化的性能。负载Ru (33%wt)/LSCF的YSZ-LSCF中空纤维膜反应器表现出了优异的CH4部分氧化催化性能。制备得到的催化剂厚度约为5μm,估算出的Ru的使用量约为7.6mg/cm2,封接后的YSZ-LSCF中空纤维膜反应器有效长度约为5.77cm。在950℃时,当CH4注入量为超过16ml/min后,该反应器总的透氧速率能高达17.1ml/min,面积归一化之后为7.9ml/min/cm2。继续增加CH4注入量时,透氧速率基本稳定,当CH4注入量升高到31.6ml/min时,注入的CH4/透过的O2接近部分氧化化学计量比2:1时,CH4转化率高达90%以上,CO和H2的选择性分别为100%和93%,合成气的生产速率达到83.8ml/min,且在在600h的连续测量中保持稳定。生成的合成气中H2/CO比例稳定在1.85左右,接近POM的化学计量比2,适合用于F-T反应变为液体燃料。同时生成的合成气中O/C比例大于1,处于Ni基阳极的非积碳区,当用作片状固体氧化物燃料电池(SOFC)的燃料时,即使在很低的电流密度200mA/cm2下,在30h的连续测量中,电池输出电压也能保持稳定。在800h的POM反应后,YSZ-LSCF透氧膜没有任何还原迹象,表现出良好的稳定性,但Ru (33%wt)/LSCF催化剂层存在少量物理性的流失。需要进一步提高催化剂与基体的附着能力。
     第四章研究了在YSZ-LSCF中空纤维膜内部负载Ni/LSCF催化剂得到的膜反应器用作CH4催化部分氧化的性能。当在催化剂浆料中加入Na2SiO4·9H2O并采用水作为分散剂时,Ni/LSCF催化剂层与YSZ-LSCF中空纤维膜的附着强度能得到明显改善,这是因为Na2SiO4·9H2O溶于水后产生的小颗粒的Si溶胶可以起到粘合剂的作用。直接涂敷Ni/LSCF催化剂的YSZ-LSCF中空纤维膜反应器在950℃,CH4注入量:透过02量控制在部分氧化的化学计量比2:1附近时的CH4转化率的衰减速率为4.29%/100h,而改进的添加Na2SiO4·9H2O后涂敷Ni/LSCF催化剂的YSZ-LSCF中空纤维膜反应器在相似的条件下近800h连续测量中的CH4转化率衰减速率仅为9.18%/1000h。后一种膜反应器(长度为8.30cm)在长达800h的测量中膜反应器表现出来非常高而且稳定的CO和H2选择性;CO选择性在95%以上H2选择性在85%以上,尾气中H2/CO的比例在1.75左右,接近CH4部分氧化的产物的化学计量比,有少量的H2被氧化生成了H20。膜反应器的CO,H2的生成速率分别高达32.7ml/min和57.2ml/min。也就是,每分钟能产生89.9ml的合成气,面积归一化后为29.2ml/min/cm2。膜反应器的透氧速率维持在21.7ml/min左右,面积归一化后为7.1ml/min/cm2。证明当使用普通金属Ni作为催化剂也能得到具有良好部分氧化催化性能的膜反应器。
     第五章研究了在YSZ-LSCF中空纤维膜内部负载PdO/LSCF催化剂得到的膜反应器用作CH4催化燃烧的性能。在950℃甲烷流量5.65ml/min条件下,在近200h的连续测量中,甲烷的转化率保持在99.5%以上,CO2选择性在90%以上,氧渗透速率约为4.57ml/min/cm2,且均基本保持稳定。测试后膜管相结构和微观结构无任何变化。说明催化剂负载的YSZ-LSCF双相中空纤维膜管可以用来进行甲烷催化燃烧反应供热和进行随后的CO2捕获。
     第六章研究了一种中空纤维透氧膜的集成方式,将多根中空纤维膜管胚体并排一步烧结成中空纤维膜板。当采用YSZ-La0.8Sr0.2Mn03(LSM)作为试验模型体系时,烧结的中空纤维膜板脖颈处相互连接并共烧到一起的长度超过200μm。强度分析测试表明中空纤维膜板具有比单根中空纤维膜更好的机械性能,而且结合紧密。透氧性能测试表明这种集成方式对膜本身的透氧性能并无影响,得到的中空纤维膜板具有与单根中空纤维膜相近的透氧速率。在此基础上还进一步提出将二维的中空纤维膜板集成成三维的中空纤维膜块的方法并进行了初步尝试。
     第七章总结了本论文的研究工作,并对陶瓷中空纤维氧分离膜反应器的应用前景和主要挑战进行了展望。
The ceramic oxygen-permeable membrane is a new technology being studied, which can reduce the oxygen production cost by more than30%over the present cryogenic distillation process. It has many potential applications, especially when used as membrane reactor coupled with downstream oxygen-consuming reactions. When involving membrane reactor applications, the membrane material need to possess not only high oxygen permeability but also good stability under the oxidizing atmosphere and strong reducing atmosphere. The existing material cannot simultaneously meet these requirements. In this thesis, we have explored a dual-phase composite which shows outstanding stability. When fabricated it into hollow fiber geometry, the oxygen permeation performance can largely enhanced. This is because that the hollow fiber has a thinner wall thickness and thus imposes less resistance to the permeation of oxygen. Besides, the hollow fiber has a small outer diameter, thus a large quantity of membranes can be packed in a module. Based on these advantages, the ceramic oxygen-permeable hollow fiber is promising in membrane reactor applications.
     Chapter1introduces the background and typical applications of ceramic oxygen-permeable membranes. The concepts and theories of oxygen permeation for dense ceramic membranes are reviewed, and the research progress of the hollow fiber membrane is introduced as well.
     In Chapter2, dual phase composite of Zr0.84Y0.16O1.92(YSZ) and La0.8Sr0.2Cr0.5Fe0.5O3(LSCF) are explored for oxygen separation application. The hollow fiber precursor is prepared by phase inversion/sintering technology. After sintering in air at1430℃for10hours, the hollow fiber membrane turns to be gas-tight and shows an asymmetric structure with out diameter of1.82mm, wall thickness of0.34mm. The oxygen permeability of the YSZ-LSCF hollow fiber is measured with its shell side to the ambient air and feed the core side with pure CO. The oxygen permeation flux can reach as high as3.8ml cm-2min-1with a4.46cm-long hollow fiber when CO feed rate was30ml/min at950℃, and remain almost unchanged in more than500h continuous measurements. Almost same value of oxygen pemieation rate was obtained after cooling down to room temperature and then reheating up to950℃, indicating good heat-shock-resistance of the fiber. SEM observation reveals that the500h oxygen permeation test under the stringent conditions did not cause significant change to the microstructure of the membrane. CO oxidation reaction in the membrane mode had a fast kinetics and can be simulated using the plug flow model. The calculated outlet CO and CO2concentration for various CO feed rate are in good agreement with the measured ones, verifying the validity of the simulation method. The simulation makes it possible to determine the axial profiles of CO and CO2concentration and oxygen partial pressure (at the lumen side) and corresponding oxygen permeation rate which are hardly possible to measure experimentally.
     In Chapter3, a partial oxidation of methane (POM) membrane reactor is built using the YSZ-LSCF hollow fiber membrane coated with Ru/LSCF as catalyst. The influence of the weight percentage of Ru in the catalyst to the catalytic activity is studied. When the weight percentage of Ru in the catalyst increased to33%, the membrane reactor shows outstanding POM performances. With a5.77cm-long hollow fiber coated with5μm Ru(33%wt)/LSCF catalyst (-7.6mg Ru/cm2inner surface area), an oxygen permeation flux as high as17.1ml/min (7.9ml/min/cm2) is observed when CH4feed rate reach over16ml/min at950℃. At a higher CH4feed rate of31.6ml/min, the CH4feed rate/oxygen permeation flux ratio becomes near the stoichiometric ratio of the POM reaction. CH4conversion over90%, CO selectivity near100%and H2selectivity over93%can be observed. The formation rate of the syngas (CO+H2) is over83.8ml/min and the H2/CO ratio in the syngas is near1.85, which is suitable for the Fischer-Tropsch synthesis. The membrane reactor gives a stable performance in more than600h continuous measurements. The O/C ratio in the syngas is high than1, which located in the theoretical no carbon deposition area of the Ni-based anode of solid oxide fuel cell (SOFC). So the effluent syngas is a suitable fuel for SOFC. A disk SOFC can stably run on the fuel produced from methane by the membrane reactor even at low current density of200mA/cm2. The output voltage remains almost unchanged in30h measurement. After800h experiment under POM condition, the YSZ-LSCF hollow fiber remains intact but loss of Ru/LSCF catalyst is observed. The adherence of the catalyst to the membrane need to be improved.
     In Chapter4, Ni/LSCF is used as POM catalyst instead of Ru/LSCF since Ru is a noble metal. The influence of the composition of the catalyst slurry to the adherence of the catalyst layer is studied. When Na2SiO4·9H2O is added into the catalyst slurry and H2O is used as solvent, the adherence of the Ni/LSCF catalyst to the YSZ-LSCF hollow fiber membrane can be improved, which is due to the Si sol formed after Na2SiO4·9H2O dissolved in water. The Si sol acts as a binder. The adherence of the Ni/LSCF catalyst layer can significantly affect the POM performance of the YSZ-LSCF catalytic hollow fiber membrane. In long-term stability experiments, the CH4conversion decrease rate is4.29%/100h for catalyst with bad adherence (without Na2SiO4·9H2O) and9.18%/1000h for catalyst with good adherence (with Na2SiO·9H2O), respectively. When catalyst with good adherence is used, a8.30cm-long hollow fiber membrane reactor shows good POM performance, CO selectivity over95%, H2selectivity over92%, H2/CO ratio near1.75. The CO and H2formation rate are32.7ml/min and57.2ml/min respectively and oxygen permeation rate is7.1ml/min/cm2, showing Ni/LSCF is also a promising POM catalyst.
     Chapter5presents a study on CH4combustion membrane reactor which composed of YSZ-LSCF hollow fiber and PdO/LSCF catalyst. At CH4feed rate of5.65ml/min and temperature of950℃, CH4can combust into CO2and H2O in the membrane reactor with CH4conversion over99.5%and CO2selectivity over90%. The oxygen permeation flux is4.57ml/min/cm2. All these data is stable in near200h measurement. The phase composition and microstructure of the used membrane remains almost unchanged. This membrane reactor holds applications in CH4catalytic combustion at low temperature for heat and CO2capture.
     In Chapter6, a new type of hollow fiber membrane integration module is put forward and its perfonnance in oxygen separation is investigated. The dual phase hollow fiber, consisting of Zr0.84Y0.16O1.92(YSZ) and La0.8Sr0.2MnO3-δ(LSM), is fonned by the phase inversion method. Then five neck-by-neck fibers are co-sintered together to form a plate module at1350℃. The perfomiances of the module for oxygen separation have been studied at different temperatures, feed gases and flow rates. An oxygen permeation flux of1.52ml/min is obtained under air/He(100ml/min) gradient at950℃(Plate length:280mm Hollow fiber O.D.:1.76mm Wall thickness:0.24mm). When sweep gas switched from He to CO2, the oxygen permeation flux almost remain unchanged. The hollow fiber membrane plate shows better mechanical performance than one single fiber. Based on this kind of integration way, further experiments have been done on co-sintering several plates to a block.
     Chapter7summarizes the research conducted in this thesis, and presents recommendations for further research.
引文
[1]国家能源科技“十二五”规划2011
    [2]Y. Teraoka, H. M. Zhang, S. Funrukawa, Oxygen permeation through perovskite-type oxides, Chem. Lett.167 (1985) 1743.
    [3]K. Teraoka, T. Nobunaga, N. Yamazoe, Effect of cation substitution on the oxygen semipermeability of perovskite oxides, Chem. Lett. (1988) 503.
    [4]Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura, N. Yamazoe, Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability, Solid State Ionics,48 (1991) 207.
    [5]H. J. M. Bouwmeester, H. Kruidhof, A. J. Burggraaf, P. J. Gellings, Oxygen semipermeability of erbia-stabilized bismuth oxide, Solid State Ionics,53-56 (1992)460.
    [6]L. Qiu, T. H. Lee, L.-M. Liu, Y. L. Yang and A.J. Jacobson, Oxygen permeation studies of SrCo0.8Fe0.2O3-δ, Solid State Ionics,76 (1995) 321.
    [7]Z. Shao, W. Yang, Y. Cong, H. Dong, J. Tong, G. Xiong, Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane, J. Membr. Sci.,172(2000)177.
    [8]C. S. Chen, S. Ran, W. Liu, P. H. Yang, D. K. Peng, H. J. M. Bouwmeester, YBa2Cu3O6+δ as an oxygen separation membrane, Angew. Chem. Int. Ed.40 (2001) 784.
    [9]P. A. Armstrong, D. L. Foster, E. P. Stein, ITM oxygen for gasification. Proceedings of gasification technologies 2004, Washington, D.C.3-6 October 2004
    [10]Jens R. Rostrup-Nielsen Activity of nickel catalysts for steam reforming of hydrocarbons, J. Catal.31 (1973) 173.
    [11]D.J. Wilhelm, D.R. Simbeck, A.D. Karp, R.L. Dickenson, Syngas production for gas-to-liquids applications:technologies, issues and outlook, Fuel Processing Technology 71 (2001) 139.
    [12]A.C. Vosloo, Fischer-Tropsch:a futuristic view, Fuel Processing Technology 71 (2001) 149.
    [13]T. Ashcroft, A. K. Cheetham, J. S. Foord, M. L. H. Green, C. P. Grey, A. J. Murrell, Selective oxidation of methane to synthesis gas using transition metal catalysis, Nature,334 (1990) 319.
    [14]Dissanayake, M. P. Rosynek, K. C. C. Kharas, J. H. Lunsford, Partial oxidation of methane to carbon monoxide and hydrogen over a Ni/Al2O3 catalyst, J. Catal.132 (1991)117.
    [15]Hickman, L. D. Schmidt, Production of syngas by direct catalytic oxidation of methane, Science 259 (1993) 343.
    [16]Slagterm, U. Olsbye, Partial oxidation of methane to synthesis gas using La-M-O catalysts, Appl. Catal. A110 (1994) 99.
    [17]R.H. Jones, A.T. Aschcroft et al., Catalytic conversion of methane to synthesis gas over Europium Iridate, Eu2lr2O7-An in situ study by x-ray diffraction and mass spectrometry, Catal. Lett.8 (1991) 169.
    [18]K. Kuulmori, S. Umeda, et al., Partial oxidation to synthesis gas over rhodium vanadate RI1VO4:redispersion of Rn metal during the reaction, Chem. Soc. Jpn. 65 (1992) 2562.
    [19]P. Torniainen, X. Chu, and L.D. Schmidt, Comparison of monolith-supported metals for the direct oxidation of methane to syngas, J.Catal.146 (1994) 1.
    [20]S.S. Bharadwaj and L.D. Schmidt, Synthesis gas formation by catalytic oxidation of methane in fluidized bed reactors, J. Catal.146 (1994) 11.
    [21]X. H. Liu, X. L. Li, Y. Miao, P. H. CAO, R. S. Hu, Promotion effect of rare earth additives on Ni-based methanation catalysts, J. Natural Gas Chem.4 (1994) 468.
    [22]X. Gao, J.Y. Cheng, X.Y. Fu, H.M. Wang, R.B. Yao, Effect of Y2O3 on the property of NiO/Al2O3 catalyst for partial oxidation of methane, J. Natural Gas Chem.4(1994)453.
    [23]Y.H. Hu and E. Ruckenstein, Trasient kinetic studies of partial oxidation of CH4, J.Catal.158(1996)260.
    [24]K. Otsuka, Y. Wang, E. Sunada, and I. Yamanaka, Direct partial oxidation of methane to synthesis gas by cerium oxide, J.Catal.175 (1998) 152.
    [25]P.T. Ishihara, T. Yamada, T. Akbay, and Y. Takita, Partial oxidation of methane over fuel cell type reactor for simultaneous generation of synthesis gas and electric power, Chem. Eng. Sci.54 (1999) 1535.
    [26]K. Nakagawa, N. Ikenaga, Y.H. Teng, T. Kobayashi, and T. Suzuki, Trasient response of catalyst bed temperature in the pulsed reaction of partial oxidation of methane to synthesis gas over supported rhodium and iridium catalysts, J.Catal. 186(1999)405.
    [27]S. Ozturk, I. Onal, and S. Senkan, Partial oxidation of methane on the SiO2 surface-a quantum chemical study, Ind. Eng. Chem. Res.39 (2000) 250.
    [28]L. Majocchi, G. Groppi, C. Cristiani, P. Forzatti, L. Basini, and A. Guarinoni, Partial oxidation of methane to synthesis gas over Rh-hexaaluminate-based catalysts, Catal. Lett.65 (2000) 49.
    [29]M. Fathi, F. Monnet, Y. Schuurman, A. Holmen, and C. Mirodatos, Reactive oxygen species on platinum gauzes during partial oxidation of methane into synthesis gas, J. Catal.190 (2000) 439.
    [30]U. Balachandran, et al. Dense ceramic membranes for partial oxidation of methane to syngas, Appl. Catal. A:General 133 (1995) 19.
    [31]U. Balatrandran, J. T. Duesk, P. S. Maiya, B. Ma, R. L. Mieville, M. S. Kleefisch, C. A. Udovich, Ceramic membrane reactor for converting methane to syngas, Catal. Today 36 (1997) 265.
    [32]H. J. M. Bouwmeester, Dense ceramic membranes for methane conversion, Catalysis Today 82 (2003) 141.
    [33]S. Chen, et al. Conversion of methane to syngas by a membrane-based oxidation-reforming process, Angew. Chem. Int. Ed.42 (2003) 5196.
    [34]Wang, D. C. Zhu, M. C. Zhan, W. Liu, C. S. Chen, Combustion of Coal-derived CO with membrane-supplied oxygen enabling CO2 Capture, AIChE Journal 53 (2007)2481.
    [35]IEA Greenhouse Gas R&D Programme, Putting carbon back into the ground, 2001, ISBN 1 898373 28 0.
    [36]H. Hoag, Coal-fired power plant to bury issue of emissions, Nature 422 (2003) 7.
    [37]P. M. Haugan, H. Drange, Sequestration of CO2 in the deep ocean by shallow injection, Nature 357 1992 318.
    [38]IEA GHG. Potential improvements in IGCC with CO2 capture. Report PH4/19. Greenhouse Gas R&D Programme, Cheltenham, GL52 7RZ, UK,2003.
    [39]J. Davison, L. Bressan, Coal power plants with CO2 capture:the IGCC option. In: Proceedings of the 2003 gasification technologies conference,12-15 October 2003, San Francisco, USA, www.gasification.org.
    [40]IEA GHG. Improvement in power generation with post-combustion capture of carbon dioxide. Report PH4/33. IEA greenhouse Gas R&D Programme, Cheltenham, UK,2004.
    [41]S.Ready, J. Scherffius, S. Freguia, C. Roberts, Fluor's Econamine FG PlusSM technology-an enhanced amine-based CO2 capture process. In:Proceedings of the second national conference on carbon sequestration, May 5-8 2003. Alexandria, VA, USA:US Department of Energy National Technology Laboratory;2003.
    [42]Y. Yagi, T. Mimura, K. Ishida, R. Yoshiyama, T. Kamino, T. Yonekawa, Improvements of carbon dioxide capture technology from flue gas. In: Greenhouse gas control technologies. Proceedings of the seventh international conference on greenhouse gas control technologies,5-9 September 2004, Vancouver, Canada. Oxford, UK:Elsevier Ltd.; 2005.
    [43]S.Wong, D. Keith, E. Wichert, B. Gunter, T. McCann, Economics of acid gas reinjection:an innovative CO2 storage opportunity. In:Greenhouse gas control technologies. Proceedings of the sixth international conference on greenhouse gas control technologies,1-4 October 2002, Kyoto, Japan. Oxford, UK:Elsevier Ltd.; 2003.
    [44]R. Moberg, D. B. Stewart, D. Stachniak, The IEA Weyburn CO2 monitoring and storage project. In:Greenhouse gas control technologies. Proceedings of the sixth international conference on greenhouse gas control technologies,1-4 October 2002, Kyoto, Japan. Oxford, UK:Elsevier Ltd.; 2003.
    [45]Vattenfall formally commissions pilot plant free of carbon dioxide emissions; available at http://www.industrialinfo.com/showAbstract.jsp7newsitemID-138950.
    [46]J. Davision, Performance and costs of power plants with capture and storage of C02, Energy 32 (2007) 1163.
    [47]M. Simmonds, I. Miracca, K. Gerdes, Techno economic overview of oxyfuel-tech for CO2 capture, BP report,2003.
    [48]NETL, Carbon sequestration project portfolio report, http://www.netl.doe.gov/publications/carbon seq/refshelf.html.
    [49]T. Griffin, S. G. Sundkvist, K. Asen, T. Bruun, Advanced zero emissions gas turbine power plant, J. Eng. Gas Turb. Power 127 (2005) 81.
    [50]Yantovski, J. Gorski, B. Smyth, J. ten Elshof, zero-eission fuel-fired power plants with ion transport membrane, Energy 29 (2004) 2077.
    [51]J. M. Ruan, H. Kobayash, T. Niioka, Y. G. Ju, Combined effects of nongray radiation and pressure on premixed CH4/O2/CO2 flames, Combustion and flame 124(2001)225.
    [52]R. F. Strom, How stealth combustion losses lower plant efficiency, Power 149 (2005) 62.
    [53]H. Hosoda, T. Hirama, N. Azuma, K. Kuramoto, J. Hayashi, T. Chiba, NOx and N2O emission in bubbling fluidized-bed coal combustion with oxygen and recycled flue gas:Macroscopic characteristics of their formation and reduction, Energy Fuels 12(1998)102.
    [54]J. Nowotny, J.B. Wagner, jr., Influence of the surface on the equilibration kinetics of nonstoichiometric oxides, Oxid. Met.15 (1981) 169.
    [55]Z. Adamczyk, J. Nowotny, Effect of the surface on gas/solid equilibration kinetics on nonstoichiometric compounds, Solid State Phenom.-Diffusion and Defect Data,15&16 (1991) 285.
    [56]S. Carter, A. Selcuk, R.J. Chater, J. Kajda, J.A. Kilner and B.C.H. Steele, Oxygen transport in selected nonstoichiometric perovskite-type oxides, Solid State Ionics 53-56(1992)597.
    [57]Y. Teraoka, T. Nobunaga, N. Yamazoe, Effect of cation substitution on the oxygen semipermeability of perovskite oxides, Chem. Lett. (1988) 503.
    [58]Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura, N. Yamazoe, Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability, Solid State Ionics 48 (1991) 207.
    [59]Y. Teraoka, H. M. Zhang, K. Okamoto, N. Yamazoe, Mixed ionic-electronic conductivity of La1-xSrxCo1-yFeyO3-δ, Mater. Res. Bull.23 (1988) 51.
    [60]L. Qiu, T.H. Lee, L.-M. Liu, Y.L. Yang and A.J. Jacobson, Oxygen permeation studies of SrCo0.8Fe0.2O3-d, Solid State Ionics 76 (1995) 321
    [61]Z. Shao, W. Yang, Y. Cong, H. Dong, J. Tong, G. Xiong, Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.5O3-δ oxygen membrane, J. Membr. Sci.172(2000) 177.
    [62]L. Qiu, T. H. Lee, L. M. Liu, Y. L. Yang, A. J. Jacobson, Oxygen permeation studies of SrCo0.8Fe0.2O3-δ, Solid State Ionics 76 (1995) 321
    [63]J. Tong, W. Yang, B. Zhu, R. Cai, Investigation of ideal zirconium-doped perovskite-type ceramic membrane materials for oxygen separation, J. Membr. Sci.203 (2002) 175.
    [64]F. Prado, N. Grunbaum, A. Caneiro, A. Manthiram, Effect of La3+ doping on the perovskite-to-brownmillerite transformation in Sr1-xLaxCo0.8Fe0.2O3-δ (0    [65]T. Ishihara, T. Yamada, H. Arikawa, H. Nishiguchi, Y. Takita, Mixed electronicoxide ionic conductivity and oxygen permeating property of Fe-, Co-or Ni doped LaGaO3 perovskite oxide, Solid State Ionics 135 (2000) 631
    [66]W. Yang, H. Wang, X. Zhu, L. Lin, Development and application of oxygen permeable membrane in selective oxidation of light alkanes, Topics Catal.35 (1-2) (2005)155.
    [67]P. Zeng, R. Ran, Z. Chen, W. Zhou, H. Gu, Z. Shao, S. Liu, Efficient stabilization of cubic perovskite SrCoO3-δ by B-site low concentration scandium doping combined with sol-gel synthesis, J. Alloys Compd.455 (2008) 465.
    [68]S.W. Li, Y. Cong, L. Q. Fang, W. Yang, L. W. Lin, J. Meng, Y. F. Ren, Oxygen permeating properties of the mixed conducting membrane without cobalt, Mater. Res. Bull.33 (2) (1998) 183.
    [69]H. Wang, C. Tablet, A. Feldhoff, J. Caro, A cobalt-free oxygen-permeable membrane based on the perovskite-type oxide Ba0.5Sr0.5Zn0.2Fe0.8O3-δ, Adv. Mater. 17(2005)1785.
    [70]X. Zhu, H. Wang, W. Yang, Novel cobalt-free oxygen permeable membrane, Chem. Commun. (2004) 1130
    [71]V. V. Kharton, A. P. Viskup, A. V. Kovalevsky, J. R. Jurado, E. N. Naumovich, A. A. Vecher, J. R. Frade, Oxygen ionic conductivity of Ti-containing strontium ferrite, Solid State Ionics 133 (2000) 57.
    [72]A. F. Sammells, M. Schwartz, R. A. Mackay, T. F. Barton, Catalytic membrane reactors for spontaneous synthesis gas pruduction, Catal. Today,56 (2000) 325.
    [73]M. Schwartz, J. H. White, A.F. Sammells, Catalytic membrane reactor with two component three-dimensional catalysis, World Patent, WO9921649
    [74]T. Ishihara, T. Yamada, H. Arikawa, H. Nishiguchi, Y. Takita, Mixed electronic-oxide ionic conductivity and oxygen permeating property of Fe-, Co-or Ni-doped LaGaO3 perovskite oxide, Solid State Ionics 135 (2000) 631.
    [75]T. Ishihara, Y. Tsuruta, T. Todaka, H. Nishiguchi, Y. Takita, Fe doped LaGaO3 perovskite oxide as an oxygen separating membrane for CH4 partial oxidation, Solid State Ionics 152-153 (2002) 709.
    [76]J. T. Ritchie, J. T. Richardson, Dan Luss, Ceramic Membrane Reactor for Synthesis Gas Production, AIChE. J.47 (2001) 2092
    [77]F.H.B. Mertins, Perovskite-type ceramic membranes, Partial oxidation of methane in a catalytic membrane reactor, Ph.D dissertation, University of Twente, the Netherlands (2005)
    [78]T. J. Mazanec, T. L. Cable, J.G. Frye, jr., Electrocatalytic cells for chemical reaction, Solid State Ionics 53-56(1992) 111.
    [79]V. V. Kharton, A. V. Kovalevsky, A. P. Viskup, F. M. Figueiredo, A. A. Yaremchenko, E. N. Naumovich, F. M. B. Marques, Oxygen permeability of Ce0.8Gd0.2O2-δ-La0.8Sr0.3MnO3-δ composite membranes, J. Electrochem Soc.147 (2000) 2814.
    [80]J. X. Yi, Y. B. Zuo, W. Liu, L. Winnubst, C. S. Chen, Oxygen permeation through a Ce0.8Sm0.2O2-δ-La0.8Sr0.2CrO3-δ membrane dual-phase composite membrane, J. Alloys Comp.408-412 (2006) 1084
    [81]B. Wang, J. X. Yi, L. Winnubst, C. S. Chen, Stability and oxygen permeation behavior of Ce0.8Sm0.2O2-δ-La0.8Sr0.2CrO3-δ composite membrane under large partial pressure gradients, Journal of Membrane Science 280 (2006) 849
    [82]J. J. Liu, T. Liu, W. D. Wang, J. F. Gao, C.S. Chen, Stable Zr0.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.5O3-δ Hollow Fiber Membrane Targeting Chemical Reactor Applications, J. Membrane Sci.389 (2012) 435.
    [83]H. H. Wang, S. Werth, T. Schiestel, J. Caro, Perovskite hollow fiber membranes for the production of oxygen-enriched air, Angew. Chem. Int. Ed.44 (2005) 6906.
    [84]J. Caro, H. H. Wang, C. Tablet, A. Kleinert, A. Feldhoff, T. Schiestel, M. Kilgus, P, Kolsch, S. Werth, Evaluation of perovskites in hollow fiber and disk geometry in catalytic membrane reactors and in oxygen separations, Catalysis Today 118 (2006) 128.
    [85]A. Thursfield, I. S. Metcalfe, Methane oxidation in a mixed ionic-electronic conducting ceramic hollow fiber reactor module, J Solid State Electrochem 2005.
    [86]A. Kleinert, A. Feldhoff, T. Schiestel, J. Caro, Novel hollow fiber membrane reactor for the partial oxidation of methane, Catalysis Today 118 (2006) 44.
    [87]H. H. Wang, C. Tablet, T. Schiestel, J. Caro, Hollow fiber membrane reactors for the oxidative activation of ethane, Catalysis Today 118 (2006) 98.
    [88]X.Y. Tan, K. Li, A. Thursfield, I. S. Metcalfe, Oxyfuel combustion using a catalytic ceramic membrane reactor, Catalysis Today 131 (2008) 292
    [89]H. H. Wang, C. Tablet, T. Schiestel, S. Werth, J. Caro, Partial oxidation of methane to syngas in a perovskite hollow fiber membrane reactor, Catalysis Communications 7 (2006) 907.
    [90]X. Y. Tan, K. Li, Oxidative coupling of methane in a perovskite hollow fiber membrane reactor, Ind. Eng. Chem. Res.45 (2006) 142.
    [91]H. Q. Jiang, H. H. Wang, F. Y. Liang, S. Werth, T. Schiestel, J. Caro, Direct decomposition of nitrous oxide to nitrogen by in situ oxygen removal with a perovskite membrane, Angew. Chem. Int. Ed 48 (2009) 1.
    [92]X. Y. Tan, Z. B. Pang, K. Li, Oxygen production using La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF) perovskite hollow fiber membrane modules, Journal of Membrane Science 310 (2008) 550.
    [1]F.H.B. Mertins, Perovskite-type ceramic membranes, Partial oxidation of methane in a catalytic membrane reactor, Ph.D dissertation, University of Twente, the Netherlands (2005)
    [2]U. Balachandran, et al. Dense ceramic membranes for partial oxidation of methane to syngas, Appl. Catal. A:General 133 (1995) 19.
    [3]U. Balatrandran, J. T. Duesk, P. S. Maiya, B. Ma, R. L. Mieville, M. S. Kleefisch, C. A. Udovich, Ceramic membrane reactor for converting methane to syngas, Catal. Today 36 (1997) 265.
    [4]H. J. M. Bouwmeester, Dense ceramic membranes for methane conversion, Catalysis Today 82 (2003) 141.
    [5]Zongping Shao, Hui Dong, Guoxing Xiong, You Cong, Weishen Yang, Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion, Journal of Membrane Science 183 (2001) 181.
    [6]V.V. Khartona, A.L. Shaulaa, F.M.M. Snijkersc, J.F.C. Cooymansc, J.J. Luytenc, A.A. Yaremchenkoa, A.A. Valented, E.V. Tsipisa, J.R. Fradea, F.M.B. Marquesa, J. Rochad, Processing, stability and oxygen permeability of Sr(Fe, Al)O3-based ceramic membranes, Journal of Membrane Science,252 (2005) 215.
    [7]Y. Zenga, Y.S. Lina, S.L. Swartzb, Perovskite-type ceramic membrane:synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane, Journal of Membrane Science,150 (1998) 87.
    [8]B. Wang, M. C. Zhan, D. C. Zhu, C. S. Chen, Oxygen permeation and stability of Zr0.8Y0.2O0.9-La0.8Sr0.2CrO3-δ dual-phase composite, J Solid State Electrochem.86 (2006) 625.
    [9]Weishen Yang, Haihui Wang, Xuefeng Zhu and Liwu Lin, Development and Application of Oxygen Permeable Membrane in Selective Oxidation of Light Alkanes, Topics in Catalysis,35 (2005) 155.
    [10]H. Q. Jiang, H. H. Wang, F. Y. Liang, S. Werth, T. Schiestel, J. Caro, Direct decomposition of nitrous oxide to nitrogen by in situ oxygen removal with a perovskite membrane, Angew. Chem. Int. Ed 48 (2009) 1.
    [11]Y. Teraoka, T, Nobunaga, N. Yamazoe, Effect of cation substitution on the oxygen semipermeability of perovskite oxides, Chem. Lett. (1988) 503.
    [12]Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura, N. Yamazoe, Influence of constituent metal cations in substituted LaCo03 on mixed conductivity and oxygen permeability, Solid State Ionics 48 (1991) 207.
    [13]Y. Teraoka, H. M. Zhang, K. Okamoto, N. Yamazoe, Mixed ionic-electronic conductivity of La1-xSrxCo1-yFeyO3-δ, Mater. Res. Bull.23 (1988) 51.
    [14]L. Qiu, T.H. Lee, L.-M. Liu, Y.L. Yang and A.J. Jacobson, Oxygen permeation studies of SrCo0.8Fe0.2O3-d, Solid State Ionics 76 (1995) 321
    [15]Z. Shao, W. Yang, Y. Cong, H. Dong, J. Tong, G. Xiong, Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane, J. Membr. Sci.172 (2000) 177.
    [16]B.Wang, D. C. Zhu, M. C. Zhan, W. Liu, C. S. Chen, Combustion of Coal-derived CO with membrane-supplied oxygen enabling CO2 Capture, AIChE Journal 53 (2007)2481.
    [17]J. X. Yi, Y. B. Zuo, W. Liu, L. Winnubst, C. S. Chen, Oxygen permeation through a Ce0.8Sm0.2O2-δ-La0.8Sr0.2CrO3-δ membrane dual-phase composite membrane, J. Alloys Comp.408-412 (2006) 1084
    [18]B. Wang, J. X. Yi, L. Winnubst, C. S. Chen, Stability and oxygen permeation behavior of Ce0.8Sm0.2O2-δ-La0.8Sr0.2CrO3-δ composite membrane under large partial pressure gradients, Journal of Membrane Science 280 (2006) 849
    [19]H.Takamura, H. Sugai, M. Watanabe, T. Kasahara, A. Kamegawa, M. Okada, Oxygen permeation properties and surface modification of acceptor-doped CeO2/MnFe2O4 composites, J. Elecrtoceram.17 (2006) 741.
    [20]W. Li, J. J. Liu, C. S. Chen, Hollow fiber membrane of Yttrium-stabilized zirconia and strontium-doped lanthanum manganite dual-phase composite for oxygen separation, J. Membr. Sci.340 (2009) 266.
    [21]S. K. Lau and S. C. Singhal, High temperature interactions at solid oxide fuel cell interfaces, Proc. Corrosion 85 (1985) 1.
    [22]A. Grosjean, O. Sanseau, V. Radmilovic, A. Thorel, Reactivity and diffusion between La0.8Sr0.2MnO3 and ZrO2 at interfaces in SOFC cores by TEM analyses on FIB samples, Solid State Ionics 177 (2006) 1977.
    [23]K. Wiik, C. R. Schmidt, S. Faaland, S. Shamsili, M. A. Einarsrud, T. Grande, Reactions between strontium-substituted lanthanum manganite and yttria-stabilized zirconia:I, powder samples,J Am Ceram Soc. 82 (1999)721.
    [24]C. A. Smolders, A. J. Reuvers, R. M. Boom, I. M. Wienk, Microstructures in phase-inversion membranes. Part 1. Formation of macroviods, Journal of Membrane Science,73 (1992) 259-275
    [25]W. Li, T. F. Tian, F. Y. Shi, Y. S. Wang, C. S. Chen, Ce0.8Sm0.2O2-δ-La0.8Sr0.2MnO3-δ dual-phase composite hollow fiber membrane for oxygen separation, Industrial & Engineering Chemistry Research,2009 (48) 5789.
    [26]S. W. Tao, J. T. S. Irvine, Catalytic properties of the perovskite oxide La0.75Sr0.25Cr0.5Fe0.5O3-δ in relation to its potential as a solid oxide fuel cell anode material, Chem. Mater.16 (2004) 4116.
    [27]B. Wang, D. C. Zhu, M. C. Zhan, W. Liu, C. S. Chen, Combustion of coal-derived CO with membrane-supplied oxygen enabling CO2 capture, AIChE Journal 53 (2007)2481.
    [28]H. H. Wang, A. Feldhoff, J. Caro, T. Schiestel, S. Werth, Oxygen selective ceramic hollow fiber membranes for partial oxidation of methane, AIChE Journal 55(2009)2657.
    [1]U. Balachandran, et al. Dense ceramic membranes for partial oxidation of methane to syngas, Appl. Catal. A:General 133 (1995) 19.
    [2]U. Balatrandran, J. T. Duesk, P. S. Maiya, B. Ma, R. L. Mieville, M. S. Kleefisch, C. A. Udovich, Ceramic membrane reactor for converting methane to syngas, Catal. Today 36 (1997) 265.
    [3]H. J. M. Bouwmeester, Dense ceramic membranes for methane conversion, Catalysis Today 82 (2003) 141.
    [4]S. Chen, et al. Conversion of methane to syngas by a membrane-based oxidation-reforming process, Angew. Chem. Int. Ed.42 (2003) 5196.
    [5]T. Ostrowski, A. Giroir-Fendler, C. Mirodatos, L. Mleczko, Comparative study of the catalytic partial oxidation of methane to synthesis gas in fixed-bed and fluidized-bed membrane reactors:Part I:A modeling approach, Catal. Today 40 (1998) 181.
    [6]W. Feng, P. Ji, D. Zheng, T. Tan, J. de Swaan Arons, Simulation and thermodynamic analysis of an integrated process with a two-membrane catalytic partial oxidation (CPO) reactor for producing pure hydrogen, Ind. Eng. Chem. Res.44(2005)9191.
    [7]Y.H. Hu, E. Ruckenstein, Catalyst temperature oscillations during partial oxidation of methane, Ind. Eng. Chem. Res.37 (1998) 2333.
    [8]K.-J. Marschall, L. Mleczko, Short-contact-time reactor for catalytic partial oxidation of methane, Ind. Eng. Chem. Res.38 (1999) 1813.
    [9]Y. Ji, W. Li, H. Xu, Y. Chen, Catalytic partial oxidation of methane to synthesis gas over Ni/[gamma]-Al2O3 catalyst in a fluidized-bed, Appl. Catal. A 213 (2001) 25.
    [10]Y. Ji, W. Li, H. Xu, Y. Chen, A study of carbon deposition on catalysts during the catalytic partial oxidation of methane to syngas in a fluidized bed, React. Kinet. Catal. Lett.73(2001)27.
    [11]H.Y. Wang, E. Ruckenstein, Conversions of methane to synthesis gas over Co/y-A12O3 by CO2 and/or O2,Catal. Lett.75 (2001) 13.
    [12]S. Tang, J. Lin, K.L. Tan, Partial oxidation of methane to synthesis gas over a-Al 2O3-supported bimetallic Pt-Co catalysts, Catal. Lett.59 (1999) 129.
    [13]L. Mo, X. Zheng, C. Huang, J. Fei, A Novel Catalyst Pt/CoAl2O4/Al2O3 for Combination CO2 Reforming and Partial Oxidation of CH4, Catal. Lett.80 (2002) 165.
    [14]H.-a. Nishimoto, K. Nakagawa, N.-o. Ikenaga, M. Nishitani-Gamo, T. Ando, T. Suzuki, Partial oxidation of methane to synthesis gas over oxidized diamond catalysts, Appl. Catal. A 264 (2004) 65.
    [15]M.S. Va'zquez, A.R. Rojas, V. Collins-Marti'nez, A.L. Ortiz, Study of the stabilizing effect of Al2O3 and ZrO2 in mixed metal oxides of Cu for hydrogen production through REDOX cycles, Catal. Today 107/108 (2005) 831.
    [16]C.T. Au, H.Y. Wang, H.L. Wan, Methane Dissociation and Syngas Formation on Ru, Os, Rh, Ir, Pd, Pt, Cu, Ag, and Au:A Theoretical Study, J. Catal.158 (1996) 343.
    [17]A. Slagtern, H.M Swaan, U. Olsbye, I.M. Dahl, C. Mirodatos, Catalytic partial oxidation of methane over Ni-, Co-and Fe-based catalysts, Catal. Today 46 (1998) 107.
    [18]B. Li, K. Maruyama, M. Nurunnabi, K. Kunimori, K. Tomishige, Temperature profiles of alumina-supported noble metal catalysts in autothermal reforming of methane, Appl. Catal. A 275 (2004) 157.
    [19]P.D.F. Vernon, M.L.H. Green, A.K. Cheetham, A.T. Ashcroft, Partial oxidation of methane to synthesis gas, Catal. Lett.6 (1990) 181.
    [20]P.D.F. Vernon, M.L.H. Green, A.K. Cheetham, A.T. Ashcroft, Partial oxidation of methane to synthesis gas, and carbon dioxide as an oxidising agent for methane conversion, Catal. Today 13 (1992) 417.
    [21]J.B. Claridge, M.L.H. Green, S.C. Tsang, A.P.E. York, A.T. Ashcroft, P.D. Battle, A study of carbon deposition on catalysts during the partial oxidation of methane to synthesis gas, Catal. Lett.22 (1993) 299.
    [22]Y. Boucouvalas, Z. Zhang, X.E. Verykios, Partial oxidation of methane to synthesis gas via the direct reaction scheme over Ru/TiO2 catalyst, Catal. Lett.40 (1996) 189.
    [23]J. Boucouvalas, A.M. Efstathiou, Z.L. Zhang, X.E. Verykios, Stud. Surf. Sci. Catal.107(1997)435.
    [24]I. Balient, A. Miyazaki, K.-i. Aika, The relevance of Ru nanoparticles morphology and oxidation state to the partial oxidation of methane, J. Catal.220 (2003) 74.
    [25]R. Lanza, P. Canu, Partial oxidation of methane over supported ruthenium catalysts, Appl. Catal. A 325 (2007) 57.
    [26]S. Tang, J. Lin, K.L. Tan, Pulse-MS studies on CH4/CD4 isotope effect in the partial oxidation of methane to syngas over Pt/α-Al2O3, Catal. Lett.55 (1998) 83.
    [27]L.V. Mattos, E.R. de Oliveira, P.D. Resende, F.B. Noronha, F.B. Passos, Partial oxidation of methane on Pt/Ce-ZrO2 catalysts, Catal. Today 77 (2002) 245.
    [28]P. Pantu, G.R. Gavalas, Methane partial oxidation on Pt/CeO2 and Pt/Al2O3 catalysts, Appl. Catal. A 223 (2002) 253.
    [29]A. Beretta, P. Forzatti, Partial oxidation of light paraffins to synthesis gas in short contact-time reactors, Chem. Eng. J.99 (2004) 219.
    [30]P.P. Silva, F. de, A. Silva, A.G. Lobo, H.P. de Souza, F.B. Passos, C.E. Hori, L.V. Mattos, F.B. Noronha, Synthesis gas production by partial oxidation of methane on Pt/Al2O3, Pt/Ce-ZrO2 and Pt/Ce-ZrO2/Al2O3 catalysts, Stud. Surf. Sci. Catal. 147(2004) 157.
    [31]S. Rabe, T.-B. Troung, F. Vogel, Low temperature catalytic partial oxidation of methane for gas-to-liquids applications, Appl. Catal. A 292 (2005) 177.
    [32]P.P. Silva, F.A. Silva, L.S. Portela, L.V. Mattos, F.B. Noronha, C.E. Hori, Effect of Ce/Zr ratio on the performance of Pt/CeZrO2/Al2O3 catalysts for methane partial oxidation, Catal. Today 107/108 (2005) 734.
    [33]A. Bourane, C. Cao, K.L. Hohn, In situ infrared study of the catalytic ignition of methane on Pt/Al2O3, Appl. Catal. A 302 (2006) 224.
    [34]F.B. Passos, E.R. Oliveira, L.V. Mattos, F.B. Noronha, Effect of the support on the mechanism of partial oxidation of methane on platinum catalysts, Catal. Lett. 110(2006)161.
    [35]Y.H. Huang, R.I. Dass, Z.L. Xing, J.B. Goodenough, Double perovskites as anode materials for solid-oxide fuel cells, Science 312 (2006) 254-257.
    [36]B.C.H. Steele, I. Kelly, H. Middleton, R. Rudkin, Oxidation of methane in solid state electrochemical reactors, Solid State Ionics 28-30 [part 2] (1988) 1547-1552.
    [37]J.H. Koh, Y.S. Yoo, J.W. Park, H.C. Lim, Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel, Solid State Ionics 149 (2002) 157-166.
    [38]T. Kim, G. Liu, M. Boaro, J.M. Vohs, R.J. Gorte, O.H. Al-Madhi, B.O. Dabbousi, A study of carbon formation and prevention in hydrocarbon-fueled SOFC, Journal of Power Sources 155 (2006) 231-238.
    [39]S. Mclntosh, R.J. Gorte, Direct hydrocarbon solid oxide fuel cells, Chem. Rev. 104(2004)4845-4865,
    [40]Z.L. Zhan, S.A. Barnett, An octane-fueled solid oxide fuel cell, Science 308 (2005) 844-847.
    [41]P. Vernoux, M. Guillodo, J. Fouletier, A. Hammou, Alternative anode material for gradual methane reforming in solid oxide fuel cells, Solid State Ionics 135 (2000) 425-431.
    [42]E.P. Murray, T. Tsai, S.A. Barnett, A direct-methane fuel cell with a ceria-based anode, Nature 400 (1999) 649-651.
    [43]S.W. Tao, J.T.S. Irvine, A redox-stable efficient anode for solid-oxide fuel cells, Nature materials 2 (2003) 320-323.
    [44]J.-H. Koh, B.-S. Kang, H.C. Lim, Y.-S. Yoo, Thermodynamic analysis of carbon deposition and electrochemical oxidation of methane for SOFC anodes, Electrochem. Solid-State Lett.4 (2001) A12-A15
    [45]J.P. Trembly, R.S. Gemmen, D.J. Bayless, The effect of coal syngas containing ASH3 on the performance of SOFCs:Investigations into the effect of operational temperature, current density and ASH3 concentration, Journal of Power Sources 171 (2007)818-825
    [46]E. Achenbach, E. Riensche, Methane/steam reforming kinetics for solid oxide fuel cells, Journal of Power Sources 52 (1994) 283-288
    [47]A.L. Dicks, K.D. Pointon, A. Siddle, Intrinsic reaction kinetics of methane steam reforming on a nickel/zirconia anode, Journal of Power Sources 86 (2000) 523-530
    [48]N. Laosiripojana, S. Assabumrungrat, Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ:The possible use of these fuels in internal reforming SOFC, Journal of Power Sources 163 (2007) 943-951
    [49]S. Hosseini, S.M. Jafarian, G. Karimi, Performance analysis of a tubular solid oxide fuel cell with an indirect internal reformer, International Journal of Energy Research 35 (2011) 259-270
    [50]P. Aguiar, D. Chadwick, L. Kershenbaum, Effect of methane slippage on an indirect internal reforming solid oxide fuel cell, Chemical Engineering Science 57 (2003) 1665-1677
    [51]P.-W. Li, M.K. Chyu, Simulation of the chemical/electrochemical reactions and heat/mass transfer for a tubular SOFC in a stack, Journal of Power Sources 124 (2003) 487-498
    [52]S. W. Tao, J. T. S. Irvine, Catalytic properties of the perovskite oxide La0.75Sr0.25Cr0.5Fe0.5O3-δ in relation to its potential as a solid oxide fuel cell anode material, Chem. Mater.16 (2004) 4116.
    [1]K. Huszar, G. Racz, G. Szekely, Acta Chim. Acad. Sci. Hung.70 (1971) 287.
    [2]G.R. Gavalas, C. Phichitkul, G.E. Voecks, Structure and activity of NiO/[alpha]-A12O3 and NiO/ZrO2 calcined at high temperatures::Ⅰ. Structure, J. Catal.88 (1984) 54.
    [3]G.R. Gavalas, C. Phichitkul, G.E. Voecks, Structure and activity of NiO/falpha]-Al2O3 and NiO/ZrO2 calcined at high temperatures::Ⅱ. Activity in the fuel-rich oxidation of methane, J. Catal.88 (1984) 65.
    [4]D. Dissanayake, M.P. Rosynek, K.C.C. Kharas, J.H. Lunsford, Partial oxidation of methane to carbon monoxide and hydrogen over a Ni/Al2O3 catalyst, J. Catal. 132(1991)117.
    [5]K.O. Christensen, D. Chen, R. Lodeng, A. Holmen, Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming, Appl. Catal. A 314 (2006) 9.
    [6]F. Arena, F. Frusteri, A. Parmaliana, L. Plyasova, A.N. Shmakov, Effect of calcination on the structure of Ni/MgO catalyst:an X-ray diffraction study, J. Chem. Soc.Faraday Trans.92 (1996) 469.
    [7]N. Nichio, M. Casella, O. Ferretti, M. Gonza'lez, C. Nicot, B. Moraweck, R. Frety, Partial oxidation of methane to synthesis gas. Behaviour of different Ni supported catalysts, Catal. Lett.42 (1996) 65.
    [8]Y. Zhang, W. Chu, W. Cao, C. Luo, X. Wen, K. Zhou, Partial oxidation of methane to syngas over glow discharge plasma treated Ni-Fe/Al2O3 catalyst, Plasma Chem. Plasma Process.20 (2000) 137.
    [9]H. Morioka, Y. Shimizu, M. Sukenobu, K. Ito, E. Tanabe, T. Shishido, K. Takehira, Partial oxidation of methane to synthesis gas over supported Ni catalysts prepared from Ni-Ca/Al-layered double hydroxide, Appl. Catal. A 215 (2001) 11.
    [10]T. Shishido, M. Sukenobu, H. Morioka, M. Kondo, Y. Wang, K. Takaki, K. Takehira, Partial oxidation of methane over Ni/Mg-Al oxide catalysts prepared by solid phase crystallization method from Mg-Al hydrotalcite-like precursors, Appl. Catal. A 223 (2002) 35.
    [11]V.A. Tsipouriari, Z. Zhang, X.E. Verykios, Catalytic Partial Oxidation of Methane to Synthesis Gas over Ni-Based Catalysts::Ⅰ. Catalyst Performance Characteristics, J. Catal.179 (1998) 283.
    [12]V.A. Tsipouriari, X.E. Verykios, J. Catal.179 (1998) 292.
    [13]H. Morioka, Y. Shimizu, M. Sukenobu, K. Ito, E. Tanabe, T. Shishido, K. Takehira, Partial oxidation of methane to synthesis gas over supported Ni catalysts prepared from Ni-Ca/Al-layered double hydroxide, Appl. Catal. A 215 (2001)11.
    [14]S. Tang, J. Lin, K.L. Tan, Partial oxidation of methane to syngas over Ni/MgO, Ni/CaO and Ni/CeO2, Catal. Lett.51 (1998) 169.
    [15]V.R. Choudhary, A.M. Rajput, B. Prabhakar, Low temperature oxidative conversion of methane to syngas over NiO-CaO catalyst, Catal. Lett.15 (1992) 363.
    [16]A. Shamsi, Partial oxidation and dry reforming of methane over Ca/Ni/K (Na) catalysts, Catal. Lett.109 (2006) 189.
    [17]V.R. Choudhary, A.M. Rajput, A.S. Maraman, NiO-Alkaline Earth Oxide Catalysts for Oxidative Methane-to-Syngas Conversion:Influence of Alkaline Earth Oxide on the Surface Properties and Temperature-Programmed Reduction/Reaction by H2 and Methane, J. Catal.178 (1998) 576.
    [18]V.R. Choudhary, A.S. Mamman, S.D. Sansare, Angew. Chem. Int. Ed. Engl.31 (1992) 1189.
    [19]Y.H. Hu, E. Ruckenstein, Isotopic study of the reaction of methane with the lattice oxygen of a NiO/MgO solid solution, Catal. Lett.57 (1999) 167.
    [20]E. Ruckenstein, Y.H. Hu, Methane partial oxidation overNiO/MgO solid solution catalysts, Appl. Catal. A 183 (1999) 85.
    [21]J. Barbero, J.M. Campos-Martin, J.L.G. Fierro, P.L. Arias, Catal. Lett.87 (2003) 211.
    [22]J. Requies, M.A. Cabrero, V.L. Barrio, J.F. Cambra, P.L. Arias, M. Ojeda, J.L.G. Fierro, Support effect in supported Ni catalysts on their performance for methane partial oxidation, Appl. Catal. A 289 (2005) 214.
    [23]C.T. Au, H.Y. Wang, Pulse study of methane partial oxidation to syngas over SiO2-supported nickel catalysts, Catal. Lett.41 (1996) 159.
    [24]R.S. Drago, K. Jurczyk, A. Bhattacharyya, J. Masin, Partial oxidation of methane to syngas using NiO-supported catalysts, Catal. Lett.51 (1998) 177.
    [25]Y.H. Hu, E. Ruckenstein, Isotopic GCMS study of the mechanism of methane partial oxidation to synthesis gas, J. Phys. Chem. A 102 (1998) 10568.
    [26]Y.H. Hu, E. Ruckenstein, Broadened pulse-step change-isotopic sharp pulse analysis of the mechanism of methane partial oxidation to synthesis gas, J. Phys. Chem. B 102(1998)230.
    [27]S. Fukada, N. Nakamura, J. Monden, Effects of temperature, oxygen-to-methane molar ratio and superficial gas velocity on partial oxidation of methane for hydrogen production, Int. J. Hydrogen Energy 29 (2004) 619.
    [28]J. Li, G. Lu, Appl. Catal. A 273 (2004) 163.
    [29]S. Takenaka, H. Umebayashi, E. Tanabe, H. Matsune, M. Kishida, Specific performance of silica-coated Ni catalysts for the partial oxidation of methane to synthesis gas, J. Catal.245 (2007) 392.
    [30]A.M. Diskin, R.H. Cunningham, R.M. Ormerod, The oxidative chemistry of methane over supported nickel catalysts, Catal. Today 46 (1998) 147.
    [31]C.T. Au, Y.H. Hu, H.L. Wan, Methane activation over unsupported and La2O3-supported copper and nickel catalysts, Catal. Lett.36 (1996) 159.
    [32]Y.H. Hu, E. Ruckenstein, Pulse-MS study of the partial oxidation of methane over Ni/La2O3 catalyst, Catal. Lett.34 (1995) 41.
    [33]Y.H. Hu, E. Ruckenstein, J. Catal.158 (1996) 260.
    [34]S.L. Gonzales-Cortaas, J. Orozco, D. Moronta, B. Fontal, F.E. Imbert, React. Kinet. Catal. Lett.69 (2000) 145.
    [35]K. Nakagawa, N.-o. Ikenaga, T. Kobayashi, T. Suzuki, Catal. Today 64 (2001) 31.
    [36]Q.G. Yan, W.Z. Weng, H.L. Wan, H. Toghiani, R.K. Toghiani, C.U. Pittman Jr., Activation of methane to syngas over a Ni/TiO2 catalyst, Appl. Catal. A 239 (2003)43.
    [37]T. Wu, Q. Yan, H. Wan, J. Mol. Catal. A:Chem.226 (2005) 41.
    [38]Y. Zhang, Z. Li, X. Wen, Y. Liu, Partial oxidation of methane over Ni/Ce-Ti-O catalysts, Chem. Eng. J.121 (2006) 115.
    [39]V.R. Choudhary, V.H. Rane, A.M. Rajput, Beneficial effects of cobalt addition to Ni-catalysts for oxidative conversion of methane to syngas, Appl. Catal. A 162 (1997)235.
    [40]S. Pengpanich, V. Meeyoo, T. Rirksomboon, Methane partial oxidation over Ni/CeO2-ZrO2 mixed oxide solid solution catalysts, Catal. Today 93-95 (2004) 95.
    [41]T. Alexander Nijhuis, Annemarie E. W. Beersa, Theo Vergunst, Ingrid Hoek, Freek Kapteijn, Jacob A. Moulijna, Preparation of monolithic catalysts, Catalysis Reviews,43(2001)345.
    [1]曹月华编译,日本天然气工业发展现状,天然气地球科学,8(5-6)(1997)64
    [2]吕宏缨,胡瑞生,沈岳年等,稀土型高温燃烧催化剂在天然气发电中的应用,稀士,22(3)(2001)63.
    [3]M. Lyubovsky, L. Pfefferle, Complete methane oxidation over Pd catalyst supported on a-aluminm:Influence of temperature and oxygen pressure on the catalyst activity, Catal. Today 47 (1999) 29.
    [4]R. J. Farrauto, J. K. Lampert, M. C. Hobson, Thermal decomposition and reformation of PdO catalysts; support effects, Appl. Catal. B 6(3) (1995) 263.
    [5]R. Butch, E. J. Urbano, Investigation of the active state of supported palladium catalysts in the combustion of methane, Appl. Catal. A 124 (1995) 121.
    [6]M. Lyubovsky, L. Pfefferle, Methane combustion over then-alumina supported Pd catalyst:Activity of the mixed Pd/PdO state, Appl. Catal. A 173 (1998) 107.
    [7]A. K. Datye, J. Bravo, T. R. Nelson, Catalyst microstracture and methane oxidation reactivity during the Pd^PdO transformation on alumina supports, Appl. Catal. A 198 (2000) 179.
    [1]W, Li, J. J. Liu, C. S. Chen, Hollow fiber membrane of Yttrium-stabilized zirconia and strontium-doped lanthanum manganite dual-phase composite for oxygen separation, J. Membr. Sci.340 (2009) 266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700