用户名: 密码: 验证码:
原生晕地球化学异常分析及深部盲矿预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜绿山铜铁矿床是长江中下游铜铁多金属成矿带典型的接触交代矽卡岩型矿床之一,但经四十余年的开采,资源己是中度危机,寻找接替资源,迫在眉睫。矿区面积3.5km~2,存在着大小不等的13个矿体,其中主矿体埋藏深,Ⅲ号矿体在负820米以下,ⅩⅢ号矿体在负1200以下仍没尖灭。通过对矿床成矿规律及地质、物化探异常特征的研究,认为矿床深部及外围仍具找矿潜力。
     论文从地球化学数据异常分析着手,以aiNet网络模型为基础,研发能够在信息量不足或信息缺失情况下,保证数据的完备性以及精确性的数据预处理方法;以分形理论为指导,研发一套符合地球化学元素分布特征,用于求取地球化学元素异常下限并能动态圈定地球化学元素异常浓集分带的数学方法;以独立分量分析理论为基础,研发一套能够在地球化学空间数据体中定量求取地球化学元素组合异常的方法模型。将方法模型应用于铜绿山铜铁矿1:20万水系沉积物测量资料、1:5万水系沉积物测量资料,从异常分析结果来看,效果良好,证明了算法模型的可靠性。
     热液在成矿前的构造空间中迁移、运动,到沉淀析出有用矿物,并富集成矿过程中,往往除在矿体周边可见到围岩蚀变等矿化的宏观找矿标志外,在矿体外围留下有流体活动的微观踪迹-原生晕,应用地球化学原生晕找寻盲矿是有效的找矿方法。论文选取矿区ⅩⅢ号矿体作为研究对象,分析控矿构造与矿体空间特征的关系,蚀变分带与矿体分布的关系,探讨矿床成矿期次与成矿阶段,研究矿区的原生晕地球化学特征,结合矿床形成的地球化学背景、成矿成晕的元素组合特点,分析铜铁矿体和ⅩⅢ号矿体原生晕地球化学特征,确定原生晕指示元素组合。
     采用非线性方法模型研究原生晕地球化学剖面数据特征,整合不确定性找矿信息、深层次提取信息内涵,提取原生晕地球化学单元素异常和组合异常信息,从地球化学异常的角度初步确定找矿远景区。
     系统研究深部地质过程以及成矿作用的空间响应,在明确不同深度段原生晕地球化学指示元素异常的基础上,剖析原生晕分带序列和不同成矿期次形成的矿体晕在空间上的叠加结构和矿致异常的空间分带性,构建三维岩体模型、三维矿体模型、三维原生晕异常模型,叠加分析确定不同成矿深度找矿标志,区别深层成矿与浅层找矿标志之间的耦合关系,实现深部盲矿预测。
     此外,论文针对多尺度地球化学数据处理流程,开展了地球化学数据处理原型系统的设计与实现工作。系统分为数据处理、图件编辑和专家库的设计与实现三部分。地球化学数据处理部分采用VC++与Matlab混合编程的方式实现,图件编辑部分基于MapGIS二次开发设计实现,专家库部分采用VC++设计实现。
     总之,论文以铜绿山铜铁矿为研究区,通过对次生晕地球化学和原生晕地球化学数据应用非线性理论方法的系统研究,结合三维建模技术和构造叠加晕理论方法在铜绿山铜铁矿深部盲矿预测的科研实践中得到了良好效果。
     论文的创新点在于:
     ①基于aiNet网络模型、分形理论和独立分量分析理论的非线性方法能够客观反映地球化学数据的非线性特征和元素间的组合特征,通过在次生晕和原生晕地球化学数据的应用研究,建立了一套适用于地球化学数据分析的、新的技术方法体系;
     ②以往的原生晕地球化学找矿多为定性分析、二维表达,本次给出了一套定量的非线性方法,并制定了基于三维模拟的原生晕地球化学深部盲矿预测工作方案。
Tonglushan Copper-iron (Cu-Fe) Deposit is one of typical contact metasomaticskarn type deposit from Cu-Fe polymetallic metallogenic belt deposits in the middleand lower Yangtze River. But after more than forty years of mining, resources havealready been moderate crisis. So looking for the continued resources is urgent. Thearea of mining areas is3.5Square kilometers and there exist13orebodies which aresmall or big,in which main orebody is deeply buried,Ⅲ-orebody is in negative820mbelow and ⅩⅢ-orebody is in negative below1200, still can't pointed out. Throughthe research on the metallogenic regularity and geological, geophysical andgeochemical abnormal features, it is thought that the deep and periphery of the miningarea remains potential.
     The study of paper begins from abnormal analysis of geochemical data. In thebasis of aiNet network mode,the paper researches the methods of data preprocessing toensure the completeness and accuracy of the data in the case of the inadequacy and lossof information; as the guide With fractal theory,the paper researches mathematicalmethods of calculating the low limit of geochemical anomalies and delineatinggeochemical anomalies concentration zoning dynamically, which is suitable forgeochemical element distribution characteristics; as a foundation with independentcomponent analysis theory (ICA), the paper researches a set of methods model ofextracting quantitatively the geochemical element assemblage anomalies in thegeochemical spatial data volume. These methods model will be used in the1∶200000stream sediment survey data and the1:50000strea m sediment survey data oftonglushan Copper-iron (Cu-Fe) deposit. From the result of anomaly analysis, it isproved that the effect is good and the models are reliable.
     In the construction space before forming minerals in hydrothermal, which transports (migration)、sports、precipitate、exhalation and enrichment,often exceptto see macroscopical signs of wall rock alteration and mineralization in the surroundingof deposits, in the distance for most of the area it left the microscopic trace of ore-fluidactivines-primary halo. With geochemical primary halo,it is an effective prospectingmethod of looking for blind ore. The paper research on primary haloes’s geochemicalof mining area, ⅩⅢ-orebody, as the research object. Through analyzing therelationship between ore-controlling structure amd the space feature of orebody, andthe relationship between alteration zoning and ore body distribution, the paper studieson metallogenic episodes and metallogenic stages of deposits; Combining geochemicalbackground of forming deposits and element combination characteristics ofore-forming and halo-forming, it is studied on the geochemical characteristics ofprimary halo of Cu-Fe orebody and ⅩⅢ-orebody, and determine the primary haloindicator elements combination.
     Using nonlinear model, the paper research on the geochemical profile datacharacteristics of primary halo, the integration of uncertainty prospecting information,extraction deeply of information connotation,and extract the information of singleelement anomalies and the combination abnormal of primary haloes' geochemical.The prospecting potential area is initially defined according to geochemical anomaly
     This paper systematically studies the deep geological process and spatial responseof mineralization, On the basis of clearing the primary halo indicator elementscombination from different depth area, the paper analyzes primary halo zoningsequence and special zonation of stacking structure and anomalies related tomineralization about ore-body halo of different metallogenetic period and stage in thespace, builds the three-dimensional rock mass model,the three dimensional ore bodymodel, the three dimensional primary halo anomaly model,Stacking analysis toidentify prospecting marks of different mineralization depth,difference the couplingrelationship between the deep metallogenic and the shallow prospecting, realizes theprediction of deep blind orebodies.
     In addition, to multi-dimensioned geochemistry data processing flow, the papercarried out the geochemical data processing and the design and realization of itsprototype system. The system can be divided into the three parts: data processsubsystem、map editing and the design and realization of expert database. In the wayof mixing with VC++and Matlab, we realize the geochemicaldata processing; Basedon second development of MapGIS, we complete the map editing; we build the expertdatabase by VC++.
     In short, the paper, with tonglushan Cu-Fe deposit for research area, throughthe secondary haloes' geochemical data and primary haloes' geochemical data and usingnonlinear theory,combining3-d modeling technology and the theory of structuralsuperimposed halo,researches and practices the prediction of the deep blind ore abouttonglushan Cu-Fe deposit and gets a good effect.
     Innovations of the paper rest with:
     In the basis of Nonlinear Method, which is objective reflection of Geochemicaldata of nonlinear characteristics and the combination between the elements, includingaiNet network mode, Fractal theory and independent component analysis theory (ICA).By application of secondary halo and primary halo geochemistry data, finally weestablish a set of applicable to the analysis of the geochemical data and new technologymethod system.
     Previous prospecting in primary haloes' geochemistry always used qualitativeanalysis and2d representation. This time, the article gave a quantitative nonlinearmethod, and made a scheme about the prediction of deep blind orebodies of primaryhaloes' geochemistry based on three-dimensional simulation.
引文
Agterberg F. P,Chung C.F.Geomathematical prediction of sulphur in coal,New Lingan MineArea, Sydney Coalfield[J].Canadian Mining and Metallurgical Bulletin,1973,66(738):85-96.
    Agterberg F.P,Kelly A.M.Geomathematical methods for use in prospecting [J].Canadian MiningJournal,1971,92(5):61-72.
    Agterberg F.P,Qiuming C,Wright D.F.Fractal modelling of mineral deposits[A].InternationalSympsium on the Application of Computers and Operations Research in the MineralIndustries[C].Canada,Montreal:Canadian Institute of Mining Metallurgy and Petroleum,1993,43-55.
    Agterberg F.P.Computer Programs for Exploration[J].Science,1989,245:76-81.
    Agterberg F.P.Multifractal Simulation of Geochemical Map Patterns[J].Journal of ChinaUniversity of Geosciences,2001,12(1):31-39.
    Allais M.,Chung C.F. Methods of appraising economic prospects of mining exploration overlarge territories: Algerian Sahara case study[J]. Management Science.1957,(3):285-345.
    Allegre C.J.Scaling laws and geochemistry distribution[J].EPSL,1995,132(1-4):1-13.
    Andrea Z.C,Salvi F,Chetta S,et al.3D reconstruction of complex geological bodies:Examples from the Alps[J].Computers&Geosciences,2009,35:49-69.
    ARCHER A.R,MAIN C. A.Casino, Yukon—A geochemical discovery of an unglaciatedArizona-type porphyry[A].BOYLER W.Geochemical Exploration, Proceedings of the3rdInternational Geochemical Exploration Symposium[C].Toronto:Canadian Institute of Miningand Metallurgy,1971.67-77.
    Bell A.J,Sejnowski T.J.An information-maximization approach to blind separation and blinddeconvolution[J].Neural Computation,1995,7(6):1004-1034.
    BEUS A. A, GRIGORYAN S.V.Geochemical Exploration Methods for MineralDeposits[M].Wilmette:Applied Publishing Co,1977.287.
    Blenkinsop T.The fractal distribution of gold deposit:two examples from the Zimbabwe ArchaenCraton[A].Barton C C.Fractal in Petroleum Geology and Earth Processes[C].New York andLondon:Plonum Press,1994,247-258.
    Burel G. Blind separation of sources:A nonlinear neural algorithm[J].Neural Network,1992,5:937-947.
    Cardoso J.F.High-order for independent component analysis[J].Neural Computation.1999(1):157-192.
    Carlson C.A.Spatial distribution of ore deposit[J].Geology,1991,19(2):107-110.
    Cheng Q.M,A new model for quantifying anisotropic scale invariance and decomposing ofcomplex patterns[J].Mathematical Geology,2004,36(3):345-360.
    Common P.Independent component analysis,a new concept[J].Signal Processing,1994,36:287-314.
    DARNLEY A.G,CAMERON E M, RICHARDSON K A.The Federal-Provincial UraniumReconnaissance Program[A].Uranium Exploration s75[C].Geological Survey of Canada,Paper,1975,75-26:49-68.
    Dawy Z,Sarkis M,Hagenauer J.FineScale Genetic Mapping Us ing Independent ComponentAnalys is[J].IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY ANDBIOINFORMATICS,2008,5(3):448-460
    De Donatis M.,Jones S.,Pantaloni M.,et al. A national project on three-dimensional geology ofItaly:sheet280-fossombrone in3D[J].Episodes,2002,25(1):29-32.
    Falconer K.J.The Geometry of Fractal Sets[M].Cambridge,New York:Combridge UniversityPress,1985.
    FERGUSON R. B,PRICE V.National Uranium Resource Evaluation (NURE) Program—Hydrogeochemical and stream-sediment reconnaissance in the eastern United States[J].JGeochem Explor,1976,6:103-117.
    Griffiths J. C, Singer D.A.Size Shape and Arrangement of Some Uranium oreBodies[J].American Society of Mechanical Engineers,1973:82-112.
    Harris D.P,Freyman A.J,Barry,G.S.Methodology employed to estimate potential mineral supplyof the Canadian Northwest[J].DeP Energy,Can,Mines Resource,Miner Resource Div MinerInform Bull,1970,105:1-56.
    Harris D.P.A subjective probability appraisal of metal and endowment of North Sonora,Mexico[J].Economic Geology and the Bulletin of the Society of Economic Geologists,1973,68:222-242.
    Harris D.P.Mineral Resources Appraisal-Mineral Endowment,Resources,and Potential Supply:Concepts,Methods,and Cases[M].New York:Oxford University Press,1984,1-455.
    HAWKES H.E,WEBB J.S.Geochemistry in Mineral Exploration[M].New York:Harper&Row,1962.415.
    Houlding S.W.3D Geosciences modeling-computer techniques for geologicalcharacterization[M].New York:Springer-Verlag,1994.
    Hyvarinen S,Karhunen J,Oja E.Independent Component Analys is[M],New York:John Wiley,2001.
    Issam Dagher, Rabih Nachar.Face Recognition Us ing IPCA-ICA Algorithm[J], IEEETRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2006,28(6):996-1000.
    Jutten C, Herault J.Blind separation of sources,Part Ⅰ:An adaptive algorithm based onneuromimatic architecture[J],Signal processing,1991,24(1):1-10.
    Kaufmann O.Martin Th.3D geological modeling over a former natural gas storage in coalmines[A].Proceeding of the32nd International Geological Congress[C],Florence,Italy,2004,Part1:426-427
    Kaufmann O.Martin Th.Reprint of3D geological modeling from boreholes,cross-sections andgeological maps,application over former natural gas storages in coal mines[J].Computers&Geosciences,2009,(35)70-82.
    KOTLYAR B. B.Geochemical exploration in the former Soviet Union[J].Explore,1996,91:1-10.
    Mallet J.L.Discrete modeling for nature objects[J].Mathematical Geology,1997,29(2):199-218.
    Qiuming C,Agterberg F.P,Ballantyne S.B.The separation of geochemical anomalies frombackground by fractal methods[J].Journal of Geochemical Exploration,1994,51:109-130.
    Qiuming C,Agterberg F.P,Bonham-Carter G.F.A spatial analys is method for geochemicalanomaly separation[J].Journal of Geochemical Exploration,1996,56:183-195.
    Sanderson D.J,Roberts S.A.Fractal relationship between vein thickness and gold grade in drillcore from La Codosera,Spain[J].Economic Geology,1994,89:168-173.
    SERGEYEV Ye A.Geochemical Method of Prospecting for Ore Deposits[M].USGS (translationfrom Russian,1950),1941.87.
    Shinji Umeyama,Member,IEEE Computer Society,and Guy Godin, Member.Separation ofDiffuse and Specular Components of Surface Reflection by Use of Polarization and StatisticalAnalys is of Images[J].IEEE TRANSACTIONS ON PATTERN ANALYSIS ANDMACHINE INTELLIGENCE,2004.5,26(5):639-647.
    Singer D.A.Mineral Deposit Densities for Estimating Mineral Resources[J].MathematicalGeosciences,2008,40:33-46.
    Singer D.A.Relative Efficiencies of Square and Triangular Grids in the Search for Elli PticallyShaped Resource Targets[J].Journal of Research of the United States GeologicalSurvey.1975,32:163-167.
    Tan Y,Wang J,Zurada J.Nonlinear blind source separation using a radial basis functionnetwork[J].IEEE Trans.On Neural Networks,2001,12(1):124-134.
    Tanne D.C.,Behrmann J.H.,Dresmann H.,Three dimensional retro-deformation of the LechtalNappe,northern calcareous Alps[J].Journal of Structural Geology,2003,25:737-748.
    Tong L,Li R.W,Soon V.C,Indeterminacy and identifiability of blind identification[J].IEEETrans.On Circuits and Systems,1991,38(5):499-509.
    WANG Xueqiu, XIE Xuejin, CHENG Zhizhong, et al. Delineation of regional geochemicalanomalies penetrating through thick covers in concealed terrains—a case history from theOlympic Dam deposit[J].J Geochem Explor,2000,66:85-97.
    WANG Xueqiu,CHENG Zhizhong,LU Yinxiu,et al.Nanoscale metals in earthgas and mobileforms of metals in overburden in wide-spaced regional exploration for giant ore deposits inoverburden terrains[J].J Geochem Explor,1997,58(1):63-72.
    WANG Xueqiu,LIU Dawen, CHENG Zhizhong, et al.Wide Spaced Geochemical Mappingfor Giant Ore Deposits in Concealed Terrains[C]. Proc30th Int Geol Congr,1997,19127-140.
    WANG Xueqiu. Leaching of mobile forms of metals in overburden: development andapplications [J].J Geochem Explor,1998,61:39-55.
    XIE Xuejin,WANG Xueqiu,XU Li,et al.Orientation study of strategic deep-penetrationgeochemical methods in central Kyzykum desert terrain, Uzbekistan[J].J Geochem Explor,2000,66:135-143.
    ZENIN M.F.The Balikti porphyry-copper deposit in Almalyk[J].Middle Asia GeologicalMaterials,1937,5:39-61(in Russian).
    Zhao P.D,Cheng Q.M,Xia Q.L.Quantitative Prediction for Deep Mineral Exploration[J].Journalof University of Geosciences,2008,19(4):309-318.
    蔡荣太,王延杰.独立分量分析的理论框架[J].软件时空,2007,197-199.
    蔡智富,赵洁.一种新的雷达信号分离技术研究[J].弹箭与制导学报,2009,29(4):230-234.
    陈才扣,黄璞.基于分块独立分量分析的人脸识别[J].中国图象图形学报,2009.9,14(9):1837-1842.
    陈建平,陈勇,曾敏,等.基于数字矿床模型的新疆可可托海3号脉三维定位定量研究[J].地质通报,2008,27(4):551-559.
    陈聆.地球化学矿致异常非线性分析方法研究[D].成都:成都理工大学,2011.
    陈小军,陈昊,等.基于ICA的雷达信号欠定盲分离算法[J].电子与信息学报,2010,32(4):919-924.
    陈勇,陈建平,赵洁,等.赤峰金矿资源定量预测与评价[J].中国地质,2008,35(3):551-556.
    陈毓川,王登红.喜马拉雅期内生成矿作用研究[M].北京:地展出版社,2001.
    陈毓川.当代矿产资源勘查评价的理论与方法[M].北京:地震出版社.1999,1-560.
    陈毓川.矿床成矿系列[J].地学前缘,1994,(3):90-94.
    陈云华,易慧,张强禄.锡铁山铅锌矿床地球化学异常模式及找矿指标[J].矿产与地质,2005,19(6):710-714.
    陈志海,戴勇,郎兆新.缝洞性油藏油井产量变化分形特征及其意义[J].石油勘探与开发,2006,33(1):95-98.
    成秋明,空间模式的广义自相似性分析和矿产资源评价[J].中国地质大学学报,2004,29(6):733-744.
    成秋明,赵鹏大,等.奇异性理论在个旧锡铜矿产资源预测中的应用:成矿弱信息提取和复合信息分解[J].地球科学(中国地质大学学报),2009,34(02):231-242.
    成秋明.成矿过程奇异性与矿床多重分形分布[J].矿物岩石地球化学通报,2008,27(03):298-305.
    成秋明.多维分形理论和地球化学元素分布规律[J].地球科学-中国地质大学学报,2000,25(3):311-318.
    成秋明.多重分形与地质统计学方法用于勘查地球化学异常空间结构和奇异性分析[J].地球科学—中国地质大学学报,2000,26(2):161-166.
    成秋明.非线性成矿预测理论:多重分形奇异性—广义自相似性—分形谱系模型与方法[J].地球科学—中国地质大学学报,2006,31(3):337-348.
    程其襄.实变函数与泛函分析基础[M].北京:高等教育出版社,2001.
    程裕淇,陈毓川,赵一鸣.初论矿床的成矿系列问题[J].中国地质科学院院报,1979,1(l):33-58.
    程裕淇,陈毓川,赵一鸣等.再论矿床的成矿系列问题[J].中国地质科学院报,1983,l(6):1-56.
    池顺都,赵鹏大.应用GIS圈定找矿可行地段和有利地段-以云南元地区大红山群同矿床预测为例[J].地球科学-中国地质大学学报,1998,23(2):25-128.
    邓明国.个旧矿区芦塘坝10号矿群矿床模型研究[D].昆明:昆明理工大学,2005.
    董连科,王晓伟.函数的H-导数和分形动力学[J].高压物理学报,1997,11(1):13-20.
    冯恩民,郭崇慧,张红娟.扩展独立成分分析的若干算法及其应用研究[D].大连:大连理工大学,2008.
    龚庆杰,张德会,韩东星.一种确定地球化学异常下限的简便方法[J].地质地球化学,2001,29(3):215-220.
    郭科,陈聆,等.基于JADE算法的地震资料随机噪声盲分离方法研究[J].地学前缘,2011,18(3):302-309.
    郭科,陈聆,唐菊兴.分型含量梯度法确定地球化学浓集中心的新探索[J].地学前缘,2007,14(5):285-289.
    郭科,陈聆,唐菊兴.复杂地质地貌区地球化学异常识别非线性研究[J].成都理工大学学报(自然科学版),2007,34(6):599-604.
    郭科.复杂地质地貌区多尺度地球化学异常识别的非线性研究[D].成都:成都理工大学,2005.
    韩东显,龚庆杰,等.区域化探数据处理的几种分形方法[J].地质通报2004,23(7):714-719.
    何振亚,刘据,等.基于累积量展开的神经网络盲源分离方法[J].通信学报.1999,20:76-81.
    何振亚,杨绿溪,鲁子奕.非线性Infomax自组织算法的盲源分离机理[J].数据采集与处理.1998,13(4):303-305.
    黄厚辉,蒋友欣,汪宝存.基于人工免疫理论的化探数据降噪方法[J].地质找矿论丛,2007,22(2):149-151.
    霍正权,李宏.参考独立分量分析固定点算法[J].计算机应用研究,2011,28(1):134-136.
    蒋友欣,黄厚辉.基于人工免疫理论的化探数据降噪方法[J].新疆地质,2007,25(1):119-121.
    焦卫东,杨世锡,等.乘性噪声消除的同态变换盲源分离算法[J].浙江大学学报,2006,40(4):281-584.
    李得立.基于免疫算法下的信息融合技术在滑坡预报中的应用[D].成都:成都理工大学,2006.
    李芳芳,肖本林,等.基于改进独立分量分析的湿地变化检测方法[J].计算机应用,2010,30(5):1347-1350
    李惠,李德亮,禹斌,等.辽宁凤城白云金矿床深部盲矿预测的构造叠加晕模型及预测效果[J].地质找矿论丛,2010,25(2):153-156.
    李惠,陕西双王金矿床的原生叠加晕模式[J].桂林工学院学报,2000,20(4):327-333.
    李惠,王支农.河南小秦岭杨砦峪金矿床原生叠加晕模式[J].黄金地质,1997,3(1):55-59.
    李惠,禹斌,李德亮,等.化探深部预测新方法综述[J].矿产勘查,2010,1(2):156-160.
    李惠,张国义,等.构造叠加晕法在预测金矿区深部盲矿中的应用效果[J].物探与化探,2003,27(6):438-440.
    李惠,张国义,高延龙,等.小秦岭金矿集中区深部第二富集带预测的构造叠加晕模型[J].物探与化探,2008,32(5):525-528.
    李惠,张国义,王支农,等.小秦岭石英脉型金矿床的构造叠加晕模式[J].地质与勘探,2004,40(4):51-54.
    李惠,张国义,禹斌,等.构造叠加晕法是危机金矿山寻找接替资源的有效新方法[J].矿产与地质,2005,19(6):683-687.
    李惠,张国义,禹斌,等.构造叠加晕找盲矿法及其在矿山深部找矿效果[J].地学前缘,2010,17(1):287-293.
    李惠,张国义,禹斌.金矿区深部盲矿预测的构造叠加晕模型及找矿效果[M].北京:地质出版社,2006.
    李惠,张文华,等.中国主要类型金矿床的原生晕轴向序列研究及其应用准则[J].地质与勘探,1999,35(1):32-35.
    李惠,郑涛,汤磊,等.山东乳山三甲金矿床的叠加晕模式[J].黄金地质,1998,4(4):1-7.
    李惠.大型、特大型金矿盲矿预测的原生叠加晕模型[M].北京:冶金工业出版社,1998.24-28.
    李清泉.基于混合结构的三维GIS数据模型与空间分析研究[D].武汉:武汉测绘科技大学,1998.
    李庆谋,成秋明.分形奇异(特征)值分解方法与地球物理和地球化学异常重建[J].地球科学—中国地质大学学报,2004,29(l):109-118.
    李庆谋,刘少华.GIS环境下综合处理、解释地球物理与地质、地球化学、遥感等资料的组件(com)包与应用实例[J].地球物理学进展,2006,21(1):194-201.
    李舜酩,杨涛.基于峭度的转子振动信号盲分离[J].应用力学学报,2007,24(4):560-565.
    李随民,姚书振.基于MapGIS的分形方法确定化探异常[J].地球学报,2005,26(2):187-190.
    李涛,计算机免疫学[M].电子工业出版社,2004.
    刘崇民,徐外生.蔡家营铅锌银矿床原生异常模式[J].物探与化探,1994,18(5):378-391.
    刘琚,梅良模,何振亚.一种盲信号分离的信息理论方法[J].山东大学学报(自然科学版).1998,3(44):398-403.
    刘据,顾明亮,何振亚,等.一种新的瞬时混迭信号盲分离的自适应方法[J].电路与系统学报.1998,3(4):66-71.
    刘维.精通Matlab与C/C++混合程序设计[M],北京:北京航空航天大学出版社,2008.
    刘喜武,高伟,等.基于带状混合矩阵ICA实现地震盲反褶积[J],地球物理学进展,2007,22(4):1153-1163
    柳炳利,郭科,等.JADE在寻求地球化学成矿元素组合中的应用探索[J].物探化探计算技术,2012,34(1):58-61.
    吕国安.成矿区带地球化学异常评价方法[M].北京:冶金工业出版社,2002.
    罗善国.矿床学的发展前景与思维方法[J].矿产与地质,2003,l7(2):117-121.
    马光.鄂东南铜绿山铜铁金矿床地质特征、成因模式及找矿方向[D].长沙:中南大学,2005.
    马建仓,牛奕龙,陈海洋.盲信号处理[M].北京:国防工业出版社,2006.
    马立成,杨兴科,王磊,等.东天山石英滩金矿田控矿构造与原生晕深部预测[J].地质与勘探,2006,42(2):24-28.
    孟东霞,马建芬,等.一种改进的基于EASI的语音分离算法[J].计算机工程与应用,2007,43(33):214-216.
    孟海涛,张智林.一种新的胎儿心电图提取算法[J].电子科技大学学报,2007,36(3):640-645.
    倪秀静,李健,韩泽华.用MATLAB实现成矿区化学元素的第L次分形插值逼近曲面[J].物探化探计算技术,2005,27(2):150-153.
    裴荣富,等.中国特大型矿床成矿偏在性与异常成矿构造聚敛场[M].北京:地质出版社,1998.
    裴荣富,熊群尧,沈保丰等.难识别及隐伏大矿、富矿资源潜力的地质评价[J].北京:地质出版社,2001,l一176.
    裴荣富,熊群尧.金属成矿省等级体制成矿与矿产勘查评价[A].当代矿产资源勘查评价的理论与方法[C].北京:地震出版社,1999,134-141.
    裴荣富.中国矿床模式[M].北京:地质出版社,1995.
    朴寿成,贾洪杰,翟玉峰,等.金厂沟梁金矿床矿脉原生地球化学特征及深部含矿性评价[J].地质地球化学,2003,31(1):47-51.
    乔永凤,马建芬.改进的基于神经网络的信息最大化语音增强算法[J].太原理工大学学报,2007,38(4):301-303.
    邱天爽,李冰,等.基于分数低阶ICA的混合噪声中脉冲噪声的消除方法[J].通信学报,2011,32(9):77-81.
    邵跃.热液矿床岩石测量(原生晕法)找矿[M].北京:地质出版社,1997:1-142.
    申维,基于奇异值分解法的含量-面积法对化探异常的确定[J].地质通报,2008,27(5):662-667.
    申维.n维自仿射分形及其在地球化学中的应用[J].地质论评,2005,51(2):208-211.
    申维.成矿预测中分形模型分维数估计的新方法[J].长春地质学院学报,1997,1:58-70.
    申维.深部找矿非线性定量理论与技术方法研究进展综述[J].地学前缘,2010,1(75):278-288.
    施俊法,向运川,王春宁.区域地球化学异常空间分形结构及其意义—以浙江省诸暨地区区域地球化学数据为例[J].矿物学报,2000,20(1):68-72.
    施俊法.浙江省诸暨地区元素地球化学分布与标度律[J].地球科学-中国地质大学学报,2001,26(2):167-171.
    谈树成,高建国,晏建国,等.云南个旧矿区南部矿床原生晕垂直分带研究[J].矿物学报,2001,21(4):596-601.
    唐焕文.独立成分分析的若干算法及其应用研究[D].大连:大连理工大学,2005.
    田锋.谢家沟金矿元素地球化学特征及原生晕叠加模型[D].北京:中国地质大学,2005:20-62.
    涂光炽,张玉泉,赵振华.华南两个富碱侵入岩带的初步研究[A].徐克勤,涂光炽主编,花岗岩地质和成矿关系(国际学术会议论文集)[C].南京:江江科学技术出版社,1984,21-37.
    涂光炽.关于富碱侵入岩[J].矿产与地质,1989,3(3):1-4.
    汪军,何振亚.基于高阶谱的信号盲分[J].1996,26(5):75-80.
    王超,孙华山,曹新志,等.山东招远上庄金矿原生晕特征及深部成矿预测[J].金属矿山,2006,11:54-56.
    王继,王年,等.基于改进FastICA的电能质量谐波检测[J].电力系统保护与控制,2010,38(18):126-130.
    王军,云南金顶矿床矿体三维模型的建立及应用[D].北京:中国地质大学,2005.
    王世称,陈永良,夏立显.综合信息矿产预测理论与方法[M].北京:科学出版社,2000.
    王世称,陈永良.中国大型金矿床空间分布规律及找矿方向[J].地球科学-中国地大学学报,1999,24(5):455-458.
    王世称,陈永清.成矿系列顶测的基本原则及特点[J].地质找矿论从,1994,9(4):79-85.
    王学求,程志中,刘大文.金属活动态测量的理论与方法[A].谢学锦,邵跃,王学求.走向21世纪矿产勘查地球化学[C].北京:地质出版社,1999.125-142.
    王学求,矿产勘查地球化学:过去的成就与未来的挑战[J].地学前缘,2003,10(1):239-247.
    王学求,谢学锦.金的勘查地球化学-理论与方法战略与战术[M].济南:山东科学技术出版社,2000.309.
    王学求.地球化学勘查新方法[A].陈毓川.当代矿产资源勘查评价的理论与方法[C].北京:地震出版社,1999.388-396.
    王学求.地球气纳微金属测量的概念理论与方法[A].谢学锦,邵跃,王学求.走向21世纪矿产勘查地球化学[C].北京:地质出版社,1999.105-124.
    王学求.深穿透地球化学[J].物探与化探,1998,22(3):166-169.
    魏克涛,冯毓华,等.找矿靶区综合信息预测在已知矿山深部找矿中的应用——以铜绿山铜铁矿深部找矿为例[J].资源环境与工程,2011,25(3):253-255.
    魏克涛,李享洲,张晓兰.铜绿山铜铁矿床成矿特征及找矿前景[J].资源环境与工程,2007,21(增刊):41-56.
    魏克涛.湖北省大冶市铜录山铜矿接替资源勘查(深部普查)报告[R].湖北省鄂东南地质大队,2010.
    吴强,王行愚.基于独立分量分析的图像融合算法[J].计算机工程,2007,33(10):220-224.
    肖人彬,王磊.人工免疫系统:原理、模型、分析及展望[J].计算机学报,2002,25(12):1281-1293.
    谢和平,王金安.岩石节理_断裂_表面的多重分形性质[J].力学学报,1998,30(3):314-320.
    谢淑云,鲍征宇,等.新疆塔里木盆地艾协克—桑塔木南地区油气地球化学指标的多重分形性分析[J].地质论评2005,51(1):107-212.
    谢淑云,鲍征宇.地球化学场的连续多重分形模式[J].地球化学,2002,31(2):191-200.
    谢学锦,刘大文,向运川,严光生.地球化学块体-概念和方法学的发展[J].中国地质,2002,29(3):225-233.
    谢学锦.勘查地球化学的现状与未来展望[J].地质论评,1996,42(4):346-356.
    谢学锦.区域化探[M].北京:地质出版社,1979.
    谢学锦.区域化探[M].北京:地质出版社,1979.192.
    谢学锦.区域化探全国扫面规划[J].物化探研究报导,1978,3:28-36.
    熊继传.湖北铜录山铜铁矿深部地球化学找矿预测报告[R].湖北省鄂东南地质大队,2010.
    徐明钻,朱立新,等.多重分形模型在区域地球化学异常分析中的应用探讨[J].地球学报,2010,31(04):611-618.
    杨东来,张永波,王新春,等.地质体三维建模方法与技术指南[M].北京,中国地质出版社,2007.
    杨福生,洪波.独立分量分析的原理与应用[M],北京:清华大学出版社,2006.
    杨红卫,段守敏,等.一种改进的基于ICA的信号增强方法[J].数字声频,2003,17:15-18.
    杨茂森,黎清华,杨海巍.分形方法在地球化学异常分析中的运用研究—以胶东矿集区为例[J].地球科学进展,2005,20(7):809-814.
    杨竹青,李勇,胡德文.独立成分分析方法综述[J].自动化学报,2002,28(5):762-772.
    冶继民,张贤达,等.超定盲信号分离的半参数统计方法[J].电波科学学报,2006,21(3):331-336.
    叶天竺,肖克炎,严光生.矿床模型综合地质信息预测技术研究[J].地学前缘,2007,14(05):11-19.
    袁勇.人工免疫系统在滑坡预测预报中的应用[D].成都:成都理工大学,2005.
    曾新平.地质体三维可视化建模系统GeoModel的总体设计与实现技术[D].北京:中国地质大学(北京),2005.
    翟裕生,林新多.矿田构造学[M].北京:地质出版社,1993,1-214.
    翟裕生.21世纪矿床学研究展望一矿床学为可持续发展服务的几个领域[J].中国地质,2000,(3),14-17.
    翟裕生.矿床学研究的思维方法[A].当代矿产资源勘查评价的理论与方法[C].北京:地震出版社,1999,3-10.
    张发启.盲信号处理及应用[M].西安:西安电子科技大学出版社,2006.
    张洪渊,史习智.一种任意信号源盲分离的高效算法[J].电子学报.2001,(10):1392-1396.
    张瑾,方勇.基于分块Contourlet变换的图像独立分量分析方法[J].电子与信息学报,2008.7,29(8):1813-1816.
    张贤达,保铮.盲信号分离[J].电子学报.2001,(12):1766-1770.
    张新宇.地学空间三维可视化储量计算辅助分析系统关键技术的研究[D].吉林:吉林大学,2006.
    张焱,成秋明等.分形插值在地球化学数据中的应用[J].中山大学学报(自然科学版),2011,50(01):133-137.
    赵鹏大,陈建平,张寿庭.三联式成矿预测新进展[J].地学前缘,2003,10(02):455-463.
    赵鹏大,成矿定量预测与深部找矿[J].地学前缘,2007,14(5):1-10.
    赵鹏大,池顺都.初论地质异常[J].地球科学-中国地质大学学报,1991,16(3):241-248.
    赵鹏大,胡旺亮,李紫金.矿床统计预测的理论与实践[J].地球科学-武汉地质学院学报,1983,4:107-121.
    赵鹏大,张寿庭,陈建平.危机矿山可接替资源预测评价若干问题探讨[J].成都理工大学学报(自然科学版),2004,31(2):111-117.
    赵鹏大.三联式资源定量预测与评价[J].地球科学-中国地质大学学报,2002,27(5):482-489.
    朱华,姬翠翠.分形理论及其应用[M].北京:科学出版社,2011.
    邹林,彭省临,等.青海阿尔茨托山地区地球化学异常场的多重分形研究[J].中国地质,2004,31(4):436-441.
    邹凌,陈树越,等.小波分析和独立分量分析结合的诱发电位信号提取研究[J].生物医学工程杂志,2010,27(4):741-745.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700