用户名: 密码: 验证码:
青藏高原东部四姑娘山地区晚新生代隆升
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在松潘甘孜高原的大雪山脉东南部,有10余个雪山环抱的雪峰,其中在四川阿坝藏族羌族自治州小金县与汶川县交界的日隆镇北有4座毗邻的雪峰即是四姑娘山,它们距成都仅260km左右。这4座雪峰中的第4峰是最高的,它的海拔高达6250m,号称“蜀山之后”,仅次于海拔7556m、号称“蜀山之王”的贡嘎山;另外3座雪山分别为海拔5355m的大姑娘山、海拔5454m的二姑娘山、海拔5664m的三姑娘山,它们象珍珠翡翠般迷人妩媚的四位美女,统称为四姑娘山,现在该区已被评为国家4A级风景区和国家地质公园,成为中外广大游客喜爱的观光、登山、探险、科考、渡假和远足之地。
     青藏高原的隆升是国际地学界关注和讨论的热点,青藏高原东部的松潘甘孜地体在晚新生代隆升过程研究对成都经济区的环境效应具有重要的影响作用,其隆升过程是松潘甘孜地块隆升过程的典范,也是前人研究的空白区。四姑娘山地区由于其特殊的地理位置,其隆升过程的研究具有重要的科学意义和经济意义。
     本文以四姑娘山地区第四系和花岗岩的野外调查为重点,在广泛收集并总结该区地表地质、地球物理、GPS测量、区域应力场等资料的基础上,通过岷江、大渡河、雅砻江等水系的河流阶地,以及高原夷平面、高原黄土、高原喀斯特地貌及生物群落特征等的研究基础上,全面总结了四姑娘山地区的表面隆升过程;通过四姑娘山地区及邻区四姑娘山、年宝玉则、色西拉卡、孟通沟、老君沟、羊拱海等花岗岩体的热年代学和裂变径迹研究,全面分析了四姑娘山地区的地壳隆升过程;通过该区地壳及上地幔的地震波、大地电磁、区域重力和航磁、大地GPS运动矢量和速度变化等的综合分析研究,全面讨论了板块构造、逆冲断层作用、重力均衡作用对四姑娘山隆升过程的影响作用地位。
     1、四姑娘山地区的松潘甘孜高原的隆升具有阶段性、整体一致性和非完全同步性的特点:
     (1)阶段性即指四姑娘山地区的隆升过程可分为夷平面形成期、山地形成期、冰冻地貌形成期等不同的发展时期。中新世是夷平面形成期,3.6Ma的上新世青藏运动A幕代表了隆升的开始,晚更新世以来隆升明显加速,但全新世以后隆升速度有所减缓,显示出四姑娘山地区目前正处于新的加速隆升期。
     四姑娘山花岗岩的裂变径迹样品采自于龙门山断裂带中段西缘主逆冲断层上盘的陡坡地貌区,其中5件磷灰石样品的裂变径迹年龄与长度分析表明:海拔3071~4460m陡坡地貌的裂变径迹样品年龄为12.8±1.6Ma~3.1±0.6Ma。羊拱海岩体的5件样品磷灰石裂变径迹样品年龄为1.4±0.5Ma~0.3±0.2Ma,样品磷灰石裂变径迹年龄相对较年轻;色达县东色西拉卡岩体群的4件磷灰石裂变径迹样品年龄为144.7±13.0Ma~17.8±2.2Ma,年龄相对较老;青海年宝玉则岩体2件样品的磷灰石裂变径迹样品年龄分别为3±0.8Ma、2.7±0.8Ma,对应的锆石裂变径迹样品年龄分别为122±12Ma、91.1±8.6Ma,显然年龄明显变老。孟通沟岩体3件样品的磷灰石裂变径迹年龄分别为6.6±2.0Ma、7.3±1.4Ma、3.9±1.2Ma,老君沟岩体的磷灰石裂变径迹年龄为4.0±3.2Ma。此外,在四姑娘山东部的龙门山断裂带上,彭灌杂岩2个样品磷灰石裂变径迹年龄分别为8.7±5.6Ma、10.5±7.2Ma,宝兴杂岩2个样年龄值分别为8.7±5.6Ma、10.5±7.2Ma。模拟这些岩体的热历史显示中新世中期以来该地区出现多阶段的隆升与剥露。
     (2)岷江水系发育有4~8级河流阶地,大渡河水系发育有4~7级河流阶地,鲜水河水系最多处可见有12级河流阶地。整体性即指在高原隆升期间,河流阶地显示四姑娘山地区至少有13次地方性的高原隆升,每一次隆升的结果都在松潘甘孜高原的不同地区留下了晚新生代层状堆积记录,其时间分别为1130ka、857ka、772ka、586ka、472ka、315ka、253ka、144ka、97ka、77ka、52ka、23ka、11ka。其中1130ka、772ka、586ka、144ka这4次可与青藏高原的整体隆升对应,分别对应于昆黄运动A幕、B幕、C幕和共和运动;其中1130ka和680ka的隆升还可与东喜马拉雅构造结南迦巴瓦片麻岩的磷灰石裂变径迹时间对比。四姑娘山地区另一次680ka的表面隆升事件仅在大渡河水系留下记录。
     整体性还表现在四姑娘山地区与东喜马拉雅造山带在中新世中晚期具有隆升的整体一致性。四姑娘山花岗岩体12.8~8.2Ma平均视隆升速率为0.17mm/a,与前人在东喜马拉雅不同海拔高度花岗岩磷灰石裂变径迹得出的隆升结果可以进行时间和速率的对比,与相同时段内的拉萨、告乌、达孜等地的隆升速率也具有一致性。
     (3)非完全同步性即指松潘甘孜高原表面隆升过程是从高原边缘开始向高原腹地发展的,是一个从外向内发展的过程,首先是泸定、茂县、松潘等高原边缘地区留下了隆升记录(约157ka),然后逐步影响到金川、炉霍、理县等地(约140ka),且同一个隆升阶段各地的隆升速率有差异。
     2、四姑娘山地区和松潘甘孜地块的全部裂变径迹资料显示该区的高原隆升是新近纪才开始的,四姑娘山地区的抬升经历了伸展造陆期、夷平面形成期、山地形成期、冰冻圈形成期四大发展期,并有近200Ma的历史。其中:
     (1)从侏罗纪至到古近纪为伸展造陆期,四姑娘山花岗岩处于埋藏状态,该地区的抬升运动与剥蚀作用大致平衡,隆升速率极其缓慢,绝对隆升速率0.017~0.081mm/a,相对隆升速率0.0039~0.0275mm/a。由热鲁组所产桉属等植物群落显示其海拔高程在500~600m左右。古地磁资料显示松潘甘孜地块在中生代的构造运动与现在用GPS监测的结果明显不同,说明四姑娘山地区的隆升是中生代以后的事情。
     (2)中新世早期至上新世早期为夷平面形成期,四姑娘山地区绝对隆升速率略大于剥蚀速率,形成了海拔1000m左右的高原夷平面,绝对隆升速率0.5~1.625mm/a,岩体剥蚀速率0.1678~0.2878mm/a。由岩体裂变径迹速率显示出高原夷平面的形成可分为18~7.3Ma和6.6~5.1Ma两个时期,分别形成了两级高原夷平面。四姑娘山地区两级夷平面的海拔高度在4500~5500m左右,其中主夷平面比山顶面一般要低200~300m左右,四姑娘山周围的两级夷平面高度均比四姑娘山低。四姑娘山地区两级夷平面形成时的海拔高度不超过1000m,两级夷平面形成的末期就是高原隆升的初期。
     (3)上新世的青藏运动(约3.6~1.8Ma)揭开了松潘甘孜高原隆升的序幕,四姑娘山地区开始了山地发展期,绝对隆升速率明显翻倍,达1.86~2.03mm/a;岩体剥蚀速率也略有增加,达0.15~0.4mm/a;隆升与剥蚀作用强度的差异导致上新世末隆升海拔高度达3000m左右,并在山前形成大邑砾岩。
     更新世的昆黄运动(约1.8~0.126Ma)四姑娘山地区开始了更快的山地形成,此期间绝对隆升速率呈几何级数增加,剥蚀速率也翻了数倍,且隆升速率明显大于剥蚀速率和河流下蚀速率,并在中酸性岩体、河流阶地、冲洪积扇、黄土中留下了大量记录:岩体绝对隆升速率达3.63~17.06mm/a、剥蚀速率达1.06mm/a;各水系平均下蚀速率在大渡河水系为0.535mm/a、岷江水系为0.493mm/a、鲜水河水系为0.45mm/a,三者大致相当。
     由于此期间隆升速率明显大于剥蚀速率和下蚀速率,至昆黄运动C幕末四姑娘山地区的海拔超过了4000m,四姑娘山地区高山地貌基本成形,并在山前形成了雅安砾岩;因为隆升达到了足够的高度影响了高原季风的作用,从而形成了甘孜黄土、炉霍黄土、金川黄土、理县黄土等风成堆积。
     (4)晚更新世末以来(约40ka,大致相当于表面隆升的第11阶段)至全新世的共和运动是四姑娘山地区的冰冻圈发展期,四姑娘山地区的表面隆升速率有所减缓,大量的河流下蚀作用在四姑娘山地区留下了大量Ⅰ~Ⅲ级阶地,岷江水系、沱江水系、青衣江水系在龙门山前形成了大量冲积扇,成都平原形成了两层成都粘土,四姑娘山地区形成了现今海拔高度超过6000m的高山地貌。晚更新世以来,岷江水系下蚀速率0.63~3.18mm/a,但岷江干流通过龙门山断裂带的汶川、映秀地段表面隆升速率继续增大,其余地段均变缓;而大渡河流域的表面隆升速率明显下降,泸定段由1.14mm/a降为0.67mm/a,小金抚边河由1.44mm/a下降为1.13mm/a。大渡河水系下蚀速率为0.78~1.87mm/a。
     3、松潘甘孜地体东部的花岗岩主要形成于印支晚期至燕山初期,其中四姑娘山花岗岩体的锆石普遍具有岩浆锆石的特征。通过四姑娘山花岗岩体的黑云母花岗闪长岩中的23粒锆石的激光探针U-Pb定年,确定其岩浆结晶年龄为燕山早期(191±1)Ma。虽然在松潘甘孜地体多数岩体的长轴走向和矿物的定向均呈北西向,但过去区调中划分的北西向的金川-理县构造岩浆带不能代表扬子地块与松潘甘孜地块楔入作用的产物,而应重新划分为北东向的道孚-金川-小金-黑水构造岩浆带,四姑娘山岩体是这个北东向构造岩浆带中的典型。这些花岗岩主要是扬子地块沿龙门山构造带向松潘甘孜地体内楔入导致松潘甘孜地体中下地壳低速层发生部分熔融的结果。
     4、四姑娘山地区的隆升具有复杂的动力学机制,深部构造差异、均衡重力调整、逆冲断裂上盘都对其隆升产生了积极的影响。考虑四姑娘山地区的隆升机制必然要考虑它的边界条件和隆升作用的过程或程序。
     边界条件:松潘甘孜地块是一个呈“倒三角形”的巨形地块,其在平面上的构造运动受龙门山断裂、鲜水河断裂、东昆仑断裂的边界条件的控制,其在垂向上的构造影响深度可达下地壳甚至上地幔。龙门山断裂是一个右行的压扭性断裂,鲜水河断裂是一个左行的扭性断裂,二者的区域构造应力场显示为σ1呈近东西向、σ3呈近南北向的特征。这与现代GPS测量的结果一致。在这个倒三角形的块体内,地球物理资料显示,青藏高原东部松潘甘孜地体和扬子地块的地壳结构与厚度存在明显差异,松潘甘孜地块的中下地壳存在多层地震波低速层和大地电磁低阻层,而扬子地块则不存在此现象,二者的深部构造差异可达120km深,一直到上地幔才开始明显缩小;四姑娘山地区20~37km深度上广泛存在的低速层与四姑娘山花岗岩体具部分熔融的成因属性具有关联性。
     隆升过程:地球物理资料显示,四姑娘山地区是有巨大“山根”的,这些“山根”主要由巨大的花岗岩基组成,并且它们的均衡重力是与邻区有明显差异的。由于印度地块对青藏高原自南向北挤压导致青藏高原壳幔各圈层作水平横向运动的调整,从而导致川西高原深部中下地壳的低速层软弱物质向东横向流动。由于松潘甘孜地块地壳和上地幔物性与扬子地块的巨大差异,松潘甘孜地块低速层物质向东流动到达四姑娘山地区一带受刚性的扬子地块的阻碍产生了强大北东东的区域性挤压应力场,加之四姑娘山地区巨大花岗岩基“山根”的均衡重力调整叠加和处于龙门山断裂带的逆冲断层上盘抬升叠加,在强烈的剥蚀作用下,铸就了现今四姑娘山“蜀山之后”的极大起伏极高山地貌。
Among the Songpan-Garze plateau, there are four adjacent peaks that comprise the Great-snow Mountain Range, which is called "Four-girl Mountains". They are located in Rilong Town on the border of Xiaojin County and Wenchuan County, Aba Tibetan and Qiang Autonomous Prefecture, Sichuan Province, it is260km from Chengdu. The four mysterious peaks of the Four-Girl Mountain are surrounded by more than10snowy peaks, among which, the4th peak is the highest, which is aslo called "the Queen of Shu Mountains" with an elevation of6250meters, which is the second highest peak in the West Sichuan Plateau, second only to Gonggar Mountain with an elevation of7556meters. Another, the elevations of the1st peat,2nd peak and3rd peak are5355meters,5454meters and5664meters respectively. Like four girls, they are as white as ice and as pearly colored as jade, and are very pretty and charming. They are collectively called "the Four-Girl Mountain". The precipice of the4th peak is so high that nobody has ever climbed it. Today, it is a scenic area at national Four-A level and National Geopark, and has become a tourist site frequented by domestic and foreign mountain clembers. It is a tourist site with multiple functions for people to enjoy sightseeing, mountain climbing, exploration, scientific investigation, holidays and outing.
     The Tibetan Plateau uplift are a focus of geologists all over the world.The process of Songpan-Garze terrane uplift in east Tibetan Plateau at late Cenozoic which plays an important role in environmental effects of the Chengdu economic zone. The Four-Girl Mountain uplift process is a wonderful example of the Songpan-Garze terrane uplift, and its study of uplift have never engaged by predecessors. The research results of its uplift have important scientific and economic significance.
     This thesis is focusing on field investigation Quaternary and granites in the Four-Girl Mountain area, based on a large of information comprehensive collection and analysis in the Songpan-Garze terrane about the surface geology, geophysics, GPS measurements, regional stress field, and so on. This thesis comprehensively summarized the process of surface uplift in the Four-Girl Mountain area, according to study on river terraces of the Min River, the Dadu River, Yalong River, and plateau planation surface, plateau loess, karst, biotic community, and so on.This thesis comprehensively analyzed the process of crustal uplift in the Four-Girl Mountain area and its adjacent, according to study on thermochronology and fission track of the Siguniangshan Granites, the Nianbaoyuze Granites, the Sexilaka Granites, the Mengtonggou Granites, the Yanggonghai Granites, and so on. And this thesis deeply discussed the effect of plate tectonics, thrust faulting, isostatic gravity anomaly to uplifting process in the Four-Girl Mountain area,according to the comprehensive analysis research of seismic wave of crust and upperMantle,Magnetotelluric, regional force of gravity and airborneMagnetic, and variations of GPS horizontal vector and velocity field, and so on.
     1. The Songpan-Garze Plateau uplift is characterized by episode, whole coherence, non-entire synchronous in the Four-Girl Mountain area.
     (1) The pisode uplift is that uplift process could be divided into multistage evolution, namely planation surface phase, mountain phase, freezing physiognomy phase in the Four-girl Mountain area. Miocene epoch is forming period of the planation surface. The A episode of the Qingzang tectonic movement is representative of uplift start in the Pliocene,about3.6Ma. The uplift accelerated markedly since the late Pleistocene, but the uplift rate became low at Holecene, suggesting that it is now in a new stage of uplift acceleration inthe Four-Girl Mountain area.
     Five apatite fission track samples were collected from various altitude in steep slope relief on the Four-Girl Mountain granites of theMain thrust fault hanging wall in the middle segment of the Longmen mountain thrusting fault zone. Its ages and length are analyzed that fission track ages from the steep slope relief area of elevation3071-4460meters are ranging from12.8±1.6Ma to3.1±0.6Ma. The Yanggong Lake granites shows that the apatite fission track ages of five samples are from1.4±0.5Ma to0.3±0.2Ma which is relatively younger. The Xilaka granites in Seda county shows that the apatite fission track ages of four samples are from144.7±13.0Ma to17.8±2.2Ma which is relatively older. The Lianbaoyuze granites shows that the apatite fission track ages of two samples are3±0.8Ma and2.7±0.8Ma individually,but its zircon fission track ages of two samples are122±12Ma and91.1±8.6Ma individually which is relatively older visibly. The Mentong canaliculus granites shows that the apatite fission track ages of three samples are6.6±2.0Ma,7.3±1.4Ma,and3.9±1.2Ma individually,and the Laojun canaliculus granites shows that the apatite fission track ages is4.0±3.2Ma. And besides, the Pengguan Complex of the Longmens mountain fault zone in the eastern Four-girl Mountain shows that the apatite fission track ages of two samples are8.7±5.6Ma and10.5±7.2Ma individually, and the Baoxing Complex shows that the apatite fission track ages of two samples are8.7±5.6Ma and10.5±7.2Ma individually. And as evidence of comprehensive analysis of combine the Yanggong lake granites, the Mentong canaliculus granites, the Laojun canaliculus granites, the Xilaka granites, and the Lianbaoyuze granites, thermal history modeling shows that there were multi-stage uplifting and exhumation since middle Miocene.
     (2) A large amount of work of field surveys and interior research have indicated that are4to8terraces in the Min River Valley,4to7terraces in the Dadu River Valley, and at least12terraces in the Xuanshui River Valley. The whole coherence uplift is that river terraces shows have13times at lowest on territorial plateau uplift during the period of livelong uplift in the Four-Girl Mountain area, and every times of uplift have all recorded by layered landforms depositions of the late Cenozoic, their ages are1130ka、857ka、772ka、586ka、472ka、315ka、253ka、144ka,97ka、77ka、52ka、23ka、11ka respectively.Four ages about1130ka、772ka, 586ka、144ka in which could be correspond to the A,B,C episode of the Kunhuang movement,and Gonghe movement. And two times uplift about1130ka and680ka which can be compared with apatite fission track of granitic gneiss from the Namche Barwa Group in eastern-Himalayan syntaxis, although surface uplift event at680ka in the Four-Girl Mountain area which be recorded only in the Dadu River Valley.
     The whole coherence also shows that plateau uplift have same time and rate between the Four-Girl Mountain area and the East Himalayan orogenic belt in middle to late Miocene.The Four-Girl Mountain Granites's average uplift rate is0.17mm/a from12.8Ma to8.2Ma,we can be compare it in times and rates to uplift event of that predecessors had undertaken granite ages of apatite fission track with different height above sealevel,and its rate in accordance with granites of Lhasa, Gaowu, Dazi in same time.
     (3) Non-entire synchronous uplift is that the Songpan-Garze Plateau uplift had undergone a process from peripheral influence to central significance,namely from its plateau edge to plateau hinterland. Among its edge, the river terraces of Ludin,Maoxian, Songpan had given some records at157ka firstly, whereafter its hinterland the river terraces of Jinchuan, Luhuo, Lixian have given another records at140ka. And uplift rate is different from everywhere more or less at same episode.
     2. Apatite fission track informations shows that the plateau uplift started since Neogene also. The plateau uplift development have been through four phases in the Four-Girl Mountain area, namely extension epeirocratic period, planation surface period, mountain buliding period, and cryosphere formation period,and it has a history of about200Ma. This includes:
     (1) It was extension epeirocratic period from Jurassic to Paleogene, hided the Four-Girl Mountain Granite Pluton deeply under the ground. It be considered as being about balanced elevation to the denudation in the Songpan-Garze terrane. Its uplift rate is slow speed, absolute uplift rate is only0.017-0.081mm/a, and relative uplift rate is only0.0039-0.0275mm/a. The Eucalyptus communities from the Relu Formation shows that the Songpan-Garze terrane had been uplifted to the altitudes of about500-600meters above sea level at the terminal Paleogene. Palaeomagnetic informations shows that in Mesozoic tectonics movement form of the Songpan-Garze terrane are quite a different to present GPS monitoring results. This indicate that the plateau uplift must started after Mesozoic in the Four-Girl Mountain and adjacent area.
     (2) It was planation surface period from early Miocene to early Pliocene.Its absolute uplift rate is more than a bit denudation rate in the Four-Girl Mountain area, plateau planation surface was formed into1000meters above sea level at early Pliocene. Its absolute uplift rate is only0.5-1.625mm/a, and granites denudation rate is only0.1678-0.2878mm/a. And a lot of the granites uplift rate of apatite fission track shows that the forming process of plateau planation surfaces can be roughly divided into18-7.3Ma and6.6-5.1Ma two periods, and two levels planation surfaces were formed individually. The height of two plateau planation surfaces is only about4500-5500meters above sea-level in the Four-girl Mountain area, theMain planation surface in which elevation is about200-300meters shorter than its summit plan. And these two plateau planation surfaces in the Four-girl Mountain area is taller than its adjacent area. The altitude didn't exceed1000meters when the two plateau planation surfaces were just formed, the end period of two planation surfaces formation is initial period of plateau uplift.
     (3) It had been unlocked overture of plateau uplift in the Songpan-Garze terrane by the A episode of the Qingzang tectonic movement at Pliocene (about3.6-1.8Ma), it began to mountain buliding period in the Four-Girl Mountain area. Its absolute uplift rate had doubled and redoubled by1.86-2.03mm/a, and granites denudation rate increased also slightly by0.15-0.4mm/a. It lead to that uplift size had achieved about3000meters above sea level at Late Pliocene by the difference between uplift rate and denudation rate, and Dayi Conglomerates were sedimented in the front of the Longmen Mountians.
     It was beginning to show that the mountain buliding speed more faster than past in Kunhuang tectonic movement of Pleistocene from1.8Ma B.C. to0.126Ma in the Four-Girl Mountain area. Its absolute uplift rates were increasing in that episode in a geometrical progression, its denudation rate had also doubled and redoubled,and its granites uplifting rate was significantly faster than denudation rate and river incision rate. They had been left a lot of redcords by the intermediate-acid intrusive granites, river terrace, alluvial fan and proluvial fan,plateau loess,and so on.This is that granites absolute uplift rate is3.63-17.06mm/a, and denudation rate is1.06mm/a. Its average incision rate is0.535mm/a in the Dadu River Valley, its average incision rate is0.493mm/a in the Min River Valley, and its average incision rate is0.45mm/a in the Xuanshui River Valley, the threee rates are approximate.
     It caused by plateau uplift rate was significantly more than denudation rate and incision rate in this period, the plateau has been uplifted to an altitude of more than4000meters above sea level at Late C episode of the Kunhuang tectonic movement in the Four-Girl Mountain area, the Mountain landform of the Four-Girl Mountain had basically taken shape, and Yaan Conglomerates were sedimented in the front of the Longmen Mountians. When the plateau uplift size is high enough so that the power of plateau monsoon was effected, and eolian deposits were formed in Ganze loess, Luhuo loess, Jingchuan loess, Lixian loess,and so on.
     (4) It is cryosphere formation period during the Gonghuo tectonic movement from late Pleistocene to Holocene in the Four-Girl Mountain area, which start age is about40ka, corresponding approximately to11th stage of surface uplift in the Four-Girl Mountain area. Its surface uplift rate is a modest slowdown. The1st to3rd river terraces were widely produced along the Min River, the Dadu River, and the Xuanshui River by the incision action of the Gonghuo tectonic movement. A large amount of alluvial fans and proluvial fans had been washed down from the Min River, Tuo River, and Qingyi River aquo-system, and had been deposited in the front of the Longmeng Mountain, and there are two layers which chengdu clay wrere deposited in the Chengdu plain. All these causes the high mountain landscapes of an altitude of more than6000meters above sea level in the Four-Girl Mountain and adjacent area now.
     Since the late Pleistocene, its incision rate is0.63-3.18mm/a in the Min River Valley. All the surface uplift rates become slower at the rest of the section. At the Wenchuan County Section and the Yinxiu Town Section of the mainstream of the Min River, of which passes through the Longmen mountain fault bel, the surface uplift rates continues to growt. At the Ludin Section of the Dadu River Valley, the surface uplift rate have begun to drop off significantly which it dropped from1.14mm/a of the past to0.67mm/a of the present. At the Fubian River Section of the Dadu River Valley in Xiaojing County, which it dropped from1.44mm/a of the past to1.13mm/a of the present. At the same time, its incision rate is0.78-1.87mm/a in the Dadu River Valley.
     3.The granitoid intrusions occurred in the eastern part of the Songpan-Garze terrane from the Late Indo-Chinese epoch to Early Yenshan Epoch. The Four-Girl Mountain Granitic (FGMG) is one of them which these zircons has characterisitc of magma zircons widely. According to the LA-ICP-MS zircon U-Pb dating of the23 crystal zircons from biotite granodiorite of the FGMG which yielded a weighted206Pb/238U mean age of (191±1)Ma, which is interpreted as FGMG's magma crystallizaton age(Early Yenshan).
     It was proposed during the regional geological survey that previous the NW-trending Jingchuan-Lixian tectono-magmatic belt, they can't represent products of the collision between he Yangzi massif and the Songpan-Garze terrane, although the major axis and mineral direction of most of the single granitic masses exist in the parallel arrangement of the NW-trending in the Songpan-Garze terrane. The NE-trending Douhu-Jingchuan-Xiaojing-Heishui tectono magmatic belt should be established newly. The FGMG is one representative granitic mass of the them. It is represent products of part fusing in the low velocity layer exists in the middle-lower crust of the Songpan-Garze terrane what the Songpan-Garze terrane be inserted along the Longmen mountain structural belt generally by the Yangzi massif.
     4. There are have complex dynamics mechanism why the plateau uplift in the Four-Girl Mountain area. Many factors have positive effect on plateau uplift for example deep tectonic difference, isostatic gravity adjusting, the hanging wall of main thrust. We look at the problem on plateau uplift dynamics mechanism in the Four-Girl Mountain area, we must first consider the its block boundary condition, and that affects the working procedure or process.
     (1) Block Boundary Condition
     The Songpan-Garze terrane is a great block of inverse triangular. On the plane, its motion of block are influenced or controled by boundary condition, that is surrounded by the Longmen mountain fault zone, the Xianshui river fault zone, the East Kunlun fault zone. Among of them, the Longmen mountain fault zone is a large lower angle thrust fault zone, and consists of a group of NE trending subordinate faults. It passes through the east of the Four-Girl Mountain, which are dominated by reverse slips with dextral strike-slip component. And the Xianshui river fault zone is a sinistral strike-slip faults.The regional tectonic stress field between the two zones shows that the direction of compressive principal stress σ1is in E-W and the tensil stress σ3is in S-N. Now, this analysis accords was supported by result of the GPS surveying in recent years.
     Vertically, its depth of tectonic influence can reach middle and lower crust, even the top of upper mantle. In this block of inverse triangular, interpretation of geophysical data shows that there exist evident differences in crustal structure and thickness between the Songpan-Garze terrane and the Yangtze block, and middle and lower crust have a series of velocity layers of seismic wave and low resistivity layer of magnetotelluric in the Songpan-Garze terrane. But such velocity layers and low resistivity layer aren't found in the Yangtze block. It was not until upper mantle these differences start to reduce gap in deep tectonic structure between the Songpan-Garze terrane and the Yangtze Block. The Four-Girl Mountain granites attributed to partial melting occur that have some relevance for the low velocity layers in the depth of20-37kilometres in Four-Girl Mountain area extensively.
     (2) Process of Plateau Uplift
     Deep geophysical exploration shows that there are several great "root of mountain" in the Four-Girl Mountain area, and mainly these roots of mountain is made up of many great granitic plutons. And isostatic gravity anomaly have some obvious differences between the Four-Girl Mountain area and its adjacent regions.
     As as a result of compression and collision of the Indian plate with the Tibet Plateau from south to north, the various spheres and layers in the crust and mantle interior in Tibet Plateau are taken to level lateral movement for responsive adjustment, and the weak layer material of low velocity layer exists in the middle crust and lower crust of the Songpan-Garze Plateau are flowed as lateral movement from west to east also.
     As as a result of difference material in the crutst and mantle between the Songpan-Garze terrane and the Yangtze block, a powerful near NE-trending regional stress field was produced by that emanates from obstruction of the Yangtze block, when the low velocity layer exists in the middle crust and lower crust of the Songpan-Garze terrane flows eastward to the Four-Girl Mountain area. Add the isostatic gravity adjustment of a great "root of mountain" are superimposed on each other in the Four-Girl Mountain area. Furthermore, it is superimposed on each other which this area is isolated in hanging wall of the Longmen mountain thrusting fault zone. The maximum rolling and maximum skyscraping earth's surfaces in the Four-Girl Mountain area, which have made as a "the Queen of Shu Mountains", that is to say, it is the2nd highest peak in the West Sichuan Plateau. It is formed under the together actions of mentioned above three forces, and strong weathering processes, rugged denudation, violent down-cutting and exhumation.
引文
1. Andersen T, Griffin W L, Pearson N J. Crustal Evolution in the SW Part of the Baltic Shield:The Hf Isotope Evidence[J].Journal of Petrology,2002,43(9):1725-1747
    2. An Zhisheng,Kutzbach J E,Prell W L et al. Evolution of Asian monsoons and phased uplift of the Himalaya2Tibetan Plateau since late Miocene times. Nat ure,2001,411:62-66
    3. Chappell,B.W. Alluminium saturation in I-and S-type granites and the characterization of fractionated hapogranites[J]. Lithos,1999,46:535-551
    4. Chappell,B.W.,White,A.J.R..I-and S-type granites in the Lachlan fold belt,Transactions of the Roval of Edinburgh [J]. Earth Sciences,1992,83:1-26
    5. Chen S F, Wilson C J L, Deng Q D, Zhao X L, Luo Z L.1994. Active faulting and block movement associated with large earthquakes in the Minshan and Longmen mountains, northeastern Tibetan plateau. Journal of Geophysical Research,99:24025-24038
    6. Chen Z, Burchifiel B C, Liu Y, King R W, Roy den L H, Tang W, Wang E, Zhao J, Zhang X. Global Positioning System measurements from eastern Tibet and their implications for Indina/Eurasia intercontinental deformation. J.Geophys. Res.,2000,105:16215-16228
    7. Coleman M E, Hodges K. Evidence for Tibet plateau uplift before14Myr ago from a new minimum age for east-west extension[J]. Nature,1995,374:49-52
    8. Deng J F, Mo X X, Zhao H L, et al. A new model for the dynamic evolution of Chinese lithosphere:'continental roots-plume tectonics'[J]. Earth Science Reviews,2004,65(3-4):223-275
    9. Densemore A L, Ellis M, Li Y, Et Al.2007. Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau.Tectonics,26:TC4005, doi:4010.1029/2006TC001987
    10. England P C, Houseman G A. Extension during continental convergence, with application to the Tibetan plateau[J]. J Geophys. Res.,1989,94(12):17561-17579
    11. Gleadow A j W, Duddy1R, Lovering j F. Fission track analysis; A new tool for the evaluation of thermal history and hydrocarbon potential []]. APEA,1983,23:93-102
    12. Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet[J]. Science,1992,255:1663-1670
    13. Helm A, Gansser A. Central Himalaya, geological observation of the Swiss expedition1936, Mem[J]. Soc. Helv. Sci. Nat,1939,73(1):1-195
    14. Honglin Yuan, Shan Gao, Xiaoming Liu, Huiming Li, Detlef Giinther. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry[J].Geoanalytical and Geostandard Research,2004,28(3):353-370
    15. Hu Jianmin,Meng Qinten,Shi Yuruo,Qu Hongjie. SHRIMP U-Pb dating of zircons from granitoid bodies in the Songpan-Ganzi terrane and its implications [J]. Acta Petrol Sinica,2005,21(3):867-880
    16. Huang J L, Zhao D P, Zheng S H. Lithospheric structure and its relationship to seismic and volcanic activity in southwest China. J Geophys Res,2002,107(B102255), doi:10.1029/2000JB000137
    17. Hubbard J,Shaw J,Klinger Y.2008.Structure of the imbricate thrust system that sourced the2008M7.9Wenchuan earthquake. SCEC meeting,September6-11,Palm Spring,California
    18. Jia D, Wei G Q, Chen Z X, Li B L, Zen Q, Yang G.2006. Longmen Shan fold-thrust belt and its relation to the western Sichuan Basin in central China:New insights from hydrocarbon exploration. AAPG Bulletin,90:1425-1447
    19. Kirby E,Whipple K.2000.Patterns of exhumation and rock uplift along the eastern margin of the Tibetan Platean inferred from thermochonology and bedrock river incision. Eos Trans.AGU,81(48),Fall Meet. Supple.,Abstract,T52F-03
    20. Kirby E., P. W. Reiners, M. A. Krol et al. Late Cenozoic evolution of easternlna-nofthe Tibetan Plateau:lnferenc from40Ar/39Ar and(U-Th)/He thermochronology[J]. Tectonics,2002,21(1):1-20.
    21. Kirby Eric, Harkins Nathan, Wang Erqi, et al.2007. Slip rate gradients along the eastern Kunlun fault. Tectonics,26, TC2010, doi:10.1029/2006TC002033
    22. Li C, Van der Hilst R D, Toksoz M N. Constraining P-wave velocity variations in upper mantle beneath Southeast Asia. Phys Earth Planet Int,2006,154:180-195
    23. Li Jijun et al. Uplift of Qinghai2Xizang (Tibet) Plateau and Global Change. Lanzhou:Lanzhou University Press,1995.181-207
    24. Lin A M, Fu B H, Guo J M, Zeng Q L, Dang G M, He W G, Zhao Y.2002. Co-seismic strike-slip and rupture length produced by the2001Ms8.1Central earthquake. Science,296:2015-2017
    25. Ludwig K.Isoplot/Ex2.49.A Geochronological Toolkit for Microsoft Exce [CP/DK].Berkeley Geochronology Center,Berkeley,CA,USA,2001.Special Publication No. la
    26. Marc J Defant,许继峰.埃达克岩:关于其成因的一些不同观点[J].岩石学报,2002,18(2):129-142
    27. McNamara D, Owens T, Silver P G, et al. Shear wave anisotropy beneath the Tibetan Plateau. J Geophys Res,1994,99:13655-13665
    28. Miller CF,McDowell SM and Mapes RW.2003.Hot ant cold granites Implications of zircon saturation temperatures and preservation of inheritance. Geology,31:529-532
    29. Molnar P,England P. Late Cenozoic uplift of mountain ran-ges and global climate change:chicken or egg[J]. Nature,1990,346:29-34
    30. Roger F,Calassou S,Lancelot J,Malavieille J,Mattauer M,Xu Z Q,Hao Z W,Hou L W.1995.The presently active sinistral xianshui He strike-slip fault (XSH) is a lithospheric scale strike-slip fault in the eastern Tibet. Earth and Planetary Sicence Letters,130(1-4)201-216
    31. Ronger F,Malavieille J,Leloup Ph H,Calassou S,Xu Z. Timing of granite emplacement and cooling in the Songpan-Garze Fold Belt (eastern Tibetan Plateau) with tectonic implications [J]. J Asian Earth Sci,2004,22(5):465-481
    32. Shen Z, Lu J, Wang M, Burgmann R.2005.Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau J.Geopthys.Res.,110:1-17
    33. Strachey R. On the geology of the Himalaya Mountains and Tibet[J]. O.J.G.S,1851,4:292-310
    34. Tapponnier P, Xu Z, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science,2001,294:1671-1677
    35. Tarney J,Jones C E.Trace element geochemistry of orogenic igneous rocksand crustal growthmodels[J].J Geol Soc London,1994,151(5):855-868
    36. van der Woerd J, Ryerson F J, Tapponnier P, et al.1998. Holocene left lateral slip rate determined by cosmogenic surface dating on Xidatan segment of the Kunlun Fault(Qinghai, China). Geology,26(8):695-698
    37. van der Woerd J, Tapponnier P, Ryerson F J, Meriaux A S, Meyer B, Gaudemer Y, Finkel RC, Caffee M W, Guoguang Z, Xu Zhiqin.2002. Uniform postglacialslip-rate along the central600km of the Kunlun Fault(Tibet), from26A1,10Be, and14C dating of riser offsetts, and climatic origin of the regional morphology. Geophys. J. Int.,148:356-388
    38. Wang C S, Zhao X X, Liu Z F, et al. Constraints on the early uplift history of the Tibetan Plateau [J]. PNAS,2008,105(13):4987-4992
    39. Wang C Y, Chan W W, Mooney W D. Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications. J Geophys Res,2003,108(B92442):176-193, doi:10.1029/2002JB001973
    40. Wang C Y, Han W B, Wu J P, et al. Crustal structure beneath the eastern margin of the Tibetan plateau and its tectonic implications. J Geophys Res,2007,112:B07307, doi:10,1029/2005JB003873
    41. Wang E,Burchfiel B C.2000.Late Cenozoic to Holocene deformation in southwestern Sichuan and adjacent Yunnan, China, and its role formation of the southeastern part of the Tibetan Plateau.GSA Bulletin,112(3):412-423
    42. Wu Fuyuan,Bor-ming Jahn,Simon Wilde,Sun Deyou.Phanerozoic crustal growth:U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics,2000,328:89-113
    43. Yao H, Beghein C, van der Hilst R D. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-Ⅱ. Crustal and upper-mantle structure. Geophys J Int,2008, doi:10.1111/j.1365-246X.2007.03696.x
    44. Yao H, Van der Hilst R D, de Hoop M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-Ⅰ. Phase velocity maps. Geophys J Int,2006,166:732-744
    45. Zhang P Z, Shen Z, Wang M, Gan W J, Burgmann R, Molnar P.2004.Continuous deformation of the Tibetan Plateau from global positioning system data.Geology,32:809-812
    46.蔡学林,王绪本,朱介寿,曹家敏,程先琼.汶川8.0级特大地震震源断裂特征及其动力学分析[J].中国地质,2010,37(4):952-966
    47.蔡学林,朱介寿,曹家敏,袁学诚.四川黑水-台湾花莲断而岩石圈与软流圈结构[J].成都理工大学学报(自然科学版),2004,31(5):441-451
    48.常利军,王椿镛,丁志峰.四川及邻区上地幔各向异性研究[J].中国科学D辑(地球科学),2008,38(12):1589-1599
    49.陈国达.青藏高原隆升的历史背景和机因[J].大地构造与成矿学,1997,21(2):95-108
    50.陈国英,何正勤,陈光英,胡家富.用数字台网的而波资料研究中国大陆的地壳上地幔结构[J].地震研究,1991,14(03):239-246
    51.陈华慧,林秀伦,关康年,徐建明.新疆天山地区早更新世沉积及其下限[J].第四纪研究,1994,14(1):38-47
    52.陈杰,K. H. Wyrwoll,卢演俦,B. Krapez,万景林,刘进峰.祁连山北缘玉门砾岩的磁性地层年代与褶皱过程[J].第四纪研究,2006,26(1):20-31
    53.陈九辉,刘启元,李顺成,郭飚,李昱,王峻,齐少华.中国大陆块体结构及运动变形—川西地区地壳厚度和泊松比结构研究[A].中国地球物理学会第24届年会论文集[C],2008,4:366
    54.陈能松,王方正.北京西山周口店关坻杂岩蒸发法锆石Pb-Pb年龄:太古宙成因和克拉通化事件证据[J].地质科技情报,2006,25(3):41-44
    55.陈文,张彦,张岳桥,金贵善,王清利.青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据[J].岩石学报,2006,22(4):867-873
    56.陈学波,吴跃强,杜平山,等.龙门山构造带两侧速度结构特征.国家地震局科技监测司《中国大陆深部构造的研究与进展》.北京:地质出版社,1986.97-113
    57.陈运泰,许力生,张勇.2008.2008年5月12日汶川特大地震震源特性分析报告[J/OL],http://www.csi.ac.cn
    58.陈智梁,刘宇平,唐文清,张清志,赵济湘,潘忠习.青藏高原东北缘大陆岩石圈现今变形和位移[J].地质通报,2006,25(1-2):20-28
    59.陈智梁,刘宇平,张选阳,赵济湘,唐文清,邓昌蓉,B.C.Burchfiel,R.W.King,L.H.Royden.全球定位系统测量与青藏高原东部流变构造[J],第四纪研究,1998,18(03):262-270
    60.陈智梁,沈凤,刘宇平,赵济湘,张选阳,唐文清.青藏高原东部地壳运动的GPS测量[J].中国地质,1998,25(5):32-35
    61.陈智梁,赵济湘,刘宇平,唐文清,张选阳,邓昌蓉,B.C.Burchfiel,R.W.King,L.H.Royden.全球定位系统测量与青藏高原东部流变构造[J].第四纪研究,1998,18(3):262-270
    62.陈竹新,贾东,张惬,魏国齐,李本亮,魏东涛,沈扬.龙门山前陆褶皱冲断带的平衡剖面分析[J].地质学报,2005,79(1):38-45
    63.程先琼,朱介寿,蔡学林.全球地幔垂直流动速度研究[J].地球物理学报,2006,49(4):1022-1028
    64.崔军文,李朋武,李莉.青藏高原的隆升:青藏高原的岩石圈结构和构造地貌[J].地质论评,2001,47(2):157-163
    65.崔之久,高全洲,刘耕年等.夷平面、古岩溶与青藏高原隆升.中国科学(D辑),1996,26(4):378-384
    66.崔作舟,陈纪平,吴苓.花石峡-邵阳深部地壳的结构和构造[M].北京:地质出版社,1996,49-168
    67.崔作舟,陈纪平.龙门山及川西高原地区的地壳结构与深部构造[A].中国地质科学院562综合大队集刊(第11-12号)[C],1994
    68.崔作舟.龙门山断裂带的深部构造及其两侧的地壳结构[A].1991年中国地球物理学会第7届学术年会论文集[C],1991
    69.邓晋福,赵海玲,莫宣学,等.大陆根柱构造——大陆动力学的钥匙[C].北京:地质出版社,1996:1-110
    70.邓起东,张培震,冉勇康,杨晓平,闵伟,陈立春.中国活动构造与地震活动[J].地学前缘,2003,10(U08):66-73
    71.丁燕云,李占奎.武都-文县-理县一线地球物理场界线的发现及意义[J].中国地质,2009,36(6):1251-1256
    72.丁志峰,何正勤,孙为国.青藏高原东部及其边缘地区的地壳上地慢三维速度结构[J].地球物理学报,1999,42(2):197-205
    73.董玉善.鲜水河断裂带及其邻近地区的原地应力测量[A].鲜水河断裂带地震学术讨论会文集[C],地震出版社,1985
    74.方小敏,陈富斌.甘孜黄土与青藏高原冰冻圈演化[J].冰川冻土,1996,18(3):193-200
    75.方小敏,李吉均.高原隆升的阶段性[A],青藏高原形成环境与发展[C].石家庄:河北科学技术出版社,2003:37-48
    76.傅开道,高军平,方小敏等.祁连山区中西段沉积物粒径和高原隆升关系模型.中国科学(D辑),2001,33(增刊):253-258
    77.甘卫军,沈正康,张培震,任金卫,万永革,周德敏.青藏高原地壳水平差异运动的GPS观测研究[J].大地测量与地球动力学,2004,24(1):29-35
    78.高红山,潘保田,邬光剑,李吉均,李炳元,DouglasBurbank,业渝光.祁连山东段河流阶地的形成时代与机制探讨[J].地理科学,2005,25(2):197-202
    79.高锐,马永生,李秋生,等.松潘地块与西秦岭造山带下地壳的性质和关系—深地震反射剖面的揭露[J].地质通报,2006,25(12):1361-1367
    80.高玄或,李勇.岷江上游和中游几个河段的下蚀率对比研究[J].长江流域资源与环境,2006,15(4):517-521
    81.龚宇,何玉林,伍先国.抚边河断裂新活动特征的探讨[J].四川地震,1995,20(4):31-36
    82.郭进京,韩文峰,梁收运.青藏高原东北缘岷县-武都地区构造地貌演化与高原隆升[J].中国地质,2006,33(2):384-392
    83.何登发,庄忠海,马永生.松潘-阿坝地块三叠系古地磁结果及运动学意义[J].现代地质,2007,21(3):556-563
    84.何文贵,熊振,袁道阳,葛伟鹏,刘兴旺.2006.东昆仑断裂带东段玛曲断裂古地震初步研究.中国地震,22(2):126-134
    85.何银武.试论成都盆地(平原)的形成[J].中国区域地质,1987,6(2):169-176
    86.何玉林,龚宇,伍先国.四川抚边河断裂的活动特征[J].地震地质,1997,19(1):31-36
    87.何正勤,陈国英.黄海的地壳与上地幔Q_β结构——CDSN应用系列论文二[J].地震地磁观测与研究,1992,13(3):24-30
    88.侯遵泽,杨文采.中国重力异常的小波变换和多尺度分析.[J]地球物理学报,1997,40:84-95
    89.胡道功,吴中海,吴珍汉,赵希涛,叶培盛.东昆仑断裂带库赛湖段第四纪古地震研究.第四纪研究,2007,27(1):27-34
    90.胡道功,叶培盛,吴珍汉,吴中海,赵希涛,刘琦胜.东昆仑断裂带西大滩段全新世古地震研究.第四纪研究,2006,26(6):1012-1020
    91.胡小飞,潘保田.磷灰石(U-Th)/He热年代学方法及其在地貌演化研究中的应用[J].原子能科学技术,2008,42(7):662-664
    92.华杉,张晓军,袁林,等.大兴安岭东沟营林站地区中生代火山岩地质地球化学特征及其成因意义[J].地质科技情报,2010,29(3):32-40
    93.黄永健,张成江,汪云亮,刘树根,王国芝.龙门山造山带中生代花岗岩带成因及其构造意义[J].成都理工学院学报,2002,29(1):69-73
    94.嵇少丞,许志琴,王茜,孙圣思,李海兵.2008.亚洲大陆逃逸构造与现今中国地震活动.地质学报,82(12):1643-1667
    95.纪玉峰,聂占福,韦忠红,李扬,魏小红.应用流体包裹体和磷灰石裂变径迹研究古地温——以辽河盆地东部凹陷为例[J].矿物岩石地球化学通报,2006,25(1):98-106
    96.贾秋鹏,贾东,朱艾斓,等.青藏高原东缘龙门山冲断带与四川盆地的现今构造表现:数字地形和地震活动证据[J].地质科学,2007,42(1):31-44
    97.江万,墓童堂,赵崇贺,郭铁鹰,张双全.矿物裂变径迹年龄与青藏高原隆升速率研究[J].地质力学学报,1998,4(1):13-18
    98.姜亮,周新华,金强.用磷灰石裂变径迹研究西湖凹陷的古地温[J].石油大学学报(自然科学版),2001,25(1):30-35
    99.蒋国芳.利用地震转换求取四川地壳厚度的初步尝试[J].四川地震,1987,3:36-41.
    100.雷建设,赵大鹏,苏金蓉,张广伟,李凤.龙门山断裂带地壳精细结构与汶川大震发震机理[A].中国地震学会成立三十年学术研讨会论文摘要集[C],2009:33-34
    101.李春峰,贺群禄,赵国光.东昆仑活动断裂带东段古地震活动特征[J].地震学报,2005,27(1):60-67
    102.李德文,崔之久.岩溶夷平面演化与青藏高原隆升[J].第四纪研究,2004,24(1):58-67
    103.李海兵,杨经绥,许志琴,孙志明,TapponnierP.2006.阿尔金断裂带对青藏高原北部生长、隆升的制约.地学前缘,13(4):59-79
    104.李浩敏,陈其爽.中国江西始新统的Palibinia——兼论北半球古近纪干旱气候形成机制[J].古生物学报,2002,41(1):119-129
    105.李鸿吉.对喜马拉雅地区地壳热状态的初步估计[J].地球物理学报,1983,(03).
    106.李吉均,方小敏,潘保田,赵志军,宋友桂.新生代晚期青藏高原强烈隆起及其对周边环境的影响[J].第四纪研究,2001,21(5):381-391
    107.李吉均,文世宣,张青松,等.青藏高原隆起时代、幅度和形式的探讨[J].中国科学,1979,6:608-616
    108.李立,金国元.攀西裂谷及龙门山断裂带地壳上地幔大地电磁测深研究[J].物探与化探,1987,11(3):12-19
    109.李立,金国元.攀西地区岩石圈的电性结构[A].中国攀西裂谷文集(3)[C].北京:地质出版社,1988,66-75
    110.李坪.鲜水河-小江断裂带[M].北京:地震出版社,1993,1-50
    111.李涛,王宗秀.青海巴颜喀拉山隆升的热年代学研究[J].地质通报,2008,27(4):469-477
    112.李天祒、杜其方.鲜水河断裂带炉霍段的水平运动及地震的重复性研究[J].地震地质,1989,11(4):31-42
    113.李祥辉,王成善等.朋曲组-西藏南部最高海相层位一个新的地层单元[J].地层学杂志,2000,24(3):243-248
    114.李孝泽,郑洪波.从青藏高原南北两个磨拉石削面的对比看青藏高原的隆升过程[J].中国沙漠,2001,21(4):354-360
    115.李延兴,胡新康,张静华,周伟,郭良迁,张中伏.2008年汶川8.0级地震孕育发生的机制与驱动力[A].国际地震动态—中国地震学会第12次学术大会论文摘要专集[C],2008,(11)115
    116.李勇,A.L.Densmore,周荣军,M.A.Ellis.青藏高原东缘龙门山晚新生代剥蚀厚度与弹性挠曲模拟[J].地质学报,2005,79(5):608-615
    117.李勇,曹叔尤,周荣军,A.L.Densmore,M.A.Ellis.晚新生代岷江下蚀速率及其对青藏高原东缘山脉隆升机制和形成时限的定量约束[J].地质学报,2005,79(1):28-37
    118.李勇,侯中健,司光影,A.L.Densmore,周荣军,M.A.Ellis,李永昭,梁兴中.青藏高原东缘新生代构造层序与构造事件[J].中国地质,2002,29(1):30-35
    119.李勇,黎兵,D.Steffen,A.L.Densmore,N.J.Richardson,周荣军,M.A.Ellis,张毅.青藏高原东缘晚新生代成都盆地物源分析与水系演化[J].沉积学报,2006,24(3):309-320
    120.李勇,李永昭,周荣军,王国芝,司光影,王凤林,梁兴中.成都平原第四纪化石冰楔的发现及古气候意义[J].地质力学学报,2002,8(4):341-346
    121.李勇,徐公达,周荣军,A.L.Densmore,M.A.Ellis.龙门山均衡重力异常及其对青藏高原东缘山脉地壳隆升的约束[J].《地质通报》,2005,24(12):1162-1168
    122.李勇,伊海生.龙门山前陆盆地沉积及构造演化[M].成都:成都科技大学出版社,1995,1-91
    123.李勇,周荣军,A.L.Densmore,M.A.Ellis.青藏高原东缘龙门山晚新生代走滑-逆冲作用的地貌标志[J].第四纪研究,2006,26(1):40-51
    124.李勇,周荣军,AlexanderL.Densmore,MichaelA.Ellis.青藏高原东缘大陆动力学过程与地质响应[M].北京:地质出版社,2006.
    125.李勇,周荣军,A.L.Densmore,M.A.Ellis,黎兵.青藏高原东缘龙门山晚新生代走滑挤压作用的沉积响应[J].沉积学报,2006,24(2):153-164
    126.李志才,许才军,温扬茂.基于地壳结构的地震断层震后变形研究[A].中国地球物理学会第20届年会论文集[C],2004
    127.李志强,袁一凡,李晓丽,何萍.对汶川地震宏观震中和极震区的认识[J].地震地质,2008,30(3):768-777
    128.李智武,刘树根,陈洪德,刘顺,郭兵,田小彬.龙门山冲断带分段-分带性构造格局及其差异变形特征[J].成都理工大学学报(自然科学版),2008,35(4):440-454
    129.刘百篪,刘小凤,袁道阳,郑文俊,郭华,曹娟娟.黄河中上游阶地对青藏高原东北部第四纪构造活动的反映[J].地震地质,2003,25(1):133-145
    130.刘宝君.青藏高原东缘地质及大陆动力学研究的新进展[J].地质通报,2007,Vol.26(8):1056-1058
    131.刘锋,潘保田,苏怀,兰州地区黄河第五级小沙沟阶地古地磁年代研究.《中国沙漠》2008年05期
    132.刘耕武,李伟同.川西高原的上白垩统及第三系[J].地层学杂志,2002,26(3):161-170
    133.刘启元,李显,陈九辉,李顺成,郭庵,王峻,齐少华.汶川大震区及其邻区地壳上地慢S波速度结构的初步研究[C].中国地球物理,2008,4:367
    134.刘树根,罗志立,戴苏兰,DennisArne,C.J.L.Wilson.龙门山冲断带的隆升和川西前陆盆地的沉降[J].地质学报,1995,69(3):205-214
    135.刘树根,赵锡奎.中国西部盆山系统的耦合关系及其动力学模式——以龙门山造山带-川西前陆盆地系统为例.地质学报,2003,77(2):177-186
    136.刘树根.龙门山冲断带与川西前陆盆地形成演化[M].成都:成都科技大学出版社,1993,17-117
    137.刘树文,王宗起,阎全人,等.折多山花岗岩时代、成因及其动力学意义[J].岩石学报,2006,22(2):343-352
    138.刘严松,何政伟,吴德超,肖渊甫,周瑞波.大渡河金川-巴底河段河流地貌特征研究[J].四川地质学报,2007,27(3):162-165
    139.刘勇,赵志军,李才林,张茂恒,陈晔.川西高原杂谷脑河阶地的形成[J].地理学报,2006,61(3):249-254
    140.刘泽纯,王建.评《青藏高原晚新生代隆升与环境变化》[J/OL].ChinaAcademicJournalElectronicPublishingHouse.Allrightsreserved.http://www.cnki.net,2009(6):565
    141.楼海,王椿镛.川滇地区重力异常的小波分解与解释[J].地震学报,2005,27(5):515—523
    142.楼海,王椿镛,吕智勇,姚志祥,戴仕贵,尤惠川.2008年汶川Ms8.0级地震的深部构造环境—远震P波接收函数和布格重力异常的联合解释[J].中国科学D辑(地球科学),2008,38(10):1207-1220
    143.吕江宁,沈正康,王敏.川滇地区现代地壳运动速度场和活动块体模型研究[J].地震地质,2003,25(4):543-554
    144.吕儒仁.四川金川八步里沟沟谷地貌与泥石流[J].山地学报,1988,6(4):20-30
    145.马寅生,施炜,张岳桥等.东昆仑活动断裂带玛曲段活动特征及其东延[J].地质通报,2005,24(1):30-35
    146.孟凡乐,赵文津,李明,SimonL.Klempere,INDEPTH项目组成员.INDEPTH-Ⅱ藏南地壳结构及多期次滑脱作用[A].1995年中国地球物理学会第11届学术年会论文集[C],1995
    147.莫宣学.青藏高原地质研究的回顾与展望[J].中国地质,2010,37(4):841-853
    148.潘保田,高红山,李炳元,李吉均.青藏高原层状地貌与高原隆升[J].第四纪研究,2004,24(1):50-59
    149.潘保田,李吉均,李炳元.青藏高原地面抬升证据讨论[J].兰州大学学报(自然科学版),2000,36(3):100-101
    150.潘保田,邬光剑.祁连山东段沙河沟阶地的年代与成因[J].科学通报,2000,45(24):2669-2675
    151.彭聪.中国西部布格重力异常特征和地壳密度结构[J].地球学报,2005,26(5):417-422
    152.钱洪.鲜水河断裂带的错断地貌及其地震学意义[J].地震地质,1989,11(4):43-49
    153.青海省地震局.东昆仑活动断裂带[M].北京:地震出版社,1999
    154.任金卫,马宗晋.东亚地区现代地壳运动特征与构造变形[J].地学前缘,2003,10(特刊):58-65
    155.沈传波,梅廉夫,凡元芳,汤济广.磷灰石裂变径迹热年代学研究的进展与展望[J].地质科技情报,2005,24(2):57-63
    156.沈显杰,张文仁,杨淑贞,管烨,金旭.青藏高原南北地体壳幔热结构差异的大地热流证据[J].中国地质科学院院报,1990,(02).
    157.施雅风,李炳元.青藏高原晚新生代隆升与环境变化[M].广州:广东科学技术出版社,1998,1-74
    158.施雅风,汤懋苍,马玉贞.青藏高原二期隆升与亚洲季风孕育关系探讨[J].中国科学D辑(地球科学),1998,28(3):263-271
    159.施雅风,刘东生.希夏邦马峰地区科学考察初步报告[J].科学通报,1964,10:928-938
    160.石玉涛,高原,张永久,太龄雪,赵博.汶川地震余震序列的地震各向异性初步分析[A].国际地震动态—中国地震学会第十二次学术大会论文摘要专集[C],2008
    161.苏伟等.青藏高原及其邻区地壳上地幔S波速度结构[J]地球学报,2002,23(1):193-200
    162.孙洁,晋光文,白登海,王立凤.青藏高原东缘地壳、上地慢电性结构探测及其构造意义[J].中国科学D辑(地球科学),2003,33(增刊):173-181
    163.唐荣昌、钱洪、黄祖智等,1992,安宁河断裂带北段晚更新世以来的分段活动特征,中国地震,第8卷第3期。
    164.唐荣昌.四川活动断裂与地震[M].北京:地震出版社,1993,1-192
    165.唐文清,陈智梁,刘宇平,张清志,赵济湘.2005.青藏高原东缘鲜水河断裂与龙门山断裂交会区现今的构造活动.地质通报24(12):1169-1172
    166.王椿墉,吴建平,楼海,周民都,白志明.川西藏东地区的地壳P波速度结构[J].中国科学D辑(地球科学),2003,33(增刊):181-190
    167.王椿镛,吴建平,楼海,等.青藏高原东部壳幔速度结构和地幔变形场的研究[J].地学前缘,2006,13(5):349-359
    168.王椿镛,韩渭宾,吴建平.松潘-甘孜造山带地壳速度结构[J]地震学报,2003,25(3):229-242
    169.王椿镛,楼海,吕智勇,吴建平,常利军,戴仕贵,尤惠川,唐方头,L.Zhu,P.Silver.青藏高原东部地壳上地幔S波速度结构—下地壳流的深部环境[J].中国科学D辑(地球科学),2008,38(1):22-32
    170.王椿镛,王溪莉,苏伟,常利军,韩渭宾,吕智勇,戴仕贵.青藏高原东缘下地壳流动的地震学证据[J].四川地震,2006,31(4):1-4
    171.王椿镛,吴建平,楼海,常利军,苏伟.青藏高原东部壳幔速度结构和地幔变形场的研究[J].地学前缘,2006,13(5):349-359
    172.王椿镛.中国岩石层结构研究的回顾与展望[J].地球物理学报,1997,39(S1):30-40
    173.王椿镛.松潘-甘孜造山带地壳速度结构[J].地震学报,2003,25(3)229-24.
    174.王冬兵,刘勇胜,宗克清,等.内蒙古林西早中生代O型高镁埃达克质安山岩的发现及其意义[J].地质科技情报,2009,28(6):31-38
    175.王凤林,李勇,李永昭,王谋,张玉修.成都盆地新生代大邑砾岩的沉积特征[J].成都理工大学学报(自然科学版),2003,30(2):139-146
    176.王夫运,段永红,杨卓欣.川西盐源-马边地震带上地壳速度结构和活动断裂研究——高分辨率地震折射实验结果.中国科学D辑:地球科学,2008,38(5):611—621
    177.王国芝,王成善.滇西高原第四纪以来的隆升和剥蚀[J].海洋地质与第四纪地质,1999,
    19(4):67-74
    178.王国芝,王成善,刘登忠,刘树根.滇西高原第四纪以来的隆升和剥蚀[J].海洋地质与第四纪地质,1999,19(4):67-74
    179.王国芝,刘树根,徐国盛,李国蓉.龙门山中段推覆体内流体包裹体特征[J].成都理工学院学报,2002,29(4):394-398
    180.王国芝,刘树根,赵锡奎.龙门山中段川西前陆盆地初始盆山边界及其变迁[J].成都理工大学学报(自然科学版),2008,35(4):431-439
    181.王钧,汪辑安.中国地热资源的分布及类型.新能源,1990,12(6):32-41
    182.王琪,张培震,马宗晋.中国大陆现今构造变形GPS观测数据与速度场[J].地学前缘,2002,9(2):415-430
    183.王谦身,滕吉文,张永谦,等.龙门山断裂系及邻区地壳重力均衡效应与汶川地震[J].地球物理学报,2008,23(6):1664-1670
    184.王谦身,滕吉文,张永谦,张雪梅,杨辉.四川中西部地区地壳结构与重力均衡[J].地球物理学报,2009,52(2):579-583
    185.王全伟,王康明,戴宗明,等.川西花岗岩及其成矿系列[M].北京:地质出版社,2008,156-237
    186.王书兵,蒋复初,田国强,傅建利,刘苒,赵志中.四川金川黄土地层[J].地球学报,2005,26(4):355-358
    187.王书兵,蒋复初,田国强.理县黄土地层与环境记录[J].海洋地质与第四纪地质,2006,Vol.26(3):115-119
    188.魏斯禹,张致和,滕古文,等.喜马拉雅地热带的活动特征与板块构造[J].地震研究,1983,6(4):30-50
    189.魏斯禹,张致和,滕古文,胡忠义.喜马拉雅地热带的活动特征与板块构造[J].地震研究,1983,(04).
    190.魏永峰,罗森林.四川石渠县沙尔木一带始新世孢粉的发现及地质意义——兼论古近系热鲁组层序地层特征[J].四川地质学报,2005,25(4):193-197
    191.吴福元,李献华,杨进辉,郑永飞.花岗岩成因研究的若干问题[J].岩石学报,2007,23(6):1217-1238
    192.吴建平,黄媛,张天中,明跃红,房立华.汶川Ms8.0级地震余震分布及周边区域P波三维速度结构研究[J].地球物理学报,2009,52(2):320-328
    193.吴青柏,蒋观利,蒲毅彬,邓友生.青藏高原天然气水合物的形成与多年冻土的关系[J].地质通报,2006,25(1-2):29-33
    194.武汉地质学院.地球化学[M].北京:地质出版社,1979,39-40
    195.肖序常等.青藏高原的构造演化与隆升机制[M].广东科技出版社,2009
    196.熊发挥,肖渊甫,张林.大渡河中游泸定-石棉段阶地特征及河谷发育史探讨[J].四川地质学报,2009,29(4):379-383
    197.胥颐,刘福田,刘建华.松潘-阿坝及其周缘造山带的地震层析成像与深部构造研究.2004,中国地球物理学会第20届年会论文集[C]:265
    198.徐朝繁,潘纪顺,王夫运,田小峰,冯建林.龙门山及其邻近地区深部地球物理探测[J].大地测量与地球动力学,2008,28(6):31-37
    199.徐纪人,赵志新.汶川8.0级大地震震源机制与构造运动特征[J].中国地质,2010,37(4):967-977
    200.徐锡伟,于贵华,马文涛.2003.中国大陆中轴构造带地壳最新构造变动样式及其动力学内涵.地学前缘,10(增刊):160-167
    201.徐仁,陶君容,孙湘君.希夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义[J].植物学报,1973,15(1):103-119
    202.许志琴,侯立玮,王宗秀.中国松潘-甘孜造山带的造山过程[M].北京:地质出版社,1992,7-17
    203.杨长清,刘树根,曹波,李书兵,李曼.龙门山造山带与川西前陆盆地耦合关系及其对油气成藏的控制[J].成都理工大学学报(自然科学版),2008,35(4):471-476
    204.杨逢清,杨恒书.松潘甘孜地块与秦岭褶皱带,扬子地台的关系及其发展史[J].地质学报,1994,68(3):208-218
    205.杨华.青藏高原地球物理特征分析[J].物探与化探,1986(5):321-329
    206.杨农,张岳桥,孟辉,张会平.川西高原岷江上游河流阶地初步研究[J].地质力学学报,2003,9(4):363-370
    207.杨志根.龙门山断层带的GPS测量与2008年汶川特大地展[C].中国地球物理,2008,4:446
    208.杨志根.龙门山断层带的GPS测量与2008年汶川特大地震[A].中国地球物理学会第24届年会论文集[C],2008:446
    209.姚虹,冯锐.中国东西剖面的地壳Q结构研究[J].地震研究,1988,(06).
    210.易桂喜,王思维.2008年5月12日汶川Ms8.0地震[A].国际地震动态—中国地震学会第12次学术大会论文摘要专集[C],2008
    211.易桂喜,姚华建,朱介寿,RobertD.vanderHilst.中国大陆及邻区Rayleigh面波相速度分布特征[J].地球物理学报,2008,51(2):402-411
    212.余绍立,季建清,陈建军,张新钰.下地壳流变层对青藏高原及其周边大尺度地貌的制约[J].地质科技情报,2006,25(5):1-7,20
    213.袁道阳,刘小龙,张培震,刘百篪.青海热水-日月山断裂带的新活动特征[J].地震地质,2003,25(1):155-165
    214.袁海华,张志兰,张平.龙门山老君沟花岗岩体的隆升及冷却史[J].成都地质学院学报,1991,18(1):17-22
    215.袁学诚主编.中国大陆地球物理图集[M].北京:地质出版社,1996,157-158
    216.杂绍立,季建漪,玮建军,张新钰.下地壳流变层对青藏高原及其周边大尺度地貌的制约[J].地质科技情报,2006,25(5):1-20
    217.翟鹏济,张峰,赵云龙.从裂变径迹分析探讨房山岩体地质热历史[J].地球化学,2003,32(2):188-192
    218.张洪荣.川西北龙门山-邛崃山地壳-上地幔的结构构造特征[J].四川地质学报,1990,10(2):
    219.张会平,杨农,张岳桥,孟晖.岷江水系流域地貌特征及其构造指示意义[J].第四纪研究,2006,26(1):126-135
    220.张健,石耀霖.青藏高原隆升及伸展变形中的重力位能[J].地球物理学报,2002,45(2):227-233
    221.张培震,王琪,马宗晋.中国大陆现今构造运动的GPS速度场与活动地块[J].地学前缘,2002,9(2):431-441
    222.张培震.青藏高原东缘川西地区的现今构造变形、应变分配与深部动力过程[J].中国科学D辑(地球科学),2008,38(9):1041-1056
    223.张先进.汶川大地震对藏、羌村寨聚落的破坏与恢复思考[A].中国民族建筑研究会学术年会暨第2届民族建筑(文物)保护与发展高峰论坛会议文件[C],2008
    224.张学民,王瑜.热年代学与造山带隆升-剥蚀速率—古地温梯度的制约[J].地学前缘,2004,11(3):243-244
    225.张岳桥,陈文,杨农.川西鲜水河断裂带晚新生代剪切变形40Ar/39Ar测年及其构造意义[J].中国科学(D辑),2004b,34(7):613-621
    226.张岳桥,杨农,陈文,马寅生,孟晖.中国东西部地貌边界带晚新生代构造变形历史与青藏高原东缘隆升过程初步研究[J].地学前缘,2003,10(4):599-612
    227.张岳桥,杨农,施炜,董树文.青藏高原东缘新构造及其对汶川地震的控制作用[J].地质学报,2008,82(12):1668-1678228.赵伟卫,金强,王伟锋.华北盆地济源凹陷古地温梯度的研究—磷灰石裂变径迹的应用[J].石油实验地质,2002,24(6):555-560
    229.赵小麟,陈社发.岷山隆起的构造地貌学研究[J].地震地质,1994,16(4):429-439
    230.赵小麟,邓起东,陈社发.龙门山逆断裂带中段的构造地貌学研究[J].地震地质,1994,16(4):422-428.
    231.赵小麟,邓起东,陈社发.岷山隆起的构造地貌学研究[J].地震地质,1994,16(4):431-439.
    232.赵永久,袁超,周美夫,等.川西老君沟和孟通沟花岗岩的地球化学特征、成因机制及对松潘-甘孜地体基底性质的制约[J].岩石学报,2007,23(5):995-1006
    233.赵永久,袁超,周美夫,等.松潘甘孜造山带早侏罗世的后造山伸展:来自川西牛心沟和四姑娘山岩体的地球化学制约[J].地球化学,2007,36(2):139-152
    234.赵珠,张润生.四川地区地壳上地幔速度结构的初步研究[J].地震学报,1987,9(2):154-165
    235.郑德文,张培震,万景林等.构造、气候与砾岩——以积石山和临夏盆地为例[J].第四纪研究,2006,26(1):63-69
    236.钟科.青藏高原东部发现两条中下地壳物质流[J].山东国土资源,2010,26(5):66-66
    237.周兵,朱介寿,秦建业.青藏高原及邻近区域的S波三维速度结构[J].地球物理学报,1991,34(4):426-442
    238.周江羽,王江海,AnYin,BKHorton,MSSpurlin.青藏高原东缘古近纪粗碎屑岩沉积学及其构造意义[J].地质学报,2003,77(2):262-272
    239.周荣军,何玉林,马声浩,黎小刚.四川小金抚边河断裂的晚第四纪活动特征[J].地震研究,1999,22(4):376-381
    240.周荣军,李勇,AlexanderL.,Densmore,MichaelA.Ellis.晚第四纪以来青藏高原东缘构造变形的新证据[A],中国地震学会第8次学术大会论文摘要集[C],2000年
    241.周荣军,李勇,DensmoreAL,EllisMA,何玉林,王凤林,黎小刚.2006.青藏高原东缘活动构造,矿物岩石,26(2):40-51
    242.周尚哲,李吉均,张世强,赵井东.祁连山摆浪河谷地的冰川地貌与冰期[J].冰川冻土,2001,23(2):131-138
    243.朱碚定,梁尚鸿,李白基.用瑞利波研究新疆塔里木盆地地壳分层结构及Q_R值[J].地球物理学报,1982,(04)
    244.朱介寿,曹家敏,蔡学林,等.东亚及西太平洋边缘海高分辨率面波层析成像[J].地球物理学报,2002,45(5):646-664.245.朱介寿,曹家敏,刘舜化,蒋国芳,余敏,蒋华琳.用人工地震初探川西地区的地壳结构《成都理工大学学报(自然科学版)》1984年03期
    246.朱介寿,曹家敏,严忠琼.中国及邻区瑞利面波高分辨率层析成像及其地球动力学意义[J].中国地质,2007,34(5):759-767.
    247.朱介寿,蒋国芳.用人工地震初探川西地区的地壳结构[J].成都地质学院学报,1984,21(2):111-122.
    248.朱介寿.欧亚大陆及边缘海岩石圈的结构特性[J].地学前缘,2007,14(3):1-20.
    249.朱介寿.汶川地震的岩石圈深部结构与动力学背景[J].成都理工大学学报(自然科学版),2008,35(4):348-356
    250.朱守彪,张培震.2008年汶川MS8.0地震发生过程的动力学机制研究[J].地球物理学报,2009,52(2):418-427
    251.祝意青,徐云马,吕弋培,李铁明.龙门山断裂带重力变化与汶川8.0级地震关系研究.地球物理学报,2009,52(10):2538-2546
    252.庄真,傅竹武,宋仲和,陈国英等.青藏高原及邻近地区地壳与上地幔剪切波三维速度结构[J].地球物理学报,1992,35(6):694-709
    (1)郭斌.龙门山造山带构造特征及演化过程研究[D].中国地质大学(北京)硕士论文,2006年
    (2)刘勇.川西高原层状地貌研究[D].南京师范大学硕士学位论文,2006(3)谢万春.沿尼泊尔东部喜马拉雅山区之亚热带海拔高度上不同生物之种类丰富变异.台湾国立屏东科技大学大学硕士学位论文,2006
    (4)张燕.松潘甘孜及邻区构造变形特征及其数值模拟[D].西北大学硕士学位论文,2006年
    (5)赵永久.松潘-甘孜东部中生代中酸性侵入体的地球化学特征、岩石成因及构造意义[D].中国科学院广州地球化学研究所博士学位论文,2007年
    (6)四川省地质调查院.1/25万成都市幅区域地质调查2011年工作方案.2011(7)四川省地质调查院.1/25万武都市幅、平武县幅、广元市幅、绵阳市幅、成都市幅等5幅区域地质调查工作设计.2009
    (8)四川省地质调查院.1/25万炉霍县、幅马尔康县幅区域地质调查报告.2008
    (9)四川省地质调查院.1/25万红原县幅、若尔盖县幅区域地质调查报告.2008
    (10)四川省地质调查院.1/25万阿坝县幅区域地质调查报告.2007
    (11)四川省地质调查院.1/25万色达县幅区域地质调查报告.2007
    (12)四川省地质调查院.1/25万蒙沙村幅区域地质调查报告.2006
    (13)四川省地质调查院.1/25万石渠县幅区域地质调查报告.2006
    (14)四川省地质调查院.1/25万新龙县幅区域地质调查报告.2005
    (15)四川省地质调查院.1/25万康定县幅区域地质调查报告.2005
    (16)四川省地质调查院.1/25万宝兴县幅区域地质调查报告.2003
    (17)四川省地质调查院.1/5万勒青贡、色达县、错俄玛、塔子乡、霍西乡等5幅区域地质调查报告.2009
    (18)四川省地质调查院.1/5万水磨沟幅区域地质调查报告.2005
    (19)四川省地质调查院.1/5万樟木寨幅区域地质调查报告.2005
    (20)四川省地矿局.宝兴、小金、茂汶、灌县、马尔康、龙日坝等6个1:20万图幅的区域重力调查
    (21)王椿镛,吴建平,楼海,等.青藏高原东缘地壳结构和地球动力学问题的讨论.中国地震局地球物理研究所(内部资料)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700