用户名: 密码: 验证码:
基于润湿性的植物叶面截留降水和降尘的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物叶面是植物—大气相互作用的关键生态界面,在生态系统物质、能量交换过程中发挥着重要的作用。植物叶面的润湿性是各种生境中常见的一种现象,表现了叶片对水的亲和能力。植物叶面的润湿性对滞留、吸附、过滤大气污染物、降水截留、光合作用、病虫害感染等具有重要的影响。基于润湿性的植物叶面降水和降尘截留机制的研究,在认识植被截留降水、降尘的微观机理和植物对环境的响应方面具有重要的意义。
     本文对不同植物的叶面润湿性特征及影响因素、季节变化、地理梯度变化进行了研究;分析了水滴特征对降水截留的影响、叶面特征对植物滞尘的效应;并探讨了叶面润湿性特征作为环境质量变化的指示指标的可能性;取得了以下主要结论:
     (1)供试的95种植物叶正背面的接触角大小在40°—145°之间,平均为103.4°,其中41种背面接触角显著高于正面,28种正面接触角显著高于背面,其余26种正背面差异不显著。乔木叶面接触角明显低于草本和灌木,与不同生活型植物叶面蜡质、叶水分状况有关。
     (2)当叶面蜡质含量低于0.75g/m~2时,植物叶表面的接触角随蜡质含量的升高显著增大;叶面蜡质含量高于0.75g/m~2时,叶面接触角随蜡质含量变化不明显。在低蜡质含量情况下,随着蜡质的增加,叶表面蜡质的覆盖面积和厚度增加,导致了接触角增大;随着蜡质含量的继续增大,由蜡质微形态引起的表面粗糙率的变化成为影响润湿性的主要因素。叶面绒毛的多少、形态、分布方式及绒毛上蜡质的有无对接触角具有重要影响,不同的作用方式表现出润湿和不润湿的特征。叶面气孔的类型、大小和数量均能影响润湿性,但其影响比较复杂。
     (3)随生长期延长,除三叶草外,紫荆、国槐、珊瑚树、银杏、紫叶小檗、小叶黄杨、大叶女贞和小叶女贞叶面接触角均明显降低。疏水型的国槐、紫叶小檗和银杏叶接触角变化达40°以上,亲水型的珊瑚树、大叶女贞和小叶女贞等老叶接触角较新叶降低10°—20°。
     (4)在植物叶片可利用水的下限(质外体含水量,B)以上,叶相对含水量变化对银杏、国槐、紫叶小檗正背面和三叶草正面7种疏水型植物叶面接触角无明显影响,但对樱花、大叶黄杨、加杨、小叶黄杨正背面和三叶草背面9种亲水型叶面接触角的影响可分为三类:小叶黄杨正面接触角随相对含水量的降低而降低;樱花背面接触角随相对含水量呈现“V”型变化;其余7种叶面接触角随相对含水量无明显变化。在16个叶表面接触角的日变化中,仅有樱花正面、大叶黄杨正面和小叶黄杨背面傍晚时(19—20时)接触角显著高于早晨(7—8时)和正午(13—14时)。叶面接触角对叶片含水量变化的不敏感有助于增加植物叶片抵抗短期环境变化的能力。
     (5)随生长期延长,大叶女贞和珊瑚树叶表面粗糙度发生变化。大叶女贞叶片随生长期延长,正背面的粗糙度逐渐接近,但珊瑚树的变化趋势不同。大叶女贞和珊瑚树老叶接触角明显降低幼叶和新叶。叶面接触角的变化与叶面粗糙度及叶面化学组成的亲水性和疏水性密切相关。叶片表面存在大量的沟状、孔状峰谷区域和直径约为10μm的凹陷,有利于PM10的滞留。
     (6)在不同降水梯度下的神木、宜川和淳化植物叶面接触角有显著差异,随降水量的减小植物叶面趋向于有低的润湿性。在3个地区或2个地区均有分布的物种中,胡枝子叶正背面、刺槐叶正背面等疏水型叶面接触角无明显变化;而亲水型的山杏叶正背面、沙棘叶背面和刚毛忍冬叶正背面在降水量小的区域接触角显著增大,而荚蒾、胡颓子等叶面接触角变化不明显。干旱生境中(神木)植物叶面蜡质含量和正面气孔密度显著高于淳化和宜川;背面气孔密度、气孔长度和保卫细胞长度略有减小,但均未达到显著水平。此外,随着降水减少植物叶表面着生绒毛增加。
     (7)喷水法和浸水法测定的植物叶面最大持水量物种间有显著差异,其最大持水量分别变化于29.4—180.0、94.1—278.3g/m~2,前者显著大于后者,高出9.3%—87.2%。喷水法测定的叶面最大持水量与表面自由能、极性分量、色散分量、叶接触角的相关关系均不显著。对浸水法而言,叶面最大持水量与表面自由能、色散分量、极性分量呈极显著正相关,与叶接触角呈极显著负相关。叶表面自由能及其色散分量和极性分量对最大持水量的影响与叶表面自由能的形成及分布特征(表面自由能主要来自于叶表面物质分子间的范德华作用力,色散分量可占到90%以上)有关。叶面接触角的影响则是由于叶面与液滴的接触面积不同而导致的物理作用力不同。
     (8)供试植物叶片的最大滞尘量介于0.8—38.6g/m~2,不同物种最大滞尘量差异显著,物种间可相差40倍以上。叶片表面绒毛数量及其形态、分布特征对滞尘能力具有重要影响,与绒毛和颗粒物之间的作用方式有关。除叶片表面着生绒毛的悬铃木、国槐、榆叶梅和毛梾外,最大滞尘量与叶接触角呈显著负相关。最大滞尘量与叶片表面自由能及其色散分量呈显著正相关,与极性分量正相关关系不显著。
     (9)国槐、悬铃木、银杏、雪松、油松和大叶女贞叶片的滞尘能力表现出明显的季节性变化,新叶滞尘量较低,随叶龄的增加滞尘量增大;不同的物种由较低转变为较高滞尘能力的转折期不同。整个生长季6种植物叶面滞尘量的均值分别为:1.44、3.24、1.34、1.68、4.47、3.61g/m~2。随叶龄的增加叶面由疏水转变为亲水,是影响植物叶片滞尘能力季节性变化的主要因素。
     (10)大叶女贞和小叶女贞在不同环境条件下叶面接触角差异显著,随污染程度的加剧接触角降低。大叶女贞叶片正背面的接触角在居住文教区、商业区、交通繁忙区和工业区分别较相对清洁区降低1.3%、14.3%、7.5%、21.4%;6.1%、13.7%、12.4%、35.1%。而小叶女贞叶片正背面的接触角则分别降低1.0%、1.4%、6.7%、9.0%;0.0%、4.8%、2.9%、5.7%。植物叶片与其生活环境息息相关,工业及交通排放的各种污染物对叶面润湿性具有明显影响,能够反映显著的区域特征。因此,可考虑用植物叶面的润湿性作为综合的指标来指示城市环境的变化。
     论文的主要创新点表现在:(1)斥水型和亲水型植物叶片的润湿性随叶相对含水量的变化而不同。斥水型叶面接触角随相对含水量的变化无明显变化;而亲水型叶面随相对含水量的变化产生叶面微结构的改变,导致接触角变化复杂,出现降低、“V”型变化及无显著影响三种情况。
     (2)蜡质含量对叶表面润湿性具有重要的影响。在蜡质含量小于0.75g/m~2时,随蜡质的增加接触角增大;而在蜡质含量大于0.75g/m~2之后,接触角变化与蜡质含量之间的关系不明显。蜡质含量较低时,蜡质的数量对接触角起决定性影响;随蜡质含量的继续增大,由蜡质微形态引起的表面粗糙率的变化成为影响润湿性的主要因素。
     (3)发现黄土高原地区植物叶面润湿性从南向北表现出润湿性降低的地带性变化规律。
     (4)植物叶面润湿性对环境变化敏感,表现出污染程度加剧润湿性显著增强,可作为综合的指标来指示城市环境质量的变化。
Leaf surfaces represent the key interfaces between plants and their environmentwhich affect substances and energy exchanging processes. Leaf surface wettability,indicating the affinity for water on the leaf surface, is a common phenomenon for plantsin a wide variety of habitats, and directly affects the microhabitat and microclimateavailable for dry and wet deposition, canopy interception, leaf photosynthesis andmicrobes colonization. The researches concentrated on mechanisms of plant leavesbased on leaf surface wettability on rainfall interception and dust-capturing have beenconsidered to be of great theoretical and academic importance.
     Some important problems relating to leaf surface wettability were investigatedincluding: Leaf surface wettability characteristics of plant species and related affectingfactors; The seasonal changes of leaf surface wettability; Patterns of leaf surfacewettability along a moisture gradient on the Loess Plateau; Effects of leaf surfacewettability, surface free energy and water drop shape on rainfall interception; Effects ofleaf surface wettability and surface free energy on dust-capturing capacity, and seasonalchanges of leaf dust-capturing capability; Leaf surface wettability under different urbanatmospheric environments and the potential of leaf surface wettability for bimonitoringof urban habitat quality.
     The major conclusions are as follows:
     (1) There were significant differences in contact angle among species and betweenadaxial and abaxial leaf surfaces for the investigated species in the study areas, and thecontact angles ranged widely from40o to145o, with a mean value of103.4°. Leaf waterrepellency was significantly greater on the abaxial surface than on the adaxial surface for41species, twenty-eight species had greater leaf contact angle on the adaxial surfacethan on the abaxial surface, and twenty-six species had no significant differencebetween adaxial and abaxial surfaces. Leaf contact angle of shrubs and herbs weresignificantly greater than that of trees, which relate to the difference in leaf epidermalwax, leaf water status.
     (2) Leaf contact angle increased significantly with increasing epidermal waxcontent when wax contents were lower than0.75g/m~2. In this condition, the absoluteamount of epidermal wax was the critical factor. When wax contents were higher than0.75g/m~2, leaf contact angle could be classified into two types: leaves covered byconvex epidermal cells and wax crystal with contact angle kept around120°; leaveswith smooth surface and covered by eax membrane, the contact angles kept around80°.For this instance, the roughness created by the complexity of wax structure was themain factor. The amount, distribution, and morphology of trichomes had great influenceon leaf contact angle, and different types of action pattern may lead to different wettingcharacteristics. The type, size, and amount of stomata all have influence on leaf surfacewettability, and the effects are complicated.
     (3) During the growing season, leaf contact angle of Cercis chinensis Bunge,Sophora japonica Linn., Berberis thunbergii cv. atropurpurea, Viburnum odoratissimum,Ginkgo biloba linn., Buxus sinica, Ligustrum lucidum Ait., Ligustrum quihoui Carr.decreased significantly. But, leaf contact angle of Trifolium repens Linn. kept constant.Decreases of40°for the hydrophobic species (Sophora japonica Linn., Berberisthunbergii cv. atropurpurea, Ginkgo biloba Linn.) were observed. Whereas, forhydrophilic species (Cercis chinensis Bunge, Viburnum odoratissimum, Buxus sinica,Ligustrum lucidum Ait., Ligustrum quihoui Carr.), decreases of10°-20°could be found.
     (4) Contact angle did not change significantly with the decrease of leaf relativewater content for7hydrophobic surfaces (adaxial and abaxial surfaces of Ginkgo bilobaLinn., Sophora japonica Linn., Berberis thumbergii cv. atropurpurea, and the adaxialsurface of Trifolium repens) till apoplastic water content (B, the lower limit of plantuseable water). However, for9hydrophilic surfaces (adaxial and abaxial surfaces ofPopulus Canadensis Moench, Euonymus japonius Thunb., Prunus serrulata Lindl.,Buxus sinica, and the abaxial surface of Trifolium repens linn.), the variation of contact angle during dehydration process could be classified into three types:(1) Contact anglesteadily decreased for the adaxial surface of Buxus sinica;(2) Contact angle dropped toa lower value and recovered later for abaxial surface of Prunus serrulata Lindl. beyondapoplastic water content;(3) Contact angle kept constant when relative water contentwas larger than apoplastic water content for the other7hydrophilic surfaces.
     Only contact angle on the adaxial surface of Prunus serrulata Lindl., Euonymusjaponius Thunb., and abaxial surface of Buxus sinica among eight species showedobvious diurnal variation with the same contact angle in the morning and at noon andhigher contact angle at night, suggesting diurnal changes of contact angle were mainlydecided by other factors than leaf water status.
     (5) There were significant variations in leaf contact angle and roughness ofLigustrum lucidum Ait. and Viburnum odoratissimum during the growing season. ForLigustrum lucidum Ait., old leaves had much rougher surfaces than did young leaves.For Viburnum odoratissimum, the adaxial surfaces of young leaves were rougher thanthose for old leaves, but the abaxial surfaces were opposite in roughness. The trend inleaf wettability was that young leaves had higher, and old leaves lower. The variationsof leaf contact angle related to the changes of roughness and the chemical componentsof plant leaves. There existed many papillae and hollows, radii of about10μm, onadaxial surfaces of these two plants. Such structure was advantageous for capturingPM10(particle matter with aerodynamic diameter less than10μm), which might be themost important of the commonly occurring air pollutants.
     (6) The general trend in leaf surface wettability along the moisture gradient on theLoess Plateau was from high contact angles and spherical droplets for leaf surfaces inShenmu to relative lower contact angles in Yichuan and Chunhua. Sixteen speciesdistributed in the three or two sites, and the variations of leaf contact angle weredependent on plant species. Contact angle did not change significantly with the decreaseof precipitation for hydrophobic surfaces (the adaxial surface of Lespedeza bicolorTurcz., and adaxial and abaxial surfaces of Sophora davidii (Franch.) Skeels). However,the variations of contact angle for hydrophilic surfaces could be classified into twotypes:(1) Contact angle significantly increased in a drier site for the adaxial and abaxialsurfaces of Armeniaca sibirica (Linn.) Lam., Lonicera hispida Pall. ex Roem. et Schult., and the abaxial surface of Hippophae rhamnoides Linn.;(2) Contact angle kept constantfor the adaxial and abaxial surface of Elaeagnus pungens Thunb., Viburnum dilatatumThunb.
     In addition, the incidence of adaxial surface with higher contact angle than abaxialsurface in Shenmu were common than that in Yichuan and Chunhua. Moreover, theincidence of amphistomatous and pubescent leaves was much large in Shenmu than inYichuan and Chunhua. A significant increase in wax content and stomatal density onadaxial surface was found in a drier site. However, a decrease in stomatal density,stomatal pore and guard cell on abaxial surface were observed, the difference was notsignificant.
     (7) Leaf maximum water storage capacities of twenty one plant species in Xi’anwere investigated employing two different methods-submerging of and spraying atphytoelements, respectively. Average leaf maximum water storage capacities covered awide range from29.4to180.0g/m~2, and94.1to278.3g/m~2, using the submerging andspraying method, respectively. The spraying method yielded significantly higher valuesas compared to the submerging method, the overestimation ranging from9.3%to87.2%.
     For spraying method, the correlations between leaf maximum water storagecapacities and leaf surface free energy, its polar and dispersive component, leaf contactangles were not significant. As to submerging method, however, significant positivecorrelations between leaf maximum water storage capacities and leaf surface free energy,its dispersive and polar component could be found. And the results showed asignificantly negative correlation between leaf maximum water storage capacities andleaf contact angles.
     (8) The maximum dust-capturing capacities ranged from0.8to38.6g/m~2usingartificial dust-deposition method for21representative urban greening species in Xi’an,and there were significant difference among plant species with the greatestvariation up to forty times. The amount, distribution, and morphology of trichomes hadgreat influence on dust-capturing capability of leaves, which might be due to thedifferent action pattern between trichomes and particulate matters. The contact angles ofplant leaves were negatively correlated with maximum dust-capturing capability except for the four species which had trichomes. The correlation between maximumdust-capturing capacity and surface free energy and its dispersive component wassignificantly positive, but the positive correlation between maximum dust-capturingcapability and polar component was not significant.
     (9) Plant leaves showed significant difference in dust-capturing capacity during thewhole growing season for the six investigated species including Sophora japonica Linn.,Platanus acerifolia (Ait.) Willd., Ginkgo biloba Linn., Cedrus deodara (Roxb) Loud,Pinus tabulaeformis Carr., Ligustrum lucidum Ait. The general trend in leafdust-capturing capacity was that young leaves had lower, and mature leaves higher. Theturning point from lower to higher dust-capturing capacity was dependent on plantspecies. The average dust-capturing capacity for Sophora japonica Linn., Platanusacerifolia (Ait.) Willd., Ginkgo biloba Linn., Cedrus deodara (Roxb) Loud, Pinustabulaeformis Carr., Ligustrum lucidum Ait. was1.44,3.24,1.34,1.68,4.47,3.61g/m~2,respectively. Most probably, the lack of epicuticular wax that, after erosion, provided afavourable substrate for adhesion, seemed to be the key factor leading to seasonalvariations in leaf dust-capturing capacity.
     (10) Leaf surface wettability of Ligustrum lucidum Ait. and Ligustrum quihoui Carr.showed significant differences under different urban atmospheric environment, whichwas highest in comparatively pollution-free area (CPFA), and followed by residentialand educational area (REA), commercial and service area (CSA), heavy-traffic area(HTA) and industrial area (IA). Contact angle of adaxial and abaxial surfaces ofLigustrum lucidum Ait. for REA, CSA, HTA and IA were1.3%,14.3%,7.5%,21.4%;6.1%,13.7%,12.4%,35.1%lower, respectively, than CPF. However, for Ligustrumquihoui Carr., decreases of1.0%,1.4%,6.7%,9.0%;0.0%,4.8%,2.9%,5.7%wereobserved for the adaxial and abaxial surfaces, respectively. Leaves are the main placeof interaction between plants and the environment, and are continuously exposed tohigh levels of different types of air pollutants. The variations in leaf surface wettabilityclosely related with the urbanization and industrialization level, which could indicatedistrict character. Various pollutants emitted from industry and traffic couldaccumulated in leaves and foliar dust, and had great influence on leaf characteristics.Therefore, leaf surface wettability can be regarded as a potentially good bioindicators for urban habitat quality.
     The innovations of this study represent in the following four points:
     (1) For hydrophobic surfaces, contact angle did not change significantly with thedecrease of leaf relative water content above the apoplastic water content (B, the lowerlimit of plant useable water). However, for hydrophilic surfaces, the variations ofcontact angle with relative water content could be classified into three types:(1) Contactangle steadily decreased;(2) Contact angle dropped to a lower value and recovered later;(3) Contact angle kept constant.
     (2) Leaf epidermal wax content had great influence on leaf contact angle. Whenwax contents were lower than0.75g/m~2, leaf contact angle increased significantly withincreasing epidermal wax content. In this condition, the absolute amount of epidermalwax was the critical factor. While, wax contents were higher than0.75g/m~2, the positiverelationship between between leaf contact angle and wax content was not obvious. Forthis instance, the roughness created by the complexity of wax structure was the mainfactor.
     (3) The general trend in leaf surface wettability along the moisture gradient on theLoess Plateau was from high contact angles and spherical droplets for leaf surface inShenmu to relative lower contact angles in Yichuan and Chunhua.
     (4) Leaf contact angle was sensitive to surrounding environment, and decreasedsignificantly in parallel with pollution level, and can be regarded as a potentially goodbioindicator for urban habitat quality.
引文
[1] Abrams MD, Kubiske ME. Leaf structural characteristics of31hardwood and conifer treespecies in central Wisconsin: Influence of light regime and shade-tolerance rank[J]. ForestryEcology and Management,1990,31:245-253.
    [2] Abrams MD, Kubiske ME, Mostoller SA. Relating wet and dry year ecophysiology to leafstructure in constrasting temperate tree species[J]. Ecology,1994,75(1):123-133.
    [3] Adams CM, Hutchinson TC. Comparative abilities of leaf surfaces to neutralize acidicraindrops II. The influence of leaf wettability, leaf age and rain duration on changes in dropletpH and chemistry on leaf surfaces[J]. New Phytologist,1987,106:437-456.
    [4] Ali EA. Damage to plants due to industrial pollution and their use as bioindicators in Egypt[J].Environmental Pollution,1993,81(3):251-255.
    [5] Al-Khlaifat AL, Al-Khashman OA. Atmospheric heavy metal pollution in Aqaba city, Jordan,using Phoenix dactylifera L. leaves[J]. Atmospheric Environment,2007,41:8891-8897.
    [6] Armstrong DJ, Whitecross MI. Temperature effects on formation and fine structure ofBrassica napus leaf waxes[J]. Australian Journal of Botany,1976,24:309-318.
    [7] Baker DJ, Sullivan CY, Moser LE. Water deficit effects on osmotic potential, cell wallelasticity, and proline in five forage grasses[J]. Agronomy Journal,1993,85:270-275.
    [8] Balasooriya BLWK, Samson R, Mbikwa F, Vitharana UWA, Boeckx P, Van Meirvenne M.Biomonitoring of urban habitat quality by anatomical and chemical leaf characteristics[J].Environmental and Experimental Botany,2009,65:386-394.
    [9] Barber JL, Thomas GO, Kerstiens G, Jones KC. Air-side and plant-side resistances influencethe uptake of airborne PCBs by evergreen plants[J]. Environmental Science and Technology,2002,36(15):3224-3229.
    [10] Bargel H, Barthlott W, Koch K, Schreiber L, Neinhuis C. Plant cuticules: multifunctionalinterfaces between plant and environment[J]. The Evolution of Plant Physiology,2003,171-194.
    [11] Barnes JD, Brown KA. The influence of ozone and acid mist on the amount and wettability ofthe surface waxes in Norway Spruce [Picea abies (L.) Karst][J]. New Phytologist,1990,114:531-535.
    [12] Barnes JD, Percy KE, Paul ND, Jones P, McLaughlin CK, Mullineaux PM, Creissen G,Wellburn AR. The influence of UV-B radiation on the physicochemical nature of tobacco(Nicotiana tabaceum L.) leaf surface[J]. Journal of Experimental Botany,1996,47:99-109.
    [13] Barthlott W, Neinhuis C. Purity of scared lotus or escape from contamination in biologicalsurfaces[J]. Planta,1997,202:1-8.
    [14] Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H. Classificationand terminology of plant epicuticular waxes[J]. Botanical Journal of the Linnean Society,1998,126:237-260.
    [15] Bassette C, Bussière F. Partitioning of splash and storage during raindrop impacts on bananaleaves[J]. Agricultural and Forest Meteorology,2008,148,991-1004.
    [16] Ba i T, Krstin L, Ro a J, Popovi. Epicuticular wax on stomata of damaged silver fir trees(Abies alba Mill.)[J]. Acta Societatis Botanicorum Poloniae,2005,74(2):159-166.
    [17] Beckett KP, Freer-Smith PH, Taylor G. Urbanwoodlands: Their role in reducing the effects ofparticulate pollution[J]. Environmental Pollution,1998,99:347-360.
    [18] Beysens D, Steyer A, Guenoun P, Fritter D, Knobler CM. How does dew form[J]? PhaseTransitions,1991,31,219-246.
    [19] Bhushan B, Jung YC. Natural and biomimetic artificial surfaces for superhydrophobicity,self-cleaning, low adhesion, and drag reduction[J]. Progress in Materials Science,2011,56(1):1-108.
    [20] Bico J, Thiele U, Quere D. Wetting of textured surfaces[J]. Colloids and Surfaces A.Physicochem Engineering Aspects,2002,206:41-46.
    [21] Bondada BR, Oosterhuis DM, Murphy JB, Kim KS. Effect of water stress on the epicuticularwax composition and ultrastructure of cotton (Gossypium Hirsutum L.) leaf, bract, and boll[J].Environmental and Experimental Botany,1996,36(1):61-69.
    [22] Bosabalidis AM, Kofidis G. Comparative effects of drought stress on leaf anatomy of twoolive cultivars[J]. Plant Science,2002,163:375-379.
    [23] Boyce RL, McCune DC, Berlyn GP. A comparison of foliar wettability of red spruce andbalsam fir growing at high elevation[J]. New Phytologist,1991,117:543-555.
    [24] Bradley DJ, Gilbert GS, Parker IM. Susceptibility of clover species to fungal infection: theinteraction of leaf surface traits and the environment[J]. American Journal of Botany,2003,90(6):857-864.
    [25] Brewer CA, Nu ez CI. Patterns of leaf wettability along an extreme moisture gradient inwestern Patagonia, Argentina[J]. International Journal of Plant Sciences,2007,168(5):555-562.
    [26] Brewer CA, Smith WK, Vogelmann TC. Functional interaction between leaf trichomes, leafwettability and the optical properties of water droplets[J]. Plant, Cell&Environment,1991,14(9):955-962.
    [27] Brewer CA, Smith WK. Influence of simulated dewfall on phytosynthesis and yield insoybean (Glycine max [L.] Merr. CV Williams) with different trichome densities[J].International Journal of Plant Sciences,1994,155(4):460-466.
    [28] Brewer CA, Smith WK. Leaf surface wetness and gas exchange in the pond lily Nupharpolysepalum (Nymphaeaseae)[J]. American Journal of Botany,1995,82(10):1271-1277.
    [29] Brewer CA, Smith WK. Patterns of leaf surface wetness for montane and subalpine plants[J].Plant, Cell&Environment,1997,20:1-11.
    [30] Bunster L, Fokkema NJ, Schippers B. Effect of surface-active Pseudomonas spp. on leafwettability[J]. Applied and Environmental Microbiology,1989,55(6):1340-1345.
    [31] Burkhardt J, Eiden R. The ion concentration of dew condensed on Norway spruce (Piceaabies (L.) Karst.) and Scots pine (Pinus sylvestris L.) needle[J]. Tree,1990,4:22-26.
    [32] Burkhardt J, Eiden R. Thin water films on coniferous needles[J]. Atmospheric Environment,1994,28:2001-2017.
    [33] Burkhardt J, Peters K, Crossley A. The presence of structural surface waxes on coniferousneedles affects the pattern of dry deposition of fine particles[J]. Journal of ExperimentalBotany,1995,46:823-831.
    [34] Burton Z, Bhushan B. Surface characterization and adhesion and friction properties ofhydrophobic leaf surfaces[J]. Ultramicroscopy,2006,106(8-9):709-719.
    [35] Calder IR, Hall RL, Rosier PTW, Bastable HG, Prasanna KT. Dependence of rainfallinterception on drop size:2. Experimental determination of the wetting functions andtwo-layer stochastic model parameters for five tropical tree species[J]. Journal of Hydrology,1996,185:379-388.
    [36] Callies M, Quéré D. On water repellency[J]. Soft Matter,2005,1:55-61.
    [37] Cameron KD, Teece MA, Bevilacqua E, Smart LB. Diversity of cuticular wax among Salixspecies and Populus species hybrids[J]. Phytochemistry,2002,60:715-725.
    [38] Cape JN, Paterson IS, Wolfenden J. Regional variation in surface properties of Norway spruceand scots pine needles in relation to forest decline[J]. Environmental Pollution,1989,58(4):325-342.
    [39] Cape JN, Percy KE. Use of needle epicuticular wax chemical composition in the earlydiagnosis of Norway spruce (Picea abies (L.) Karst.) decline in Europe[J]. Chemosphere,1998,36(4-5):895-900.
    [40] Cape JN, Sheppard LJ, Binnie J. Leaf surface properties of Norway spruce needles exposed tosulfur dioxide and ozone in an open-air fumigation system at Liphook[J]. Plant, Cell andEnvironment,1995,18:285-289.
    [41] Cassie A, Baxter S. Wettability of porous surface[J]. Transaction of the Faraday Society,1944,40:546-551.
    [42] Chowdhury ABMNU, Jepson PC, Ford MG, Frampton GK. The role of cuticular waxes andsurface roughness in determining the insecticidal efficacy of deltamethrin and dimethoateapplied as emulsifiable concentrates to leaf surfaces[J]. International Journal of PestManagement,2005,51(4):253-263.
    [43] Cook M. Peanut leaf wettability and susceptibility to infection by Puccinia arachidis[J].Phytopathology,1980,70(8):826-830.
    [44] Crisp DJ. The retention of aqueous suspensions on leaf surfaces[J]. Waterproofing and WaterRepellency,1963,14:416-481.
    [45] Crossley A, Fowler D. The weathering of Scots pine epicuticular wax in polluted and cleanair[J]. New Phytologist,1986,103:207-218.
    [46] Deguchi A, Hattori S, Park H T. The influence of seasonal changes in canopy structure oninterception loss: application of the revised Gash mode[J]. Journal of Hydrology,2006,318:80-102.
    [47] Ehleringer JR, Clark C. Evolution and adaptation in Encelia (Asteraceae)[J]. Plantevolutionary biology,1988,221-248.
    [48] Ehleringer JR, Mooney. Leaf hairs: Effects on physiological activity and adaptive value to adesert shrub[J]. Oecologia,1978,37(2):183-200.
    [49] Elag z V, Han SS, Manning WJ. Acquired changes in stomatal characteristics in response toozone during plant growth and leaf development of bush beans (Phaseolus vulgaris L.)indicate phenotypic plasticity[J]. Environmental Pollution,2006,140(3):395-405.
    [50] Faini F, Labbé C, Coll J. Seasonal changes in chemical composition of epicuticular waxesfrom the the leaves of Baccharis linearis[J]. Biochemical Systematics and Ecology,1999,27:673-679.
    [51] Fogg GE. Quantitative studies on the wetting of leaves by water[J]. Proceeding of the royalSociety of London.(Series B. Biological Science),1947,134(877):503-522.
    [52] Fogg GE. Adhesion of water to the external surfaces of leaves[J]. Discussions of the FaradaySociety,1948,3:162-166.
    [53] Fowkes FM. Determination of interfacial tensions, contact angles, and dispersion forces insurfaces by assuming additivity of intermolecular interactions in surfaces[J]. The Journal ofPhysical Chemistry,1962,66:382.
    [54] Freer-Smith PH, Bechett KP, Taylor G. Deposition velocities to Sorbus aria, Acerc ampestre,Populus deltoids trichocarpa ‘Beaupre’, Pinus nigra and Cupressocyparis leylandii for coarse,fine and ultra-fine particles in the urban environment[J]. Environmental Pollution,2005,133:157-167.
    [55] Freer-Smith PH, Holloway S, Goodman A. The uptake of particulates by an urban woodland:Site description and particulate composition[J]. Environmental Pollution,1997,95:27-35.
    [56] Furlan CM, Santos D, Salatino A, Domingos M. n-alkine distribution of leaves of Psidiumguajava exposed to industrial pollutants[J]. Environmental and Experimental Botany,2006,58:100-105.
    [57] Fürstner R, Barthlott W, Neinhuis C, Walzel P. Wetting and self-cleaning properties ofartificial superhydrophobic surfaces[J]. Langmuir,2005,21:956-961.
    [58] Gostin IN. Air pollution effects on the leaf structure of some Fabaceae species[J]. NatulaeBotanicae Horti Agrobotanici Cluj-Napoca,2009,37(2):57-63.
    [59] Graham EA, Nobel PS. Long-time effects of a double atmospheric CO2concentration on theCAM species Agave deserti[J]. Journal of Experimental Botany,1996,47:61-69.
    [60] Gratani L, Crescente MF, Petruzzi M. Relationship between leaf life-span and photosyntheticactivity of Quercus ilex in polluted urban areas (Rome)[J]. Environmental Pollution,2000,110:19-28.
    [61] Gray JE, Holroyd GH, van der Lee FM, Bahrami AR, Sijmons PC, Woodward FI, Schuch W,Hetherington AM. The HIC signalling pathway links CO2perception to stomataldevelopment[J]. Nature,2000,408:713-716.
    [62] Guo ZG, Liu WM. Biomimic from the superhydrophobic plant leaves in nature: Binarystructure and unitary structure[J]. Plant Science,2007,172:1103-1112.
    [63] Haines BL, Jernstedt JA, Neufeld HS. Direct foliar effects of simulated acid rain[J]. NewPhytologist,1985,99:407-416.
    [64] Hallam ND. Growth and regeneration of waxes on the leaves of Eucalytus[J]. Planta,1970,93:257-268.
    [65] Hall DM, Burke W. Wettability of leaves of a selection of New Zealand plants[J]. NewZealand Journal of Botany,1974,12:283-298.
    [66] Hanba YT, Moriya A, Kimura K. Effects of leaf surface wetness and wettability onphotosynthesis in bean and pea[J]. Plant, cell and Environment,2004,27:413-421.
    [67] Harrington DF, Clark C. Reduction in light reflectance of leaves of Encelia densifolia(Asteraceae) by trichome wetting[J]. Madro o,1989,36(3):180-186.
    [68] Hershko V, Nussinovitch A. Physical properties of alginate-coated onion (Allium cepa) skin[J].Food Hydrocolloids,1998,12(2):195-202.
    [69] Holder CD. Leaf water repellency of species in Guatemala and Colorado (USA) and itssignificance to forest hydrology studies[J]. Journal of Hydrology,2007,336:147-154.
    [70] Holloway PJ. The effects of superficial wax on leaf wettability[J]. Annals of Applied Biology,1969,63(1):145-153.
    [71] Holloway PJ. Chemistry of leaf waxes in relation to wetting[J]. Journal of the Science of Foodand Agriculture,1969,20:124-128.
    [72] Holmes G, Keiller DR. Effects of pubescence and waxes on the reflectance of leaves in theultraviolet and photosynthetic wavebands: a comparison of a range of species[J]. Plant, Celland Environment,2002,25:85-93.
    [73] Honour SL, Bell JNB, Ashenden TW, Cape JN, Power SA. Responses of herbaceous plants tourban air pollution: Effects on growth, phenology and leaf surface characteristics[J].Environmental Pollution,2009,157(4):1279-1286.
    [74] Huber L, Gillepsie TJ. Modeling leaf wetness in relation to plant disease epidemiology[J].Annual Review of Phytopathoogy,1992,30:553-577.
    [75] Jenks MA, Ashworth EN. Plant epicuticular waxes: function, production, andgenetics//Horticultural Reviews[M]. Canada: John Wiley&Sons,1999,23:1-68.
    [76] Jetter R, Sch ffer S. Chemical composition of the Prunus laurocerasus leaf surface.Dynamicchanges of the epicuticular wax film during leaf development[J]. American Society of PlantBiologists,2001,126:1725-1737.
    [77] Jim CY, Chen WY. Assessing the ecosystem service of air pollutant removal by urban trees inGuangzhou (China)[J]. Journal of Environmental Management,2008,88:665-676.
    [78] Johnstone GB, Bailey B. Resistance to fungal penetration in Gram ineae[J]. Phytopathology,1985,70:273-279.
    [79] Juniper BE, Jefree CE. Plant surfaces[M]. London: Edward arnold.1983.
    [80] Lafuma A, Quéré D. Superhydrophobic states[J]. Nature Materials,2003,2:457-460.
    [81] Lee SM, Lee HS, Kim DS, Kwon TH. Fabrication of hydrophobic films replicated from plantleaves in nature[J]. Surface&Coating Technology,2006,201:553-559.
    [82] Karageorgou P, Levizou E, Manetas Y. The influence of drought, shade and availability ofmineral nutrients on exudate phenolics of Dittrichia viscose[J]. Flora,2002,197:285-289.
    [83] Kardel F, Wuyts K, Babanezhad M, Vitharana UWA, Wuytack T, Potters G, Samson R.Assessing urban habitat quality based on specific leaf area and stomatal characteristics ofPlantago lanceolata L[J]. Environmental Pollution,2010,158(3):788-794.
    [84] Kardel F, Wuyts K, Babanezhad M, Vitharana UWA, Wuytack T, Adriaenssens S, Samson R.Tree leaf wettability as passive bio-indicator of urban habitat quality[J]. Environmental andExperimental Botany,2012,75:277-285.
    [85] Kayode J, Otoide JE. Environmental pollution and leaf cuticular variations in Newbouldialaevis Seem. ex Bureau[J]. Asian Journal of Plant Sciences,2007,6(6):1024-1026.
    [86] Kenzo T, Yoneda R, Azani MA, Majid NM. Changes in leaf water use after removal of leaflower surface hairs on mallotus macrostachyus (Euphorbiaceas) in a tropical secondary forestin Malaysia[J]. Journal of Forest Research,2008,13(2):137-142.
    [87] Kerstiens G. Cuticular water permeability and its physiology significance[J]. Journal ofExperimental Botany,1996,47(305):1813-1832.
    [88] Kim KS, Park SH, Jenks MA. Changes in cuticular waxes of sesame (Sesamum indium L.)plants exposed to water deficit[J]. Journal of Plant Physiology,2007,164:1134-1143.
    [89] Klaassen W, Bosveld F, de Water E. Water storage and evaporation as constituents of rainfallinterception[J]. Journal of Hydrology,1998,212-213:36-50.
    [90] Knoll D, Schreiber L. Influence of epiphytic micro-organisms on leaf wettability: wetting ofthe upper leaf surface of Juglans regia and of model surfaces in relation to colonization bymicro-organisms[J]. New Phytologist,1998,140:271-282.
    [91] Koch K, Bhushan B, Barthlott W. Multifunctional surface structures of plants: an inspirationfor biomimetics[J]. Progress in Materials Science,2009,54:137-178.
    [92] Koch K, Ensikat HJ. The hydrophobic coatings of plant surfaces: Epicuticular wax crystalsand their morphologies, crystallinity and molecular self-assembly[J]. Micron,2008,39(7):759-772.
    [93] Koch K, Hartmann KD, Schreiber L, Barthlott W, Neinhuis C. Influences of air humidityduring the cultivation of plants on wax chemical composition, morphology and leaf surfacewettability[J]. Environmental and Experimental Botany,2006,56(1):1-9.
    [94] Koch K, Neinhuis C, Ensikat HJ, Barthlott W. Self assembly of epicuticular waxes on livingplant surfaces imaged by atomic force microscopy (AFM)[J]. Journal of Experimental Botany,2004,55(397):711-718.
    [95] Kolodziejek I, Waleza M, Mostowska A. Morphological, histochemical and ultrastructuralindicators of maize and barley leaf senescence[J]. Biologia Plantarum,2006,50:565-573.
    [96] Kulshreshtha K, Farooqui A, Srivastava K, Singh SN, Ahmad KJ, Behl HM. Effect of dieselexhaust pollution on cuticular and epidermal features of Lantana camera L. and Syzygiumcuminii L[J]. Journal of Environment Science and Health,1994,29:301-308.
    [97] Kumar N, Pandey S, Bhattacharya A, Ahuija PS. Do leaf surface characteristics affectAgrobacterium infection in tea [Camellia sinensis (L.) O Kuntze][J]? Journal of Biosciences,2004,29(3):309-317.
    [98] Kuo KC, Hoch HC. Germination of Phyllosticta ampelicida pycnidiospores: prerequisite ofadhesion to the substratum and the relationship of substratum wettability[J]. Fungal Geneticesand Biology,1996,20:18-29.
    [99] Kurtz EB. The relation of the characteristics and yield of wax to plant age[J]. PlantPhysiology,1950,25(2):269-278.
    [100] Liu-Gitz L, Britz SJ, Wergin WP. Blue light inhibits stomatal development in soybean isolinescontaining kaempferol-3-O-2G-glycosyl-gentiobioside (K9), a unique flavonoid glycoside[J].Plant, Cell&Environment,2000,23(8):883-891.
    [101] Ma M, Randal MH, Lowery JL, Fridrikh SV, Rutledge GC. Electrospun poly(styrene-block-dimethysiloxane) block copolymer fibers exhibiting superhydrophobicity[J].Langmuir,2005,21(12):5549-5554.
    [102] Madejón P, Mara ón T, Murillo JM. Biomonitoring of trace elements in the leaves and fruitsof wild olive and holm oak trees[J]. Science of the Total Environment,2006,355:187-203.
    [103] Madsen TV, Sand-Jensen K. Photosynthetic carbon assimilation in aquatic macrophytes[J].Aquatic Botany,1991,41:5-40.
    [104] Martin MP, Juniper PE. Ultrastructure of lesions produced by Cercospora beticola in leaves ofBeta Vulgaris. Plant Pathology,1979,15:13-26.
    [105] Martin RS, Mather TA, Pyle DM, Watt SFL, Day JA, Collins SJ, Wright TE, Aiuppa A,Calabrese S. Sweet chestnut (Castanea sativa) leaves as a bioindicator of volcanic gas,aerosol and ash deposition onto the flanks of Mt Etna in2005-2007[J]. Journal ofVolcanology and Geothermal Research,2009,179:107-119.
    [106] Matzka J, Maher BA. Magnetic biomonitoring of roadside tree leaves: indentification ofspatial and temporal variations in vehicle-derived particulates[J]. Atmospheric Environment,1999,33:4565-4569.
    [107] Mechaber WL, Marshall DB, Mechaber RA, Jobe RT, Chew FS. Mapping leaf surfacelandscapes[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica,1996,93(10):4600-4603.
    [108] Meusel I, Neinhuis C, Markstadter C, Barthlott W. Ultrastructure, chemical composition, andrecrystallization of epicuticular waxes: transversely ridged roadles[J]. Canada Journal ofBotany,1999,77:706-720.
    [109] Moraes RM, Delitti WBC, Moraes JAPV. Gas exchange, growth, and chemical parameters ina native Atlantic forest tree species in polluted areas of Cubat o, Brazil[J]. Ecotoxicology andEnvironmental Safety,2003,54(3):339-345.
    [110] Moreno E, Sagnotti L, Dinarès-Turell J, Winkler A, Cascella A. Biomonitoring of traffic airpollution in Rome using magnetic properties of tree leaves[J]. Atmospheric Environment,2003,37:2967-2977.
    [111] Müller C, Riederer M. Plant surface properties in chemical ecology[J]. Journal of ChemicalEcology,2005,31(11):2621-2651.
    [112] Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaningplant surfaces[J]. Annals of Botany,1997,79:667-677.
    [113] Neinhuis C, Barthlott W. Seasonal changes of leaf surface contamination in beech, oak, andginkgo in relation to leaf micromorphology and wettability[J]. New Phytologist,1998,138:91-98.
    [114] Netting AG, von Wettstein-Knowles P. The physico-chemical basis of leaf wettability inWheat[J]. Planta,1973,114:289-309.
    [115] Nobel PS. Physicochemical and Environmental Plant Physiology[M]. San Diego: AcademicPress.1991.
    [116] Nyarko BJB, Adomako D, Serfor-Armah Y, Dampare SB, Adotey D, Akaho EHK.Biomonitoring of atmospheric trace element deposition around an industrial town in Ghana[J].Radiation Physics and Chemistry,2006,75:954-958.
    [117] Otten A, Herminghaus S. How plants keep dry: a physicist’s point of view[J]. Langmuir,2004,20(6):2405-2408.
    [118] Owens DK, Wendt RC. Estimation of the surface free energy of polymers[J]. Journal ofApplied Polymer Science,1969,13:1741-1747.
    [119] Pal A, Kulshreshtha K, Ahmad KJ, Behl HM. Do leaf surface characters play a role in plantresistance to auto-exhaust pollution[J]? Folra,2002,197:47-55.
    [120] Pandey S, Nagar PK. Patterns of leaf surface wetness in some important medicinal andaromatic plants of Western Himalaya[J]. Flora,2003,198:349-357.
    [121] Paoletti E, Raddi P, Scala SL. Relationship between transpiration, stomatal damage and leafwettability in declining beech tree[J]. Chemosphere,1998,36(4-5):907-912.
    [122] Patankar NA. On the modeling of hydrophobic contact angle on rough surfaces[J]. Langmuir,2003,19(4):1249-1253.
    [123] Percy KE, Awmach CS, Lindroth RL, Kubiske ME, Kopper BJ, Isebrands JG, Pregitzer KS,Hendrey GR, Dickson RE, Zak DR, Oksanen E, Sober J, Harrington R, Karnosky DF. Alteredperformance of forest pests under atmospheres enriched by CO2and O3[J]. Nature,2002,420,403-407.
    [124] Percy KE, Baker EA. Effects of simulated acid rain and production, morphology andcomposition of epicuticular wax and on cuticular membrane development[J]. New Phytologist,1987,107:577-589.
    [125] Percy KE, Baker EA. Effects of simulated acid rain on leaf wettability, rain retention anduptake of some inorganic ions[J]. New Phytologist,1988,108(1):75-82.
    [126] Percy KE, Baker EA. Effects of simulated acid rain on epicuticular wax production,morphology, chemical composition and on cuticular membrane thickness in two clones ofSitka spruce [Picea sitchensis (Bong.) Carr.][J]. New Phytologist,1990,116:79-87.
    [127] Percy KE, Jensen KF, McQuattie CJ. Effects of ozone and acidic fog on red spruce needleepicuticular wax production, chemical composition, cuticular membrane ultrastructure andneedle wettability[J]. New Phytologist,1992,122,71-80.
    [128] Perkins MC, Roberts CJ, Briggs D, Davies MC, Friedmann A, Hart CA, Bell GA. Surfacemorphology and chemistry of Prunus laurocerasus L. leaves: a study using X-rayphotoelectron spectroscopy, time-of-light secondary-ion mass spectrometry, atomic-forcemicroscopy and scanning-electron microscopy[J]. Planta,2005,221(1):123-134.
    [129] Pinon J, Frey P, Husson C. Wettability of poplar leaves influences dew formation andinfection by Melampsora larici-populina[J]. Plant Disease,2006,90:177-184.
    [130] Premachandra GS, Saneoka H, Kanaya M, Ogata S. Cell membrane stability and leaf surfacewax contents as affected by increasing water deficits in Maize[J]. Journal of ExperimentalBotany,1991,42:167-171.
    [131] Prior SA, Pritchard SG, Runion GB, Rogers HH, Mitchell RJ. Influence of atmospheric CO2enrichment, soil N, and water stress on needle surface wax formation in Pinus palustris(Pinaceae)[J]. American Journal of Botany,1997,84:1070-1077.
    [132] Qiu Y, Guan DS, SongWW, Huang KY. Capture of heavy metals and sulfur by foliar dust inurban Huizhou, Guangdong Province, China[J]. Chemosphere,2009,75:447-452.
    [133] Raina AK. Movement, feeding behavior and growth of lavae of the sorghum wheat fly,Atherigona soccata[J]. Insect Science and its Application,1981,2:77-81.
    [134] Rao AV, Kulkarni MM, Pajonk DP, Amalnerkar DP, Seth T. Synthesis and characterization ofhydrophobic silica aerogels using trimethylethoxysilane as a co-precursor[J]. Journal ofSol-Gel Science and Technology,2003,27(2):103-109.
    [135] Riederer M, Schreiber L. Protecting against water loss: analysis of barrier properties of plantcuticles[J]. Journal of Experimental Botany,2001,52(363):2023-2032.
    [136] Riederer T, Schneider G. The effect of the environment on the permeability and compositionof Citrus leaf cuticles II. Composition of soluble cuticular lipids and correlation with transportproperties[J]. Planta,1990,180:154-165.
    [137] Rosado BHP, Oliveiral RS, Aidar MPM. Is leaf water repellency related to vapor pressuredeficit and crown exposure in tropical forests[J]? Acta Oecologica,2010,36:645-649.
    [138] Samdur MY, Manivel P, Jain VK, Chikani BM, Gor HK, Desai S, Misra JB. Genotypicdifferences and water-deficit induced enhancement in epicuticular wax load in peanut[J]. CropScience,2003,43:1294-1299.
    [139] Sánchez FJ, Manzanares M, Andrés EF, Tenorio JL, Ayerbe L. Residual transpiration rate,epicuticular wax load and leaf colour of pea plants in drought conditions. Influence on harvestindex and canopy temperature[J]. European Journal of Agronomy,2001,15:57-70.
    [140] Saneoka H, Ogata S. Relationship between water use efficiency and cuticular wax depositionin warm season forage crops grown under water deficit conditions[J]. Soil Science and PlantNutrition,1987,33:439-448.
    [141] Sase H, Takahashi A, Sato M, Kobayashi H, Nakata M, Totsuka T. Seasonal variation in theatmospheric deposition of inorganic constituents and canopy interactions in a Japanese cedarforest[J]. Environmental Pollution,2008,152:1-10.
    [142] Sch nherr J. Calcium chloride penerates plant cuticle via aqueous pores[J]. Planta,2000,212(1):112-118.
    [143] Schreuder MDJ, Hove LWA, Brewer CA. Ozone exposure affects leaf wettability and treewater balance[J]. New Phytologist,2001,152:443-454.
    [144] Schulte PJ, Hinckley TM. A comparison of pressure-volume curve data analysis techniques[J].Journal of Experimental Botany,1985,36:1590-1602.
    [145] Sgardelis S, Cook CM, Pantis JD, Lanaras T.. Comparison of chlorophyll fluorescence andsome heavy metal concentrations in Sonchus spp. and Taraxacum spp. along an urbanpollution gradient[J]. The Science of the Total Environment,1994,158(18),157-164.
    [146] Shen Q, Ding HG, Zhong L. Characterization of the surface properties of persimmon leavesby FT-Raman spectroscopy and wicking technique[J]. Colloids and Surfaces B: Biointerfaces,2004,37:133-136.
    [147] Shepherd T, Griffiths DW. The effects of stress on plant cuticular waxes[J]. New Phytologist,2006,171:469-499.
    [148] Shepherd T, Robertson GW, Griffiths DW, Birch ANE, Duncan G. Effects of environment onthe composition of epicuticular wax from kale and swede[J]. Phytochemistry,1995,40(2):407-417.
    [149] ikalo, Gani EN. Phenomena of droplet-surface interactions[J]. Experimental Thermal andFluid Science,2006,31:97-110.
    [150] Skoss JD. Structure and composition of plant cuticle in relation to environmental factors andpermeability[J]. Botanical Gazette,1955,117(1):55-72.
    [151] Smith WK, McClean TM. Adaptive relationship between leaf water repellency, stomataldistribution, and gas exchange[J]. American Journal of Botany,1989,76(3):465-469.
    [152] Statler GD, Nordgaard JT. Leaf wettability of wheat in relation to infection by Pucciniarecondite f.sp. tritici[J]. Ecology and Epidemiology,1980,70(7):641-643.
    [153] Steinkamp MP, Martin SS, Hoefert LL, Ruppel EG. Ultrastructure of lesions produced byCercospora beticola in leaves of Beta Vulgaris[J]. Physiological Plant Pathology,1979,15(1):13-26.
    [154] Sun TL, Wang GJ, Liu H, Feng L, Jiang L, Zhu DB. Control over the wettability of an alignedcarbon nanotube film[J]. Journal of the American Chemical Society,2003,125(49):14996-14997.
    [155] Sundberg M, M nsson A, T gerud S. Contact angle measurements by confocal microscopyfor non-destructive microscale surface characterization[J]. Journal of Colloid and InterfaceScience,2007,313:454-460.
    [156] Takamatsu T, Sase H, Takada J. Some physiological properties of Cryptomeria japonicaleaves from Kanyo, Japan: potential factors causing tree decline[J]. Canadian Journal ofForest Research,2001,31(4):663-672.
    [157] Tanakamaru S, Takehana T, Kimura K. Effect of rainfall exposure on leaf wettability innear-isogenic barley lines with different leaf wax content[J]. Journal of AgriculturalMeteorology,1998,54(2):155-160.
    [158] Tang XL, Dong JF, Li XF. A comparison of spreading behaviors of Silwet L-77on dry andwet lotus leaves[J]. Journal of Colloid and Interface Science,2008,325:223-227.
    [159] Tevini M, Steinmüller D. Influence of light, UV-B radiation, and herbicides on waxbiosynthesis of cucumber seedings[J]. Journal of Plant Physiology,1987,131:111-121.
    [160] Thaindian.2010. Sunlight water droplets can lead to burnt plants [EB/OL].(2010-01-11)[2012-2-19].http://www.thaindian.com/newsportal/health/sunlight-water-droplets-can-lead-to-burnt-plants_100301953.html#ixzz0kN4Lmo7m.
    [161] Tipping C, Murray DR. Effects of elevated atmospheric CO2concentration on laf anatomyand morphology in Panincum species representing different photosynthetic modes[J].International Journal Plant Science,1990,160:1063-1073.
    [162] Turunen M, Huttunen S, Percy KE. Epicuticular wax of subarctic Scots pine needles: responseof sulphur and heavy metal deposition[J]. New Phytologist,1997,135:501-515.
    [163] van Oss CJ. Acid-base interfacial interactions in aqueous media[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1993,78(15):1-49.
    [164] Viskari EL. Epicuticular wax of Norway spruce needles as indicators of traffic pollutantdeposition[J]. Water, Air, and Soil Pollution,2000,121:327-337.
    [165] Vogelmann TC. Plant tissue optics[J]. Annual Review of Plant Physio and Plant MolecularBiology,1993,44:231-251.
    [166] Wagner P, Fürstner R, Barthlott W, Neinhuis C. Quantitative assessment to the structural basisof water repellency in natural and technical surfaces[J]. Journal of Experimental Botany,2003,54(385):1295-1303.
    [167] Wali B, Iqbal M, Mahmooduzzafar. Anatomical and functional responses of Calendulaofficinalis L. to SO2stress as observed at different stages of plant development[J]. Flora,2007,202(4):268-280.
    [168] Wang DG, Wang GL, Anagnostou EN. Evaluation of canopy interception schemes in landsurface models[J]. Journal of Hydrology,2007,347:308-318.
    [169] Wang Y, Mo YF, Zhu M, Bai MW. Wettability of metal coating with biomimic microtexture[J].Surface and Coating Technology,2008,203:137-141.
    [170] Watanabe T, Mizutani K. Model study on micrometeorological aspects of rainfall interceptionover an evergreen broad-leaved forest[J]. Agriculture and Forest Meteorology,1996,80:195-214.
    [171] Watanabe T, Yamaguchi I. Evaluation of wettability of plant leaf surface[J]. Journal ofPesticide Science,1991,16:491-498.
    [172] Weiss A. Contact angle of water droplets in relation to leaf water potential[J]. Agricultural andForest Meteorology,1988,43:251-259.
    [173] Wenzel RN. Resistance of solid surfaces to wetting by water[J]. Industrial&EngineeringChemistry,1936,28:988-994.
    [174] Wild E, Dent J, Thomas GO, Jones KC. Visualizing the air-to-leaf transfer and within-leafmovement and distribution of phenanthrene: further studies utilizing two photon excitationmicroscopy[J]. Environmental Science and Technology,2006,40(3):907-916.
    [175] Wilson TB, Bland WL, Norman JM. Measurement and simulation of dew accumulation anddrying in potato canopy[J]. Agriculture and Forest Meteorology,1999,93:111-119.
    [176] Wohlfahrt G, Bianchi K, Cernusca A. Leaf and stem maximum water storage capacity capacityof herbaceous plants in a mountain meadow[J]. Journal of Hydrology,2006,319:383-390.
    [177] Woo KS, Fins L, McDonald GI, Wenny DL, Eramiam A. Effects of nursery environment onneedle morphology of Pinus Monticola Dougl. and implication for tree important programs[J].New Forests,2002,24(2):113-129.
    [178] Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K. Effects of surface structure on thehydrophobicity and sliding behavior of water droplets[J]. Langmuir,2002,18(15),5818-5822.
    [179] Xiao QF. Rainfall interception by Santa Monica’s municipal urban forest[J]. UrbanEcosystems,2002,6:291-302.
    [180] Xu SJ, Jiang PA, Wang ZW, Wang Y. Crystal structures and chemical composition of leafsurface wax depositions on the desert moss Syntrichia caninervis[J]. Biochemical Systematicsand Ecology,2009,37(6):723-730.
    [181] Young T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the RoyalSociety of London,1805,95:65-87.
    [182] Zorba V, Stratakis E, Barberoglou M, Spanakis E, Tzanetakis P, Anastasiadis SH, Fotakis C.Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J].Adanced Material,2008,20,4049-4054.
    [183]鲍文,包维楷,何丙辉,丁德蓉.森林生态系统对降水的分配与拦截效应[J].山地学报,2004,22(4):483-481.
    [184]曹洪法.我国大气污染及其对植物的影响[J].生态学报,1990,10(1):7-12.
    [185]柴一新,祝宁,韩焕金.城市绿化树种的滞尘效应—以哈尔滨市为例[J].应用生态学报,2002,13(9):1121-1126.
    [186]陈芳,周志翔,郭尔祥,叶贞清.城市工业区园林绿地滞尘效应的研究—以武汉钢铁公司厂区绿地为例[J].生态学杂志,2006,25(1):34-38.
    [187]陈刚才,潘纯珍,杨清玲,赵琦,周贤杰.重庆市主城区交通干道空气污染特征分析[J].地球与环境,2004,32(3-4):59-62.
    [188]陈少雄,陈家楠,蔡继业.利用原子力显微镜观察芥蓝叶片气孔[J].湖南农业大学学报(自然科学版),2010,36(1):9-11.
    [189]陈玮,何兴元,张粤,孙雨,王文菲,宁祝华.东北地区城市针叶树冬季滞尘效应研究[J].应用生态学报,2003,14(12):2113-2116.
    [190]程帅,董云开,张向军.规则粗糙固体表面液体浸润性对表观接触角影响的研究[J].机械科学与技术,2007,26(7):822-827.
    [191]党宏忠,董铁狮,赵雨森.红松林冠对降水的截留特征[J].东北林业大学学报,2007,35(10):4-6.
    [192]段文标,刘少冲,陈立新.莲花湖库区水源涵养林水文效应的研究[J].水土保持学报,2005,19(5):26-30.
    [193]方精云,费松林,樊拥军,崔克明.贵州梵净山亮叶水青冈解剖特征的生态格局及主导因子分析[J].植物学报,2000,42(6):636-642.
    [194]冯朝阳,高吉喜,田美荣,林栋,吕世海,刘尚华.京西门头沟区自然植被滞尘能力及效益研究[J].环境科学研究,2007,20(5):155-160.
    [195]逄森,袁会珠,李永平,李鹏,黄雄英,张红星.喷雾助剂Silwet408提高药液在蔬菜叶片上润湿铺展性能的研究[J].农药科学与管理,2005,26(7):22-25.
    [196]高金晖,王冬梅,赵亮,王多栋.植物叶片滞尘规律研究—以北京市为例[J].北京林业大学学报,2007,29(2):94-99.
    [197]顾惕人,朱步瑶,李外浪,马季铭,戴乐蓉,程虎民.表面化学[M].北京:科学出版社.2004.
    [198]韩志武,邱兆美,王淑杰,任露泉.植物表面非光滑形态与润湿性的关系.吉林大学学报(工学版)[J],2008,38(1):110-115.
    [199]贺金生,陈伟烈,王勋陵.高山栎叶的形态结构及其与生态环境的关系[J].植物生态学报,1994,18(3):219-227.
    [200]胡晓敏,张志飞,饶力群,黄卫.植物角质层蜡质合成与调控的分子生物学研究进展[J].武汉植物学研究,2007,25(4):377-380.
    [201]黄慧娟.保定常见绿化植物滞尘效应及尘污染对其光合特征的影响[D].硕士学位论文,保定,河北农业大学,2008.
    [202]黄玲,张正斌,崔玉亭,刘孟雨,柴守玺,陈兆波.小麦叶片蜡质含量与水分利用效率和产量的关系[J].麦类作物学报,2003,23(3):41-44.
    [203]蒋高明.当前植物生理生态学研究的几个热点问题[J].植物生态学报,2001,25(5):514-519.
    [204]李春杰,任东兴,王根绪,胡宏昌,李太兵,刘光生.青藏高原两种草甸类型人工降水截留特征分析[J].水科学进展,2009,20(6):669-774.
    [205]李芳兰,包维楷,刘俊华,吴宁.岷江上游干旱河谷海拔梯度上白刺花叶片生态解剖特征研究[J].应用生态学报,2006,17(1):5-10.
    [206]李海梅,刘霞.青岛市城阳区主要园林树种叶片表皮形态与滞尘量的关系[J].生态学杂志,2008,27(10):1659-1662.
    [207]李建军,沈振兴,同帜,曹军骥,韩月梅,刘随心,朱崇抒.西安冬春季PM10中碳气溶胶的昼夜变化特征[J].环境科学,2009,30(5):1506-1513.
    [208]李婧婧,黄俊华,谢树成.植物蜡质及其与环境的关系[J].生态学报,2011,31(2):565-574.
    [209]刘家琼,蒲锦春,刘新民.我国沙漠中部地区主要不同生态类型植物的水分关系和旱生结构比较研究[J].植物学报,1987,29(6):662-673.
    [210]刘美珍,蒋高明,李永庚,牛书丽,高雷鸣.浑善达克沙地三种生境中不同植物的水分生理生态特征[J].生态学报,2004,24(7):1465-1471.
    [211]马剑英,方向文,夏敦胜,段争虎,陈发虎,王刚.荒漠植物红纱叶片元素含量与气候因子的关系[J].植物生态学报,2008,32(4):848-857.
    [212]邱媛,管东生,宋巍巍, Peart MR.惠州城市植被的滞尘效应[J].生态学报,2008,28(6):2455-2462.
    [213]曲爱兰,文秀芳,皮丕辉,程江,杨卓如.复合SiO2粒子涂膜表面结构及超疏水性能.无机化学学报,2007,23(10):1711-1716.
    [214]曲爱兰,文秀芳,皮丕辉,程江,杨卓如.复合SiO2粒子涂膜表面的超疏水性研究.无机材料学报,2008,23(2):373-378.
    [215]任露泉,王淑杰,周长海,赵维福.典型植物非光滑疏水表面的理性模型[J].吉林大学学报(工学版),2006,26(增刊2):97-101.
    [216]石辉,李俊义.植物叶片润湿性特征的初步研究[J].水土保持通报,2009,29(3):202-205.
    [217]石辉,王会霞,李秧秧,刘肖.女贞和珊瑚树叶片表面结构的AFM观察[J].生态学报,2011,31(5):1471-1477.
    [218]石辉,王会霞,李秧秧.植物叶表面的润湿性及其生态学意义[J].生态学报,2011,31(15):4287-4298.
    [219]时忠杰,王彦辉,于澎涛,熊伟,郭浩,郭明春.宁夏六盘山林区几种主要森林植被生态水文功能研究[J].水土保持学报,2005,19(6):134-138.
    [220]王会霞,石辉,李秧秧.西安市常见绿化植物叶片润湿性能及其影响因素[J].生态学杂志,2010a,29(4):630-636.
    [221]王会霞,石辉,李秧秧.城市绿化植物叶片表面特征对滞尘能力的影响[J].应用生态学报,2010b,21(12):3077-3082.
    [222]王会霞,石辉,李秧秧.城市大气环境下绿化植物叶片比叶重和光合色素含量[J].中国环境科学,2011,31(7):1134-1142.
    [223]王会霞,石辉,玉亚.植物叶面能量特征和水滴形态对截留降水的影响[J].水土保持学报,2012a,26(3):249-252,259.
    [224]王会霞,石辉,李秧秧,张雅静,杜红霞,杜衡.城市植物叶面尘粒径和几种重金属(Cu、Zn、Cr、Cd、Pb、Ni)的分布特征.安全与环境学报,2012b,12(1):170-174.
    [225]王蕾,高尚玉,刘连友,哈斯.北京市11种园林植物滞留大气颗粒物能力研究[J].应用生态学报,2006,17(4):597-601.
    [226]王淑杰.典型生物非光滑表面形态特征及其脱附功能特性研究[D].博士学位论文,长春,吉林大学,2006.
    [227]王淑杰,任露泉,韩志武,邱兆美,周长海.典型植物叶表面非光滑形态的疏水防黏效应[J].农业工程学报,2005,21(9):16-19.
    [228]王赞红,李纪标.城市街道常绿灌木植物叶片滞尘能力及滞尘颗粒物形态[J].生态环境,2006,15(2):327-330.
    [229]王志玲,王正,阎昊鹏.麦秆表面自由能及其分量研究[J].高分子材料科学与工程,2007,23(3):207-210.
    [230]温达志,陆耀东,旷远文,胡羡聪,张德强,薛克娜,孔国辉.39种木本植物对大气污染的生理生态反应与敏感性[J].热带亚热带植物学报,2003,11(40):341-347.
    [231]西安市环境保护局.空气质量日报[EB/OL].http://www.xaepb.gov.cn/hopeCMS/site/xaepb/index.gsp,2010-01-01-2011-06-14/2012-02-17.
    [232]邢树平,李冰石,王琛,胡玉熹,林金星.雪松和水杉花粉外壁亚结构的原子力显微镜研究[J].科学通报,2000,45(3):306-310.
    [233]杨惠敏,王根轩.干旱和CO2浓度升高对干旱区春小麦气孔密度及分布的影响[J].植物生态学报,2001,25(3):312-316.
    [234]杨晓东,尚广瑞,李雨田,宣明.植物叶表的润湿性能与其表面微观形貌的关系[J].东北师范大学学报(自然科学版),2006,38(3):91-95.
    [235]姚银安,祖艳群,李元.紫外线B辐射与植物体内酚类次生代谢的关系[J].植物生理学通讯,2003,39:179-184.
    [236]姚兆华,郝丽珍,王萍,张凤兰,陈宏伟,胡宁宝.沙芥属植物叶片的气孔特征研究[J].植物研究,2007,27(2):199-203.
    [237]张丽芬,陈复生,孙晓洋,杨宏顺.原子力显微镜表征采后果蔬结构特性的研究进展[J].食品与机械,2008,24(1):159-163.
    [238]张世文,廉育英.憎水性与接触角的测量[J].现代计量测试,1994,3:36-41.
    [239]张晓艳,杨慧敏,侯宗东,王根轩.土壤水分和种植密度对春小麦叶片气孔的影响[J].植物生态学报,2003,27(1):133-136.
    [240]张新献,古润泽,陈自新,李延明,韩丽莉,李辉.北京城市居住区绿地的滞尘效益[J].北京林业大学学报,1997,19(4):12-17.
    [241]张秀梅,李景平.城市污染环境中适生树种滞尘能力研究[J].环境科学动态,2001,2:27-30.
    [242]张志飞,饶立群,向佐湘,胡晓敏,王晓杰.高羊茅叶片表皮蜡质含量与其抗旱性的关系[J].西北植物学报,2007,27(7):1417-1421.
    [243]张志山,张景光,刘立超,王新平,李新荣.沙漠人工植被降水截留特征研究[J].冰川冻土,2005,27(5):761-766.
    [244]赵勇,李树人,阎志平.城市绿地的滞尘效应及评价方法[J].华中农业大学学报,2002,21(6):582-586.
    [245]郑黎俊,乌学东,楼增,吴旦.表面微细结构制备超疏水表面[J].科学通报,2004,49(17):1691-1699.
    [246]郑淑霞,上官周平.近一世纪黄土高原区植物气孔密度变化规律.生态学报,2004,24(11):2457-2464.
    [247]周亮,梅凡民,傅成诚,张莎.基于单点观测的西安东二环附近TSP特性研究[J].环境科学与管理,2010,35(1):46-48.
    [248]朱绍文,张立,张春林.八达岭林场森林资源价值评估及生态效益经济补偿的初步探讨[J].北京林业大学学报,2003,25:71-74.
    [249]朱志梅,杨持.草原荒漠化过程中植物的耐胁迫类型研究[J].生态学报,2004,24(6):1093-1100.
    [250]祖元刚,张宇亮,刘志国,王延兵,梁慧丽,刘红梅.原子力显微镜在植物学研究中的应用[J].植物学通报,2006,23(6):708-717.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700