用户名: 密码: 验证码:
二连盆地吉尔嘎朗图凹陷隐蔽油气藏研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩性油气藏的勘探既需要理论的指导,同时也需要现代勘探技术的有力支持。针对我国陆上油气藏的勘探,前人已经提出了“源控论”和“复式油气聚集带”三角洲前缘相带控油理论、断陷盆地岩性油气藏勘探理论等。同时当代井筒、地震、钻井等技术的飞速发展,极大地促进了我国油气藏的发现。
     本文基于岩心、录井、地震和测井资料,在对二连盆地吉尔嘎朗图凹陷沉积体系和构造体系综合分析的基础上,探讨了该区油气藏的分布规律,并对岩性油气藏的识别技术进行了系统的研究。研究认为,该凹陷岩性油气藏的分布明显受到沉积相带和坡折带的控制;所提出的基于模型重构的预测方法,可有效地解决半深湖-深湖相钙质泥岩、泥质白云岩对深水有效储层预测的干扰;基于不同地质模式,所建立的该凹陷不同沉积相带的测井四性关系图版,可极大提高该区岩性油气藏勘探的成功率。
     1吉尔嘎朗图凹陷的不同构造位置的沉积体系类型不同,研究区主要发育扇三角洲、辫状河三角洲、近岸水下扇、湖底扇和湖相等6种沉积相类型;不同类型的砂体控制着隐蔽性油气藏的分布
     (1)陡坡近岸扇沉积以高密度浊流为主,岩性以粗碎屑沉积为主,并夹在湖相暗色泥岩中,在剖面上构成砂砾岩、砾岩、粉砂岩和泥岩的频繁韵律沉积。陡坡水下扇包括内扇、中扇和外扇三个亚相类型。
     (2)湖底扇(浊积扇)岩性油气藏:湖底扇是深水重力流成因的扇状碎屑沉积体,在地理位置上多处于深水地区,其成因机制可以使洪水重力流直接注入深水区而形成,也可以是三角洲前缘沉积物顺坡滑塌快速堆积而成。湖底扇岩性比较复杂,岩石类型多样,典型岩性特征为深灰色、黑色泥岩夹杂基支撑砂砾岩。
     (3)扇三角洲前缘席状砂分布范围广,前缘分流水道砂砾岩是重要的储集岩。岩性主要包括杂色块状砾岩、砂砾岩和含砾砂岩,以及灰、深灰色泥岩的不等厚互层。
     2吉尔嘎朗图凹陷坡折带极为发育,其对断陷湖盆砂岩储层的控制作用非常突出,进而对油气的控制作用也非常明显。因其所处的位置、类型不同而有明显的控砂、控藏的差异性
     该凹陷可以划分为西北部陡坡断裂坡折带和东南部缓坡多级断裂坡折带。
     陡坡断裂坡折带主要由西北部边界同沉积断层及伴生断层控制,带内发育湖底扇和斜坡扇等,同时存在地层超覆现象,可形成地层、断块、断鼻和岩性尖灭圈闭等。
     缓坡断裂坡折带包括Ⅰ级断裂坡折带、Ⅱ级断裂坡折带和Ⅲ级挠曲坡折带。Ⅰ级断裂坡折带范围大致在吉17-吉61井以南区域,同时又位于Ⅱ、Ⅲ级坡折的高部位,沉积作用主要受古地形控制,容易形成地层不整合圈闭和地层超覆圈闭。Ⅱ级断裂坡折带是由多条NE向的正断层所控制,控制断层的断距较大,但不同部位、不同断裂的活动强度有差异,上下盘地层厚度有明显的变化,带内有下切充填现象。由于断裂的发育,圈闭以断块、断鼻为主,同时也存在地层超覆、剥蚀、尖灭等现象,可形成地层超覆、岩性上倾尖灭以及构造-岩性等圈闭。另外,从地震剖面上对油层的标定来看,它们距生油岩较远,之所以能形成油藏,与断至深部的断层和作为油气侧向运移通道之一的不整合面关系密切。Ⅲ级挠曲坡折带除与本身所在的沉积古地貌有关外,还与北部同生边界断裂有关。随着边界断裂的不断下沉,斜坡区域则相对抬高,坡度加大,从而形成挠曲坡折。该带内断裂不发育,沉积地貌以较大坡度的斜坡地形为主,主要发育岩性圈闭,以及紧邻Ⅱ级断裂坡折发育的断鼻圈闭。
     3提出了一套深水储层的预测方法,有效地解决了半深湖-深湖相钙质泥岩、泥质白云岩对深水有效储层预测的干扰
     吉尔嘎朗图凹陷洼槽部位的腾格尔组一段(尤其是Ⅵ、Ⅶ、Ⅷ砂组)地层沉积时,为深湖和半深湖相环境,钙质泥岩、泥质白云岩非常发育,且分布比较稳定。由于泥岩含钙后,其声波时差值明显减小,有时甚至低于砂岩的声波时差值,如果按常规的波阻抗反演方法对深水储集砂体进行三维空间描述,则势必造成很大的多解性。基于不同类型储层的岩电及地震反射特征的研究,本文经泥岩基线偏移校正、砂砾岩刻度值校正、特殊岩性逐点编辑校正等处理,总结了深湖相环境的储层预测模型建模方法,提出了利用自然伽马反演识别有效储层的方法,解决了单纯利用波阻抗这一个参数区分砂岩、钙质泥岩、泥质白云岩所带来的多解性问题。勘探实践表明,该技术系列对深水湖底扇和近岸水下扇有效储层的预测具有良好的效果。
     4建立了该凹陷不同沉积相带的测井四性关系图版,极大地提高了岩性油气藏勘探的成功率
     地层的电性特征是岩性、物性、含油性的综合响应。由于储集层纵、横向岩性、物性变化大,因此电性特征相应变化也较大。根据砂砾岩和含砾砂岩两种岩相类型,建立了2类储层的测井四性关系,极大地提高了岩性油气藏的勘探成功率。
The exploration of lithologic reservoirs needs not only the guidanceof theory, but also the strong support of modern exploration techniques.The predecessors have proposed “source control theory”, multiple oil andgas accumulation zone theory, delta front facies-belt controlled theoryand lithologic reservoir exploration theory in faulted basin for theexploration of onshore oil and gas reservoir in China. The rapiddevelopment of the contemporary borehole, seismic and drillingtechnologies greatly improved the discovery of oil and gas reservoirs inChina.
     Based on core, well logging and seismic data, combined with theanalysis of sedimentary system and tectonic system in Jiergalangtu Sag,Erlian Basin, this paper discussed the distribution law of reservoirs in thisarea, and systematically studied the identification techniques forlithologic reservoirs. The result shows that the lithologic reservoirsdistribution in this sag is obviously dominated by sedimentary facies beltand slope break belt. A set of prediction methods for deep-water reservoirwas proposed, which effectively eliminates the interference of semi-deepand deep lacustrine calcareous mudstone, argillaceous dolomite oneffective deep-water reservoir. Based on the different geologic models,the relation chart among the four properties (lithology, physical property,electric property and hydrocarbon-bearing property) was established,which extremely raises the success rate of lithologic reservoirsexploration in this area.
     1. There developed different sedimentary systems in different structural location in Jiergalangtu Sag. In the study area, theremainly developed six types of sedimentary facies, including fan delta,braided river delta, nearshore subaqueous fan, sublacustrine fan andlacustrine facies, and different types of sand bodies control thedistribution of subtle reservoirs.
     (1) Steep-slope nearshore fan deposition is mainly of high-densityturbidity currents. It is mainly composed of coarse clastic sediments,which developed in lacustrine dark mudstone, and formed the frequentrhythmic deposition of glutenite, conglomerate, aleurolite and mudstonein the section. The steep-slope subaqueous fan can be divided into threetypes of subfacies, including inner fan, middle fan and outer fan.
     (2) Sublacustrine fan is fan clastic sedimentary body caused bydeep-water gravity current, and it is more in deep water areasgeographically. It may be formed by the direct injection of flood gravitycurrent into deep water area, and may be formed by the slumping andrapid accumulation of delta front sediments. The sublacustrine fan hascomplex lithologies and multiple types of rocks, and the typical lithologyis characterized by dark gray and black mudstone mixed with matrix-supported glutenite.
     (3) Fan delta front sheet sand distributed widely, and frontdistributary channel glutenite is its important type of reservoir rock. Thelithologies include variegated massive conglomerate, glutenite andpebbled sandstone, as well as gray and dark gray mudstone.
     2. The slope break belt is highly developed in Jiergalangtu Sag.Its control effect on the sandstone reservoir in faulted lake basin isquite outstanding, and the control effect on oil and gas is also obvious.The different location and different types of the slope break beltresult in obvious difference of sand control and reservoir control.
     The sag can be divided into steep slope faulted slope break belt inthe northwest and gentle slope faulted slope break belt in the southeast.
     The steep slope faulted slope break belt is mainly controlled by thecontemporaneous faults and companion faults in the northwestern marginof the sag. There developed sublacustrine fan and slope fan,simultaneously stratigraphic overlap exists, which can form strata, fault block, fault nose and lithologic pinchout traps.
     Gentle slope faulted slope break belt includes levelⅠ and Ⅱfaultedslope break belts and level Ⅲ flexure slope break belt. The levelⅠfaultedslope break belt roughly covers the area in the south of Ji-17well andJi-61well, and it is also located on the high part of the level II and levelIII slope break. Its sedimentation is mainly controlled by paleotopographyand it is easy to form stratigraphic unconformity traps and stratigraphicoverlap traps. The level II faulted slope break belt is dominated by manyNE oriented normal faults. The fault displacement is large, and indifferent position and different fault, the intensity of activities varies. Theformation thickness of fault upper wall and foot wall changes obviouslyand there exist downcutting filling in the belt. Because of thedevelopment of the fault, the traps are mainly of fault block and faultnose. Meanwhile, there also exist stratigraphic overlap, denudation andpinchout, and they can form stratigraphic overlap traps, lithologic updippinchout traps and structural-lithologic traps. In addition, from thereservoir calibration in seismic section, they are far from the oil sourcerocks. That why they can form oil reservoir is greatly related to the deepfaults and unconformable surface which serves as lateral oil and gasmigration pathway. Beside the sedimentary paleogeomorphology wherethey exist, the level III flexure slope break belt is also related to theboundary faults in the north. As the boundary faults constantly sink, theslope areas relatively rise, and the gradient increases, and therefore formsthe flexure slope break belt. In this kind of slope break belt, fault is notdeveloped, the depositional landforms are mainly large gradient slope,and there mainly developed lithologic traps and fault nose traps grownclose to the level II faulted slope break belt.
     3. A set of prediction methods for deep-water reservoir wasproposed, effectively solving the interference of semi-deep and deeplacustrine calcareous mudstone, argillaceous dolomite on effectivedeep-water reservoir prediction.
     The first member of Tenggeer Formation (especially the VI, VII,VIII sand group) deposited in semi-deep and deep lacustrine environment,and the calcareous mudstone and argillaceous dolomite developed well and stably distributed. When mudstone contains calcium, its intervaltransit time reduces obviously, and sometimes it is even lower than that ofsandstone. If we use the conventional wave impedance inversion methodfor3D space description of deep-water reservoir sand bodies, it is boundto cause a great multiplicity. Based on the different types of reservoir rockelectricity and seismic reflection characteristics, this paper summed up amodeling method for reservoir prediction under deep lacustrineenvironment, proposed an effective reservoir detecting method by usingnatural gamma ray inversion method, and solved the multi-solutionproblem caused by the simple use of wave impedance to distinguishsandstone from calcareous mudstone and argillaceous dolomite, throughbaseline offset correction, glutenite scale value correction, speciallithology point-to-point editing correction processing. Explorationpractice shows that the technology is effective in predicting the effectivereservoir in deep sublacustrine fan and nearshore subaqueous fan.
     4. The relation chart among the four properties (lithology,physical property, electric property and hydrocarbon-bearingproperty) was established, which extremely raises the success rate oflithologic reservoirs exploration in this area.
     The electric properties are the integrated response of lithologies,physical properties and hydrocarbon-bearing properties. Due to the fastvertical and lateral variation of lithologies and physical properties, theelectric properties vary greatly. We established two types of relation chartamong the four properties for glutenite reservoir and pebbled sandstonereservoir respectively, which extremely raises the success rate oflithologic reservoirs exploration in this area.
引文
[1]贾承造,赵政璋,杜金虎,等.中国石油重点勘探领域——地质认识、核心技术、勘探成效及勘探方向[J].石油勘探与开发,2008,35(4):385-396.
    [2]赵政璋,赵贤正,何海清.中国石油近五年油气勘探新进展及未来勘探的潜力和方向[A].中国石油地质年会2004年论文集[M].北京:石油工业出版社,2005.53-60.
    [3]杜金虎,何海清,皮学军等.中国石油近年勘探进展及未来勘探接替领域与重点区带[J].岩性油气藏,2011,23(1):1-16.
    [4]赵文智,张光亚,王红军.石油地质理论新进展及其在拓展勘探领域中的意义[J].石油学报,2005,26(1):1-7.
    [5]董大忠,蔚远江,杨涛,等.石油地质理论与勘探技术进步在资源评价中的作用[J].石油学报,2005,26(增刊):18-24.
    [6]贾承造,赵文智,邹才能,等.岩性地层油气藏地质理论与勘探技术[J].石油勘探与开发,2007,34(3):257-272.
    [7]邹才能,陶士振,谷志东.中国低丰度大型岩性油气田形成条件和分布规律[J].地质学报,2006,80(11):1739-1751.
    [8]赵文智,方杰.不同类型断陷湖盆岩性-地层油气藏油气富集规律——以冀中坳陷和二连盆地岩性-地层油气藏对比为例[J].石油勘探与开发,2007,34(2):129-134.
    [9]贾承造,赵文智,邹才能,等.岩性地层油气藏勘探研究的两项核心技术[J].石油勘探与开发,2004,31(3):3-9.
    [10]赵文智,胡素云,董大忠,等.“十五”期间中国油气勘探进展及未来重点勘探领域[J].石油勘探与开发,2007,34(5):513-520
    [11]赵文智,邹才能,汪泽成,等.富油气凹陷“满凹含油”论——内涵与意义[J].石油勘探与开发,2004,31(2):5-13.
    [12]赵文智,张光亚,王红军,等.中国叠合含油气盆地石油地质基本特征与研究方法[J].石油勘探与开发,2003,30(2):1-8.
    [13]祝玉衡,张文朝,二连盆地下白垩统沉积相及含油性[M],北京:科学出版社,2000.
    [14]费宝生,祝玉衡,邹伟宏,等,二连裂谷盆地群油气地质[M],北京:石油工业出版社,2001.
    [15]林畅松、潘元林、肖建新等,构造坡折带――断陷湖盆层序和油气预测的重要概念[J].地球科学,2000,25(3):260-267.
    [16]杜金虎,二连盆地隐蔽油藏勘探[M],北京:石油工业出版社,2003.
    [17]李丕龙张善文宋国奇,等,济阳成熟探区非构造油气藏深化勘探[J].石油学报,2003,24(5):10-15.
    [18]黄福堂,冯子辉.松辽盆地中生界砂岩次生孔隙形成条件及预测[J].大庆石油地质与开发,1999,18(1):1-4.
    [19]钟大康,朱筱敏,文应除.准格尔盆地阜东斜坡侏罗系砂岩成岩作用、空隙演化及次生空隙预测[J].中国海上油气(地质),2003,17(4):249-251.
    [20]王西文,刘全新,吕焕通,等.储集层预测技术在岩性油气藏勘探开发中的应用[J].石油勘探与开发,2006,33(2):189-193.
    [21]丁翠平,雷安贵.岩性油藏预测技术[J].石油勘探与开发,1999,26(1):6-10.
    [22]王西文.岩性油气藏储层预测与评价技术及其应用[J].中国海上油气,2005,17(6):361-371.
    [3]王西文,石兰亭,雍学善,等,地震波阻抗反演方法研究[J],岩性油气藏,2007,19(3),80~88
    [23]姚逢昌,甘利灯,地震反演的应用与限制[J].石油勘探与开发.2000,27(2)53-56
    [24]刘全新,高建虎,董雪华,储层预测中的非线性反演方法[J],岩性油气藏,2007,19(1),81~85
    [25]姜素华,王永诗,林红梅,等.测井约束反演技术在不用类型沉积体系中的应用[J].石油物探,2004,43(6):587-590.
    [26]于建国.测井约束反演技术在史南浊积砂体描述中的应用[J].石油物探,2001,40(2):102-107.
    [27]杜维良,肖阳,祖志勇,等.储层反演技术在二连盆地隐蔽油藏勘探中的应用[J].物探与化探2005,29(5):447-451.
    [28]李琼,贺振华.地震高分辨率非线性反演在薄互储层识别中的应用[J].成都理工大学学报:自然科学版,2004,31(6):708-712.
    [29]王西文.相对波阻抗数据体约束下的多井测井参数反演方法及应用[J].石油地球物理勘探,2004,39(3):291-299.
    [30]王英民,刘豪,李立诚,等.准噶尔大型坳陷湖盆坡折带的类型和分布特征[J].地球科学:中国地质大学学报,2002,27(6):683-688.
    [31]王颖,王英民,王晓州,等.松辽盆地西部坡折带的成因演化及其对地层分布模式的控制作用[J].沉积学报,2005,23(3):498-506.
    [32]孙加鹏,邱殿明,张兴洲,等.裂谷盆地下的壳—幔结构及其成因机制讨论——以由进垂直反射地震剖面揭示的松辽盆地下的壳—幔结构为例[J].吉林大学学报:地球科学版,2004,34(6):40-45.
    [33]王跃文.松辽盆地滨北烃源条件评价方法研究及应用[D].大庆:大庆石油学院,2005.
    [34]袁波,朱建伟,刘招君.松辽盆地布海—合隆地区天然气烃源岩特征及资源量计算[J].世界地质,2003,22(4):352-356.
    [35]李建忠,李军.松辽盆地东南隆起区构造带成因类型及其油气聚集模式[J].大庆石油地质与开发,1999,18(2):7-9.
    [36]任战利,萧德铭,迟元林.松辽盆地基底石炭—二叠系烃源岩生气期研究[J].自然科学进展,2006,16(8):974-979.
    [37]郭英海,李壮福,李熙哲,等.松辽盆地王府凹陷的沉积充填及生储盖组合[J].中国矿业大学学报,2001,30(1):30-34.
    [38]黄福堂,冯子辉.松辽盆地王府凹陷油气水地化特征与油源对比[J].石油勘探与开发,1996,23(6):28-33.
    [39]霍秋立,冯子辉,付丽.松辽盆地未熟-低熟烃源岩中显微组分组成与生烃组分剖析[J].大庆石油地质与开发,1998,17(5):12-15.
    [40]袁彩萍,徐思煌,贾霍甫,等.渤海湾盆地东营凹陷孔店组烃源岩特征研究[J].石油实验地质,2006,28(2):177-181.
    [41]雍学善,余建平,石兰亭.一种三维高精度储层参数反演方法[J].石油地球物理勘探,1997,32(6):852-856.
    [21]唐大海,谢继容. Stratimagic地震相分析技术在川中GSM油气勘探中的应用[J].四川地质学报,2004,24(3):185-189.
    [43]谢继容. Stratimagic地震相分析技术在川中油气勘探中的应用[J].石油物探,2002,41(增刊):319-322.
    [44]谢继容. Stratimagic地震相分析技术公山庙区块油气勘探中的应用[J].天然气勘探与开发,2001,24(3):22-27.
    [45]庄锡进,靳军,支东明. Stratimagic软件在准格尔盆地地震勘探中的应用[J].新疆石油地质,2002,23(3):245-247.
    [46]姜亮,黄捍东,魏修成,等.地震道的非线性约束反演[J].石油地球物理勘探,2003,38(4):435-438.
    [47]Tancr M T,著.隗寿东,译.地震属性[J].油气地球物理,2006,4(1):55-59.
    [48]张建宁,于建国.地震属性应用中的不确定性分析[J].石油物探,2006,45(4):373-379.
    [49]季敏,王尚旭,陈双全.地震属性优选在油田开发中的应用[J].石油地球物理勘探,2006,41(2):183-187.
    [50]张明振.对测井约束地震波阻抗反演的理解与应用[J].油气地球物理,2006,4(3):1-8.
    [51]于红枫,王英民,李雪.Stratimagic波形地震相分析在层序地层言行分析中的应用[J].煤田地质与勘探,2006,34(1):64-66.
    [52]徐刚,王兴谋,沈财余,等.约束地震反演中的测井数据标准化及储层精细标定[J].油气地球物理,2005,3(2):35-38.
    [53]薛良清.层序地层分析在裂谷盆地油气勘探中的应用[J].石油学报,2000,21(5):7-11.
    [54]李邗,何诚,AVO处理解释和岩性识别[J].物探化探计算技术.2003.25(2),145-150
    [55]刘和甫,李小军,刘立群.地球动力学与盆地层序及油气系统分析[J].现代地质,2003,17(1):80-86.
    [56]符勇,姜振泉,马丽,等.论油气成藏的水动力作用[J].新疆石油地质,2005,26(5):517-519.
    [57]蒋启贵,王勤,承秋泉,等.不同组分烃源岩生烃动力学特征浅析[J].石油实验地质,2005,27(5):512-518.
    [58]张忠伟,朱伟,赵澄林.辽河盆地下第三系深部碎屑岩储层次生孔隙演化模式及其分布[J].大庆石油学院学报,2002,26(3):12-13.
    [59]易士威,王元杰,钱铮.二连盆地乌里雅斯太凹陷油气成藏模式及分布特征[J].石油学报,2006,27(3):27-31.
    [60]田文广,姜振学,庞雄奇,等.岩浆活动热模拟及其对烃源岩热演化作用模式研究[J].西南石油学院学报,2005,27(1):12-16.
    [61]陈建文.一个大型弧后裂谷盆地的沉积充填模式——以松辽盆地为例[J].石油实验地质,2000,22(1):50-54.
    [62]庞雄奇.排油气门限的基本概念、研究意义与应用[J].现代地质,1997,11(4):510-521.
    [63]庞雄奇,周海燕,李建青,等.判别浑源气母质转化程度的定量模式及其应用[J].石油学报,2000,21(5):16-20.
    [64]于秀英,程日辉,王璞珺.裂谷盆地构造控制地形—沉积体系演化研究与面临问题[J].世界地质,2004,23(2):123-127.
    [65]吴亚军.东部地区箕状断陷盆地构造演化与沉积充填特征[J].天然气工业,2004,24(3):28-31
    [66]李红林,张喜强,冯宝红,等.济阳坳陷同沉积构造的控砂、控油作用[J].大庆石油地质与开发,2004,23(6):6-7.
    [67]吴长勇,冯宝红,张喜强,等.同沉积构造对油气成藏的作用[J].承德石油高等专科学校学报,2004,6(4):18-22.
    [68]史晓颖.藏南珠穆朗玛峰地区三叠系层序地层及沉积演化[J].地质学报,2001,75(3):292-302.
    [69]欧阳文生,窦立荣,王奇,等.裂谷盆地断层连锁对沉积及油气分布的控制[J].石油勘探与开饭,2003,30(5):10-13.
    [70]李宗田,刘伟.非线性约束储层反演技术在卫城油田的应用[J].西安石油大学学报:自然科学版,2005,20(5):17-21.
    [71]王延光.储层地震反演方法以及应用中的关键问题与对策[J].石油物探.2002.41(3),299-303
    [72]石磊,王昌景.常用的几种反演软件的比较[J].西南石油学院学报,2004,26(3):16-19.
    [73]张巧凤,王余庆,王天琦,松辽盆地薄互层河道砂岩地震预测技术[J],岩性油气藏,2007.19(1):92~95.
    [74]李廷辉,岳跃龙,胡永军,等.Jason反演技术在张东地区储层预测中的应用[J].石油地球物理勘探,2005,40(增刊):108-113.
    [75]付志方,张君,刑卫新,等.拟声波构建技术在砂泥岩薄互层储层预测中的应用[J].石油物探,2006,45(4):415-417.
    [76]杨少虎,黄玉生,彭文绪,等.声波重构技术在储层反演中的应用[J].石油地球物理勘探,2006,41(2):171-176.
    [77]赵铭,罗权生,胥东宏.均值为“零”的曲线重构技术在测井约束反演中的应用[J].吐哈油气,2005,10(4):380-382.
    [78]姜忠新,邰子伟,储层特征曲线重构方法研究[J].胜利油田职工大学学报.2007,21(5),46-48
    [79]车卓吾,测井资料分析手册[M].北京.石油工业出版社.1995
    [80]洪有密,测井原理与综合解释[M].东营.石油大学出版社.1993
    [81]黄隆基,放射性测井原理[M].北京.石油工业出版社.1985
    [82]欧阳健.提高勘探效益充分发挥测井新技术识别与评价油气层的作用[J].勘探家,2000,5(4):22-31.
    [83]李国欣,欧阳健,周灿灿,等.中国石油低阻油层岩石物理研究与测井识别评价技术进展[J].勘探技术,2006(2):43-50.
    [84]孙培安,朱忠宽.准噶尔盆地中部X区块非均质砂岩储层的测井解释评价[J].江汉石油学院学报,2004,26(1):54-56
    [85]雍自权,赵异华,周仲礼,等.八角场—金华—秋林香溪群四段各类产层测井响应特征及识别[J].石油天然气学报,2006.,28(2):66-68.
    [86]谭廷栋.测井解释发现油气层[J].天然气工业,2000,20(6):47-50.
    [87]李刚,吴秀田,刘明,等.泥质和粘土在二连油田测井解释中作用研究[J].测井技术,2004,28(5):417-418.
    [88]申梅英,陈家阔,姚伟.薄层测井技术的进展[J].国外测井技术,2005,20(3):59-63.
    [89]秦绪英,送波涛.测井技术现状与展望[J].勘探地球物理近展,2002,25(1):26-34.
    [90]王杰堂,祃开德.测井油水层识别模糊综合评判方法[J].测井技术,2006,30(2):137-138.
    [91]刘丽琼,严其柱,辛利波,等.张店油田低阻油层测井解释方法研究[J].河南石油,2005,19(1):25-26.
    [92]谭廷栋.中国油气勘探测井技术的更新换代[J].测井技术,2000,24(3):163-167.
    [93]周荣安,雷广才,李彩云.低电阻率油层解释方法[J].测井技术,2002,26(3):201-204.
    [94]谢然红.低电阻率油气层测井解释方法[J].测井技术,2001,25(3):199-203.
    [95]刘雪艳,李光,张晓莉,等.低渗透油藏薄差油水层解释方法研究[J].录井工程,2006,17(2):26-28.
    [96]龚劲松.多功能测井解释理论及应用[J].江苏地质,2005,29(3):178-181.
    [97]郝以岭,周明顺,高敏,等.华北采育地区砾岩储层测井解释技术探讨[J].勘探技术,2005(2):41-50.
    [98]周明顺,左银卿,郝以岭,等.华北廊固凹陷低电阻油气藏测井解释技术[J].中国石油勘探,2002,7(2):51-56.
    [99]李喜安,谭成仟,宋子齐.克拉玛依油田八区克上组砾岩油藏测井描述[J].西安工程学院学报,2001,23(3):33-37.
    [100]赵克超,陶果,王天波,等.泌阳凹陷深层系低孔低渗油气层测井识别技术[J].石油大学学报:自然科学版,2005,29(6):27-31.
    [101]田方,杨永发,马平社,等.某地区低孔低渗低阻油藏测井解释[J].国外测井技术,2005,20(5):13-19.
    [102]李伟.欧利多坨子地区粗面岩相储层特征及测井解释[J].特种油气藏,2001,8(2):1-3.
    [103]王向荣,张建,李国君,等.普通电阻率测井解释储层参数的方法及应用[J].大庆石油地质与开发,2005,24(6):97-99.
    [104]马相玉,赵忠波,刘国涛.砂岩油藏储层内部夹层参数测井解释方法[J].国外测井技术,2005,20(2):14-16.
    [105]宋子齐,谭成仟,高兴军,等.塔中油藏测井储层参数分布及描述[J].测井技术,1999,23(5):344-349.
    [106]孙国红,吕晶,窦凤华.新测井系列油层厚度解释电性标准研究[J].大庆石油地质与开发,2000,19(3):9-10.
    [107]陈新平,史淑芳.油藏描述中储层参数测井解释模型的建立[J].内蒙古石油化工,29:139-140.
    [108]杨杰,卫平生,李相博.石油地震地质学的基本概念、内容和研究方法[J].岩性油气藏,2010.21(1):1-6
    [109]卫平生,李相博,雍学善.等.石油地震地质学若干问题探讨[J].岩性油气藏,2010.21(3):1-5
    [110]韩冰.黄骅坳陷孔南地区孔二段沉积体系研究[D],成都理工大学硕士论文,2009
    [111]贾光华.牛庄洼陷东斜坡沙四上亚段沉积特征及储层预测[D],中国石油大学硕士论文,2009
    [112]陈玲,中建南盆地局部构造特征[J],海洋地质与第四纪地质,2008.28(5):69-75
    [113]董威,乌尔逊凹陷乌南次凹南屯组层序地层学及沉积相研究[D],东北石油大学硕士论文,2011
    [114]史文娟,储层预测技术及在辽河地区的应用[D],中国地质大学(北京)硕士论文,2009
    [115]范洪军,荣胜堡洼陷沙三段薄互层储层地震预测研究[D],中国地质大学(北京)博士论文,2008
    [116]吴俊林,川东南QWS区块储层预测研究[D],成都理工大学硕士论文,2011
    [117]夏步余,居春荣,薛成刚,ISIS全局优化多道反演技术在墩2块岩性油藏描述中的应用[J],油气地质与采收率,2003,(4):64-68
    [118]冉波,单俊峰,金科,等,辽河西部凹陷西斜坡南段隐蔽油气藏勘探实践[J],特种油气藏,2005,12(1):10-14
    [119]石兰亭,马龙,巩固,等,低渗透储层“四性”关系综合研究——以二连盆地吉尔嘎朗图凹陷为例[J],石油物探,2008,47(2):191-194
    [120]石兰亭,郑荣才,张景廉,等.海相、陆相油气及其成因概述[J].海相油气地质,2009,14(1),71-76
    [121]石兰亭,郑荣才.提高地震反演中测井建模精度的方法与应用——自然伽马反演模型建模方法[J].石油天然气学报,2008,30(5):68-72
    [122]石兰亭,郑荣才,张景廉,等.普光气田的天然气可能是无机成因的[J].天然气工业,2008,28(11):8-12
    [123]石兰亭,王斌婷,郑荣才,等.酒西盆地深部热液活动与油气成因[J].新疆石油地质,2008,29(2):152-154
    [124]石兰亭,潘树新,郭维华,等.松辽盆地南部上白垩统中部组合层序界面的识别标志及高分辨率层序地层格架[J].沉积学报,2010,27(2):235-242
    [125]石兰亭,杨庆林,易定红,等.冀中饶阳凹陷大王庄地区古近系沉积演化特征与储盖组合分析[J].东华理工学院学报,2007,30(2):132-136
    [126]石兰亭,李本才,巩固,等.断陷型盆地温压系统与油气成藏——以伊通地堑莫里青断陷为例[J].岩性油气藏,2007,19(1):73-76
    [127]石兰亭,等.二连盆地测井解释方法分析[J].岩性油气藏,2007,18(3):24-29
    [128]于倩,吉尔嘎朗图凹陷宝饶洼槽斜坡带油气富集规律研究[D],中国石油大学硕士论文,2011
    [129]周惠文,刘天佑,潘和平,等,乌里雅斯太凹陷砂砾岩油气藏四性关系研究[C],中国石油勘探开发研究院西北分院建院20周年论文专集,2005
    [130]吴斌,王兴志,张帆,等,川北地区飞仙关组储层特征及其主控因素[J],现代地质,2012,26(1):168-174
    [131]王兴权,升平气田火山岩气藏合理采气速度确定方法研究[D],大庆石油学院硕士论文,2008
    [132]刘俊青;刘睿;陈海宏,泌阳凹陷核三段沉积类型及空间展布规律研究[J],石油地质与工程,2010,24(4):1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700