用户名: 密码: 验证码:
露天开采隐患空区激光三维探测、可视化研究及其稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隐患采空区是目前影响多空区矿山,尤其是地下转露天开采矿山安全生产的主要危害源之一。随着台阶开采的不断剥离,露天开采境界内各台阶与地下空区群的隔离层厚度越来越薄,随时有可能发生采空区顶板坍塌事故,特别是在台阶爆破荷载作用下,采空区顶板极易发生动态失稳而危及采场工作人员和大型采掘及运输设备的安全。因此,对露天开采境界内地下采空区进行精确探测,以采空区可视化数据为基础合理规划矿区开采,并在探明采空区的基础上对其在地压和台阶爆破荷载作用下的稳定性进行安全评估,已成为当前多空区露天矿山生产中厄待解决的问题。
     本文针对多空区露天矿山开采境界内采空区赋存的特点和条件,综合考虑矿山地质、采空区围岩稳固性等,运用现场探测、试验、可视化建模、数值模拟等方法,采用先进的空区自动激光扫描系统(C-ALS)、多模块可视化矿业软件Surpac、岩土软件FLAC3D和ANASYS、动力学数值模拟软件LS-DYNA等一系列数字化工具,紧密结合“十一五”国家科技支撑计划专题项目“矿井老空区探测与水害防治关键技术及装备”,以河南洛钼集团栾川三道庄露天矿区内下覆隐患采空区为工程背景,开展了露天开采境界下采空区激光三维探测、空区群三维可视化、基于C-ALS及Surpac-FLAC3D耦合技术的复杂采空区静力稳定性分析以及露天矿台阶爆破作业下采空区稳定性数值分析等一系列深入研究,主要研究内容如下:
     (1)针对露天开采境界下隐患采空区对矿区安全生产所形成的威胁,引进先进的空区激光自动扫描系统(Cavity Auto-scanning Laser System,简称C-ALS),对其工作原理进行探究,通过扫描生成高精度点云数据定位采空区的空间位置,并运用数据处理软件(Modelace和Voidwork)生成与采空区实际空间形态一致的采空区三维表面模型。
     (2)研究以不规则三角网(Triangular Irregular Network,简称TIN)为基础的复杂地质体三维可视化建模技术,并以Surpac软件为平台制定相应的复杂采空区群露天开采境界三维可视化实施方案。将该方案应用于三道庄露天矿矿区,建立该矿区内露天开采境界地表、地下矿体以及复杂采空区群的三维可视化模型,并重点对采空区群内部错综复杂的通透关系进行三维描述。
     (3)在采用空区激光自动扫描系统(C-ALS)对复杂采空区进行激光扫描获得不规则采空区实际空间边界的基础上,运用Surpac软件进行三维块体模拟,研究Surpac与FLAC3D模型耦合技术,将三维块体模型数据导入FLAC3D软件中,生成与实际采空区空间分布一致的数值计算模型,并结合现场实际勘测的围岩物理力学参数,对采空区进行静力计算,分析采空区的稳定性,提高复杂采空区稳定性计算的准确性和可靠性。
     (4)采用现场爆破试验所得数据,通过回归分析,得出应力波质点震动峰值速度(peak particle velocity,简称PPV)及主频的经验衰减公式,在所得经验衰减公式的基础上发展相应的动力学数值计算模型用来模拟台阶爆破诱导的应力波传播,并利用实测数据对该模型进行有效性和准确性验证。随后,进行一系列的数值模拟,同时,结合目前国外普遍采用的PPV岩体爆破损伤判据,利用计算所得数值结果对采空区顶板及围岩在邻近上部台阶爆破作用下的稳定性进行评估。
Hazardous cavity created by previous underground mining activities under open-pit mine constitutes a potential hazard to active mining operations; especially in open-pit mine converted from underground mine. During the process of peeling off of overlying strata, the thickness between pit bottom and roofs of the cavities is becoming thinner and thinner. Additional loading is also imposed by engineering works directly over the cavities. Moreover, ground vibrations arising from excavation with bench blasting could loosen the support of the walls and roofs of the cavities. The stress by bench blasting may exceed the strength of rock material, thus results in cover collapse. Collapse of these cavities imposes a potential hazard to workers and heavy equipment in the open-pit mine. Therefore, accurate surveys of these cavities, reasonable planning for open-pit mining based on visualization data and estimation of the stability of underground cavities under ground pressure or in the vicinity of the bench blasting are formidable problems.
     By considering the characteristics of underground cavity in open-pit mine, geotechnical conditions and stability of surrounding rock, the methods such as field survey, field tests,3D visualization, numerical simulation and so forth are used synthetically in the paper. The Cavity Auto-laser Scanning System(C-ALS), mining software Surpac, numerical simulation Flac3D, ANASYS and LS-DYNA are used for investigating and evaluating the stability of the cavities in Sandaozhuang open-pit mine supported by the project "detection of old mined-out area and key technology and equipment of prevention and control of water disasters" under the national11th Five-Year Science and Technology Supporting Plan of China. Cavity3D laser sanning,3D visualization of complicated cavity group under open-pit mine, numerical analysis of the stability of complicated cavity based on C-ALS and coupled Surpac-FLAC3D technology and numerical analysis of the stability of abandoned cavities in bench blasting are carried out, and the main study contents are as follows.
     (1) The existence of abandoned cavities created by mining activities constitutes a potential hazard to active aboveground mining operations, the safety of workers and heavy equipment. In response to this situation,3D laser scanning for complicated cavity with Cavity Auto-scanning Laser System (C-ALS) is put forward and its working principle is also introduced. Cavity under open-pit mine can be exactly located by using C-ALS, and the data of the cavity can be processed and accurately generated3D geological model of the cavity in Modelace and Voidwork software.
     (2)3D visualization modeling technology of complicated geological bodies which is based on Triangular Irregular Network (TIN) was introduced, and corresponding implementing scheme of3D visualization of complicated cavity group under open-pit limit on platform of Surpac software was made out. On the foundation of field surveys, collecting and sorting data, the3D visualization models of Digital Terrain Models (DTM) of open-pit surface, occurrence state of ore body and complicated gravity group of Sandaozhuang open-pit mine were generated, especially, intricate transfixion relationship in cavity group was emphatically described in3D which can be used to logically analyze jointly destructive effect.
     (3) Real space boundary of the irregularly cavity was obtained by laser scanning and3D block model of the surrounding rock was modelled in Surpac software based on the3D point cloud data of the cavity. The coupled Surpac-FLAC3D technology has been studied and3D model data was successfully converted into FLAC3D software. Numerical analysis model with real space shape of the cavity was created in FLAC3D, combining physical and mechanical parameters of surrounding rock based on field tests and other geological conditions, static calculation was performed. According to the numerical results, the stability of the cavity was analysed through referring to the nephogram of stress and displacement of the surrounding rock, and the accuracy and reliability of analysis results were greatly improved.
     (4) Based on the data of stress waves measured from bench blasting tests, the site-specific attenuation relations of PPV and principal frequency of stress waves were obtained. A numerical model is then developed based on these relations to simulate the stress wave propagation induced by bench blasting. The accuracy of the numerical prediction is verified by the field measured data. The verified numerical model is furthermore used to perform a series of simulations. They are then used to assess the roof stability of cavities in adjacent upper bench blasting together with PPV damage criterion.
引文
[1]冯长根,李俊平,于文远,等.东桐峪金矿空场处理机制研究[J].黄金,2002,23(10):11-15.
    [2]地矿部物化探研究所情报室.日本工程物探技术译文集[M].北京:地矿物物化探研究所情报室,1984.
    [3]刘建华,彭向峰,孙智峰.高分辨率地震技术探测采空区研究—以贾汪煤矿区为例[J].高效地质学报,1996,2(4):454-457.
    [4]薛国强,宋建平,闫述,等.瞬变电磁探测地下洞体的可行性分析[J].石油大学学报(自然科学版),2004,28(5):135-138.
    [5]张金柱,张金良,朱宏伟.洛钼集团三道庄钼矿采空区探测与治理技术探讨[J].陕西地质,2010,28(2):81-85.
    [6]潘瑞林.采空区物探方法新探[J].铁道勘察,2010,6:23-26.
    [7]王兴泰.工程与环境物理新方法新技术[M].北京:地质出版社,1996.
    [8]冯锐,李智明,李志武,等.电阻率层析成像技术[J].中国地震,2004,20(1):13-30.
    [9]方前发,张宏兵.电法勘探方法在水文和工程地质中的应用[J].大众科技,2006,4:29-31.
    [10]刘晓民,刘延玺,万峥.高密度电阻率法在水文地质勘查中的应用[J].中国水利水电科学研究院学报,2007,5(2):154-157.
    [11]袁晓森,张志军.高密度电阻率法在地下煤矿采空区探测中的应用[J].矿产与地质,2006,20(3):273-278.
    [12]陆云翔,王勇,徐岳行,等.高密度电阻率法探测地下空洞[J].工程地球物理学报,2010,7(6):674-678.
    [13]寇绳武,李克祥,郭舜,等.高密度电阻率法探测洞穴、采空区的效果分析[J].工程勘探,1994,6:61-65.
    [14]杨妮妮.高密度电阻率法探测煤矿采空区灾害的可行性研究[J].江西科学,2008,26(6):969-972.
    [15]祝卫东,钱勇峰,李建华.高密度电阻率法在采空区及岩溶探测中的应用研究[J].工程勘察,2006,4:69-72.
    [16]石林珂,刘洪一,冷元宝.高密度电阻率法在采空区探测中的应用[J].华北水利水电学院学报,2010,31(5):122-144.
    [17]牛超,朱鲁,翟培合.高密度电阻率法在金矿采空区探测中的应用[J].山东煤炭科技,2010,6:29-31.
    [18]叶章,刘鸿福.高密度电阻率法在探测多层采空区中的应用[J].科技情报开发与经济,2008,18(21):130-132.
    [19]门业凯,杨义彪,席晓凤,等.基于高密度电阻率法的露天铁矿采空区探测的研究[J].工程地球物理学报,2010,7(2):164-168.
    [20]李清林,谢汝一,王兰甫,等.应用电阻率层析成像探测采空区、斜风井巷道稳定性计算[J].CT理论与应用研究,2005,14(3):1-7.
    [21]牛之琏.脉冲瞬变电磁法及应用[M].长沙:中南工业大学出版社,1992.
    [22]夏双力.瞬变电磁法在探测小窑采空区、陷落柱中的应用[J].中国煤田地质,2006,18(增刊):68-69.
    [23]蒋邦远.实用近区磁源瞬变电磁法勘探[M].北京:地质出版社,1998.
    [24]任基林,邓金灿,苏亚汝,等.瞬变电磁法在探明某矿区采空区方面的应用[J].矿产与地质,2001,15(3):221-224.
    [25]刘君.瞬变电磁法在探测煤矿采空区中的应用[J].科技情报开发与经济,2005,15(16):281-283.
    [26]方文藻.瞬变电磁测深法原理[M].西安:西北工业大学出版社,1993.
    [27]杨义彪,席晓风,范广海,等.瞬变电磁法(TEM)在露天铁矿采空区探测中的应用[J].工程地球物理学报,2010,7(5):589-593.
    [28]翟广庆.瞬变电磁法探测煤层采空区的应用[J].西部探矿工程,2010,6:90-92.
    [29]张卫东,张瑛颖.瞬变电磁法在地下洞体探测中的应用研究[J].建筑技术开发,2008,35(11):30-40.
    [30]王俊茹,张吉恒,许柏青.瞬变电磁法在高速公路采空区勘测中的应用[J].物探与化探,2007,31(4):358-364.
    [31]范亮,钱荣毅.瞬变电磁法在煤矿采空区的应用研究[J].工程地球物理学报,2011,8(1):29-33.
    [32]武军.瞬变电磁法在煤矿采空区物探勘察中的应用[J].山西交通科技,2007,6:1-2+59.
    [33]张开元,韩自豪,周韬.瞬变电磁法在探测煤矿采空区中的应用[J].工程地球物理学报,2010,4(4):341-344.
    [34]路军臣,苏维涛,张济怀.瞬变电磁法在探测小窑采空区中的应用[J].河北煤炭,2002,2:39+61.
    [35]温新荣,廖志伟,张五星.瞬变电磁法在江西煤矿采空区探测中的应用[J].江西煤炭科技,2011,3:70-71.
    [36]范涛,王秀臣,李貅,等.瞬变电磁方法在探测煤矿浅层高阻采空区中的应用[J].西北地质,2010,43(2):156-162.
    [37]赵庆珍,安润莲,姚精选,等.瞬变电磁勘探技术在采空区探测中的应用[J].山西煤炭,2007,27(4):15-17.
    [38]安润莲,姚精选,杨引串.瞬变电磁勘探技术在探测采空区中的应用—以阳煤集团氧化铝厂采空区勘探为例[J].中国地质灾害与防治学报,2006,17(4):116-118+122.
    [39]何樵登.地震勘探原理和方法[M].北京:地质出版社,1986.
    [40]唐林,姜贤斌.地震映像技术在探测临安膨润土矿采空区中的应用[J].工程地球物理学报,2009,6(6):750-753.
    [41]孙洪星,康永华,耿德庸,等.煤层采空区浅层地震法探测效果[J].工程勘察,1998,4:66-68.
    [42]王万合,王晓柳,刘江平,等.地震映像法在某高速公路岩溶探测中的应用[J].工程地球物理学报,2007,4(2):141-145.
    [43]张宁,韩洪德,刘晓晨,等.地震波CT技术在煤矿采空区探测中的应用[J].河北工程大学学报(自然科学版),2008,25(3):95-97.
    [44]段建华,杨文强,倪新辉.三维地震技术在探测煤矿腔状采空区中的应用[J].中国煤炭地质,2010,22(8):21-38.
    [45]张春燕.三维地震勘探技术在采空区探测中的应用[J].煤炭科技,2011,3:54-56.
    [46]李来喜.利用井间地震层析方法探测地下洞穴[J].工程地球物理学报,2010,7(3):281-285.
    [47]杨祥森,林昀,崔德海.地震映像法在铁路隧道隐伏岩溶勘查中的应用[J].工程地球物理学报,2007,4(5):470-474.
    [48]马丽,刘江,贺正东,等.地震勘探在采空区探测方面的应用[J].山西煤炭,2008,2:90-92.
    [49]杨双安,宁书年.老窑采空区的地震探测与研究[J].中国煤田地质,2004,16(1):44-47.
    [50]徐红利,潘冬明,李红立.浅层地震勘探技术在探测公路采空区中的应用[J].能源技术与管理,2008,3:76-78.
    [51]张兴岩,潘冬明,王立会.三维地震在煤层采空区探测中的应用[J].西部探矿工程,2009,1:141-144.
    [52]贾东新,王自强,徐庆魁.浅层地震法在煤层采空区探测中应用[J].河北 煤炭,1999,3:21-23.
    [53]欧阳伟,李书华,徐万祥.地震映像法在岩溶勘查中的应用[J].勘察科学技术,2010,1:62-64.
    [54]肖柏勋.瑞雷面波勘探技术研究评述[J].工程地球物理学报,2004,1(1):38-44.
    [55]陈祥.瑞雷波“之”形速度—深度曲线的成因[J].地球物理学进展,2004(4):860-863.
    [56]李公正.瞬态瑞利面波技术探测原理及其应用[J].矿产与地质,2003(5):661-663.
    [57]宋先海.用改进的τ-p变换算法提取瞬态瑞雷波频散曲线[J].物探与化探,2003,27(4):292-295.
    [58]Rayleigh L. On waves propagated along the plane surface of an elastic solid [J]. Proceedings of the London Mathematic Society,1887,17:4-11.
    [59]Haskell N A. The Dispersion of surface Waves on Multilayered Media [J]. Bull.Seism Soc.Am,1953,43:17-34.
    [60]Chang F. K. Rayleigh wave dispersion technique for rapidsubsurface exploration [A]第42届国际地球物理年会,1973.
    [61]佐藤长范.用GR810激振系统进行地基勘察[M].日本VIC株式会社,1986.
    [62]Stokoe, II K H, Nazarian S. Effectiveness of ground improvement from spectral analysis of surface waves [A]. In:Proc.8th Euro Conf on Soil Mech and Found Eng.,1983.
    [63]C B Park, R D Miller, Xia J. Multichannel analysis of surface waves [J]. Geophysics,1999,64:800-808.
    [64]John N Louie. Faster, better:Shear-wave velocity to 100 meters depth from refraction microtremor ar-rays References [J]. Bulletin of the Seismological Society of America,2001,91 (2):347-364.
    [65]Nakamura Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface [J]. Quarterly Reports of the Rail-way Technical Research Institute Tokyo,1989,30:25-33.
    [66]Nakamura Y. On the H/V Spectrum [A]. The 14th World Conference on Earthquake Engineering, Bejing. Oct.12-17,2008,22-27.
    [67]朱裕林.瑞利波勘探在工程勘察中的应用[J].工程勘探,1991,1:67-70.
    [68]杨成林.瑞雷面波勘探法原理及应用[J].物探与化探,1989,13(6):465-468.
    [69]崔占荣,张世洪,张俊喻.瞬态瑞雷面波勘探中一些问题讨论[J].物探与化探,1997,19(5):369-376.
    [70]陈云敏,吴世明,曾国熙.表面波谱分析测试技术[A].上海:第三届全国土动力学学术会议[C].1990,359-394.
    [71]张碧星,鲁来玉.用频率—波数法分析瑞雷面波频散曲线[J].工程地球物理学报,2005,2(4):245-24.
    [72]冉伟彦,王振东.长波微动法及其新进展[J].物探与化探,1994,18(1):28-34.
    [73]何正勤,丁志峰,贾辉,等.用微动中的面波信息探测地壳浅部的速度结构[J].地球物理学报,2007,50(2):492-498.
    [74]肖柏勋,张碧星,杨文杰.瑞雷面波勘探中“之”字型频散曲线的形成机理及反演研究[J].地球物理学报,2000,43(4):557-567.
    [75]冯少孔.微动勘探技术及其在土木工程中的应用[J].岩土力学与工程学报,2006,22(6):1029-1036.
    [76]常锁亮,张淑婷,李贵山,等.多道瞬态瑞雷波法在探测煤矿采空区中的应用[J].中国煤田地质,2002,14(3):70-72.
    [77]陈灯,徐国元.瑞雷波法检测金属矿山采空区[J].西部探矿工程,2006,1:69-71.
    [78]刘圆,朱建新,彭林.隐覆采空区的地质雷达探测[J].现代矿业,2011,507:66-67.
    [79]程久龙,胡克峰,王玉和,等.探地雷达探测地下采空区的研究[J].岩土力学,2004,25(Supp):79-82.
    [80]Annan A. P., Chua L. T. Ground-penetrating radar performance predictions [J]. J. A. Pilon. In ground penetrating radar.Geological Survey of Canada.1992, 5-13.
    [81]袁明德,方励.地质雷达在国内的应用与发展.见:周立功.基础建设应用新技术[M].北京:石油工业出版社,2000,59-77.
    [82]李大心.探地雷达方法及应用[M].北京:地质出版社,1994.
    [83]李金铭,罗延钟.电法勘探新进展[M].北京:地质出版社,1996.
    [84]袁明德.探地雷达探测地下管线的能力[J].物探与化探,2002,26(2):152-155+162.
    [85]付国强.铁路路基病害探地雷达新技术探测研究[J].路基工程,2006,2:20-22.
    [86]李大心.公路工程质量的探地雷达检测技术[J].地球科学—中国地质大学学报,1996,21(6):661-664.
    [87]谢昭晖,白朝旭,陈义军.探地雷达在公路路基质量检测中的应用[J].勘察科学技术,2005,5:58-61.
    [88]高立兵,王赞,夏明军.GPR技术在考古勘探中的应用研究[J].地球物理学进展.2000,15(1):61-69.
    [89]探地雷达专辑.地球科学—中国地质大学学报.1993,18(3)
    [90]谢昭晖.地下不同目标体的探地雷达图像特征[J].工程地球物理学报,2005,2(1):8-11.
    [91]杜树春.地质雷达及其在环境地质中的应用[J].物探与化探,1996,20(5):384-392.
    [92]姜卫方,万明浩,赵永辉,等.地质雷达在滑坡调查中的应用及效果分析[J].物探与化探,2002,24(3)230-232+240.
    [93]钟世航,王荣.探地雷达检测隧道衬砌中的几个问题[J].物探与化探,2002,26(5)403-406.
    [94]曾提,徐兴新等.地质雷达在探测南方岩溶地区堤坝隐患中的应用[J].地质与勘探,1998,34(3)43-46.
    [95]谢昭晖,李金铭.我国探地雷达的应用现状及展望[J].,工程勘察,2007,11:71-75.
    [96]郭崇光,李敬宇,刘君.氡气测量在山西采空区探测中的应用[J].科技情报开发与经济,2004,14(1):180-181.
    [97]杨华,刘鸿福.测氡在煤矿采空区的应用[J].山西煤炭,2002,23(2):38-40.
    [98]冉云,刘鸿福.氡气测量在煤矿采空区探测中的应用效果分析[J].工程地质计算及应用,2009,3:18-21.
    [99]刘敦旺,刘鸿福,张新军.活性炭测氡法在煤矿采空区探测中的应用[J].勘探地球物理进展,2009,32(3):220-223.
    [100]闫长斌,徐国元.综合物探方法及其在复杂群采空区探测中的应用[J].湖南科技大学学报(自然科学版),2005,20(3):10-14.
    [101]刘长会,刘树才,闫赛,等.综合物探技术在浅埋煤层采空区勘查中的应用[J].工程地球物理学报,2011,8(1):51-54.
    [102]刘海涛,杨娜,董哲,等.综合物探方法在煤矿采空区探测中的应用[J].工程地球物理学报,2011,8(3):362-365.
    [103]杨汉臣.综合物探技术在采空区探测中的应用及研究[J].山西建筑,2010,36(23):113-114.
    [104]卞海洋,杜广印,童立元.高速公路下伏多层富水采空区综合物探勘察技术研究[J].山西建筑,2007,8:159-162.
    [105]Miller Fabien, Potvin Yves, Jacob Denis. Laser measurement of open stope dilution [J]. CIM Bulletin,1992,85(962):96-102.
    [106]Paul J. Besl, Neil D. Mckay. A method for registration of 3-D shapes[J]. IEEE Transactions on pattern analysis and machine intelligence,1992, 14(2):239-256.
    [107]C. Baker, Z. Omohundro, S. Thayer, W. Whittaker, M. Montemerlo, and S. Thrun. A case studyin robotic mapping of abandoned mines. FSR-03.
    [108]D. Huber. Automatic Three-dimensional Modeling from Reality. Doctoral Dissertation, Carnegie Mellon University,2002.
    [109]S. Scheding, G. Dissanayake, E. M. Nebot, H. Durrant-Whyte. An Experiment in Autonomous Navigation of an Underground Mining Vehicle, IEEE Transactions on Robotics and Automation, vol 15, no 1,1999.
    [110]S. Thrun et al., A System for Volumetric Robotic Mapping of Abandoned Mines. International Conference on Robotics and Automation,2003.
    [111]R. Madhavan, G. Dissanayake and H. Durrant-Whyte. Map-building and map-based localization in an underground-mine by statistical pattern matching. International Conference on Pattern Recognition,1998.
    [112]Sagawa Y, Yamatomi J. Stope design in theHishikariGoldMine, Japan, by using numerical analysis[C]. Matthew Handley, Dick Stacey.10th Congress of the ISRM. Johannesburg:the South African Institute ofMining anMetallurgy, 2003, Vol2:995-1000.
    [113]John D. Lupton. Cavity Monitoring System and Stope Analysis [C]. MassMin Chile 2004, Santiago, Chile, August2004:56-62.
    [114]Optech Systems Corporation. Cavity Monitoring System (CMS) Wireless User Manual [M]. Version E, September 2004, Toronto, Ontario, Canada.
    [115]Jarosz A., Shepherd L. Application of Cavity Monitoring System for the Control of Dilution and Ore Loss in Open Stopes [C].11th International Congress of ISM,2000, Cracow, Poland:155-164.
    [116]过江,古德生,罗周全.金属矿山采空区3D激光探测新技术[J].矿业工程,2006,26(5):16-19.
    [117]罗周全,刘晓明,张木毅,等.大规模采场三维探测及回采指标可视化计算[J].中南大学学报,2009,40(6):1732-1736.
    [118]过江,罗周全,邓建,等.三维动态空区监测系统CMS在矿山的应用[J].地下空间与工程学报,2005,1(6):994-996.
    [119]刘希灵,李夕兵,刘科伟,等.地下空区激光三维探测应用研究[J].金属矿山,2008,11:63-65+86.
    [120]刘科伟,李夕兵,宫凤强,等.基于C-ALS及Surpac-FLAC3D耦合技术的复杂空区稳定性分析[J].岩石力学与工程学报,2008,27(9):1924-1931.
    [121]周子龙,李夕兵,赵国彦.民窿空区群级联失稳评价[J].自然灾害学报,2007,16(5):91-95.
    [122]李夕兵,李地元,赵国彦,等.金属矿地下采空区探测、处理与安全评判[J].采矿与安全工程学报,2006,23(1):24-29.
    [123]吴兆营,薄景山,杜国林,等.采空区对地表稳定性的影响[J].自然灾害学报,2004,13(2):140-144.
    [124]宫凤强,李夕兵,董陇军,等.基于未确知测度理论的采空区危险性评价研究[J].岩石力学与工程学报,2008,27(2):323-330.
    [125]李向阳,李俊平,周创兵,等.采空场覆岩变形数值模拟与相似模拟比较研究[J].岩土力学,2005,26(12):1907-1912.
    [126]童立元,刘松玉,邱钰,等.高速公路下伏采空区问题国内外研究现状及进展[J].岩石力学与工程学报,2004,23(7):1198-1202.
    [127]余卫平,汪小刚,杨健,等.地下洞室群围岩稳定性分析及其结果的可视化[J].岩石力学与工程学报,2005,24(20):3730-3736.
    [128]朱翔鹏,张学强,严哲.瑞雷波在探测地下防空洞的应用研究[J].工程地球物理学报,2007,4(1):58-61.
    [129]徐能雄,何满潮,景海河.非连续型非褶皱岩体三维可视化构模技术及应用[J].岩石力学与工程学报,2004,23(15):2534-2538.
    [130]Raper J. F. Key 3D modeling concepts for geoscientific analysis. In:TurnerA K(Ed), Three-Dimensional Modeling with Geoscientific Information Systems [M]. NATO ASI, Dordrecht, Kluwer Academic Publishers,1992:215-232.
    [131]Xu Guanhua. Building the digital earth, promoting China and global sustainable development, Towards Digital Earth:Proc 1st Sym Digital Earth. Beijing:Science Press,1999:6-9.
    [132]Gore A. The Digital Earth:Understanging our planet in 21th century.1998.
    [133]王明华.工程岩体三维地质建模与可视化研究[D]博士学位论文,2004
    [134]Simon W. Houlding.3D geoscienee modeling-computer techniques for geological characterization. Springer Verlagt,1994.
    [135]Rongxing Li. Data structures and application issues in 3D geographic informatio systems [J]. GEOMATICA,994,48(3):209-224.
    [136]Thomas R. Fisher. Use of 3D Geographic Information Systems in Hazardous WasteSite Investigations [M].1993 Oxford University Press. Environmental Modeling with GIS,1993.
    [137]陈昌彦,张菊明,杜永康,等.边坡工程地质信息的三维可视化及其在三峡船闸边坡工程中的应用[J].岩土工程学报,1998,4:1-6.
    [138]龚健雅,夏宗国.矢量与栅格集成的三维数据模型[J].武汉:武汉测绘科技大学学报,1997,1:7-15.
    [139]李清泉,李德仁.三维地理信息系统中的数据结构[J].武汉测绘科技大学学报,1996,2:128-133
    [140]Ehlen J., Harmon R. S. Geo Comp99:Geocomputation and the Geosciences [J]. Computer & Geosciences,2001,27(8):1-2.
    [141]吴立新,刘纯波,牛本宣,等.试论发展我国矿业地理信息系统的若干问题[M].矿山测量,1998,4:48-52.
    [142]侯恩科,吴立新.三维地学模拟几个方面的研究现状与发展趋势[J].煤田地质与勘探,2000,28(6):5-7.
    [143]郝延锦,胡东宏,杨可明.矿山可视化技术关键问题探讨[J].东北测绘,2000,23(2):19-20.
    [144]李海华,张瑞新.应用Surpac软件进行露天矿采矿工程的可视化[J].中国矿业,2004,13(1):63-65.
    [145]陈爱兵,秦德先,张学书,等.基于MICROMINE矿床三维立体模型的应用[J].地质与勘探,2004,40(5):77-80.
    [146]潘炜,刘大安,钟辉亚,等.三维地质建模以及在边坡工程中的应用[J].岩石力学与程学报,2004,23(4):597-602.
    [147]Groshong R. H.3-D Structural Geology:A Practical Guide Io Quantitative Surface and Subsurfaces Map Interpretation. Berlin:Springer,2006.
    [148]齐安文,吴立新,侯恩科,等.三维地学模拟述评及其矿山应用关键问题[J].中国矿业,2001,10(5):61-64.
    [149]吴立新,张瑞新,戚宜欣,等.3维地学模拟与虚拟矿山系统[J].测绘学报,2002,31(1):28-33.
    [150]王瑞芳.基于空间信息的三维地学模拟理论及研究[J].山西建筑,2007,33(22):354-355.
    [151]李明超,钟登华,秦朝霞,等.基于三维地质模型的工程岩体结构精细数值建模[J].岩石力学与工程学报,2007,26(9):1893-1898.
    [152]吴立新,史文中,Christopher Gold.3D GIS与3D GMS中的空间构模技术[J].地理与地理信息科学,2003,19(1):5-11.
    [153]Bisheng Yang, Qingquan Li, Wenzhong Shi. Constructing multi-resolution triangulated irregularnetworkmodel for visualization [J]. Computers & Geosciences,2005,31:77-86.
    [154]刘刚,李永树,张水舰.基于不规则三角网构建的网格生长算法[J].计算机工程,2011,37(12):56-61.
    [155]傅鹤林.用模糊数学方法综合评价采场稳定性[J].有色矿山,1994,1:53-57.
    [156]宫凤强,刘科伟,李志国.矿区采空塌陷危险性预测的Bayes判别分析法[J].采矿与安全工程学报,2010,27(1):30-39.
    [157]戴华阳.地表移动预计的新设想采空区矢量法[J].矿山测量,1995,4:30-34.
    [158]袁灯平,马金荣,董正筑.利用ANSYS进行开采沉陷模拟分析[J].济南大学学报(自然科学版),2001,15(4)336-338+345.
    [159]郭广礼,邓喀中,汪汉玉.采空区上方地基失稳机理和处理措施研究[J].矿山压力与顶板管理,2000,3:39-42.
    [160]闫长斌,徐国元,李夕兵.爆破震动对采空区稳定性影响的FLAC3D分析[J].岩石力学与工程学报,24(16):2894-2899.
    [161]杨典森,陈卫忠,杨为民.龙滩地下洞室群围岩稳定性分析[J].岩土力学与工程学报,25(3):391-395.
    [162]任旭华,王树洪,王美芹,等.深埋隧洞围岩稳定性分析及结构设计研究[J].湖南科技大学学报(自然科学版),2004,19(3):39-42.
    [163]李仲奎,戴荣,姜逸明FLAC3D分析中的初始应力场生成及在大型地下洞室群计算中的应用[J].岩石力学与工程学报,2002,21(增2):2387-2392.
    [164]杨为民,陈卫忠,李术才,等.快速拉格朗日法分析巨型地下洞室群稳定性[J].岩土工程学报,2005,27(2):230-234.
    [165]Itasca Consulting Group, Inc. FLAC3D, Fast Lagrangian Analysis of Continua in 3 Dimensions, version 2.0, user's mannual [R]. USA:Itasca Consulting Group, Inc.,1997.
    [166]肖颖,许模.浅谈FLAC3D、ANSYS建模特点及其应用[J].甘肃水利水电技术,2011,47(2):11-12+22.
    [167]胡斌,张倬元,黄润秋FLAC3D前处理程序的开发及仿真效果检验[J].岩石力学与工程学报,2002,21(9):1387-1391.
    [168]荆永滨,王李管,贾明涛,等.基于TetGen的复杂FLAC3D模型可视化建模方法[J].岩土力学,2010,31(8):2655-2660.
    [169]杨宇宏,许胜.基于Surfer和ANSYS复杂地质体的FLAC3D实体建模[J].山西建筑,2011,37(5):63-65.
    [170]周科平,杜相会.基于3DMINE-MIDAS-FLAC3D耦合的残矿回采稳定性研究[J].中国安全科学学报,2011,21(5):17-22.
    [171]Li Z., Huang H. The calculation of stability of tunnels under the effects of seismic wave of explosions. In:Proceedings of the 26th department of defense explosives safety seminar. US Department of Defense Explosives Safety Board; 1994.
    [172]Persson P. A. The relationship between strain energy, rock damage, fragmentation, and throw in rock blasting. Int J Blast Fragmentation 1997; 1: 99-110.
    [173]Kendorski F.S., Jude C. V., Duncan W. M. Effect of blasting on shotcrete drift linings. Min Eng 1973; 25(12):38-41.
    [174]Hendron A. J. Engineering of rock blasting on civil projects. In:Hall W. J., editor. Structural and geotechnical mechanics, a volume honoring NM Newmark. Englewood Cliffs, NJ:Prentice-Hall; 1977. p.242-277.
    [175]Jensen D. E., Munson R. D., Oriard L. L., et al. Underground vibration from surface blasting at Jenny mine, KY Woodward-Clyde consultants, Orange CA. Final contract RPTJ0275030 for US Bureau of Mines; 1979. p.99.
    [176]Tunstall A. M. Damage to underground excavations from open-pit blasting. Transactions of the Institution of Mining and Metallurgy-Section A-Mining Industry 1997; 106:19.
    [177]Fadeev A. B., Glosman LM, Sofonov LV. Seismic control of mine and quarry blasting in the USSR. Proceedings International Congress on Rock Mechanics (ISRM:Montreal, Canada); 1987. p.617-619.
    [178]Langefors U., Kihlstrom B. The Modern Technique of Rock Blasting,1963.
    [179]Calder P. N., Bauer A. The influence and evaluation of blasting on stability. Stability in open pit mining. New York:Society of Minning Engineers of the American Institute of Mining, Metallurgical and Petroleum Engineers 1971: 83-94.
    [180]Oriard L. L. Blasting effects and their control in open-pit mining. Geotechnical Practice for Stability In Open-Pit Mining, CO. Brawner and V. Milligan, Editors, SME/AIME Publication,1972.
    [181]Sakurai S., Kitamura Y. Vibration of tunnel due to adjacent blasting operation. International Symposium on field measurement in rock mechanics. Zurich, Switzerland 1977:61-77.
    [182]Dowding C. H. Estimating earthquake damage from explosion testing of full-scale tunnels. Adv Tunnel Tech Subsurface Use 1984; 4(3):113-117.
    [183]Office of Surface Mining. Surface mining reclamation and enforcement provisions, Public Law,95-87, Federal Register, vol.42, no.289,197.
    [184]Siskind D. E., Stagg M. S., Kopp J. W., Dowding C. H. Structure response and damage produced by ground vibration from surface blasting. Report of Investigations 8507, US Bureau of Mines, Washington, DC,1980.
    [185]German Standards Organization. DIN 4150, Vibrations in building construction, Berlin,1984.
    [186]Wu C. Q., Hao H. Numerical study of characteristics of underground blast induced surface ground motion and their effect on above-ground structures. Part I:Ground motion characteristics. Soil Dyn Earthquake Eng 2005; 25(1): 27-38.
    [187]Hao H., Wu Y. K., Ma G W., Zhou Y. X. Characteristics of surface ground motions induced by blasts in jointed rock mass. Soil Dyn Earthquake Eng 2001; 21(2):85-98.
    [188]国家安全生产监督管理总局,国家煤矿安全监察局.国家安全生产科技发展规划非煤矿山领域研究报告(2004-2010)[R].北京:国家安全生产监督管理总局,国家煤矿安全监察局,2003.
    [189]林厚龙,岳来群,刘耘,等.高密度电阻率法在阿联酋某城C9~C11测区溶洞勘察中的应用[J].福建地质,2001,20(4):201-206.
    [190]姜鹰,曹哲明,刘铁.高频大地电磁法在宜万铁路隧道岩溶的应用[J].工程地球物理学报,2006,3(3):206-210.
    [191]王万顺,张波,耿玉岭,等.高分辨率地震及大能量瑞雷波法在采空区探测中的应用[J].中国煤田地质,2004,16(6):44-46.
    [192]高山I-SITE3D激光成像系统在矿山勘测工程的应用[J].铁道勘察,2004,30(6):38-40.
    [193]Measurement Devices Ltd., Cavity auto scanning laser system (CALS) manual[R]. York, UK:Measurement Devices Ltd.,2006.
    [194]河南省栾川三道庄矿地质报告,河南省地质队,1980.
    [195]栾川洛钼集团三道庄矿采空区探测与安全隔离层厚度计算,中南大学资源与安全工程学院,2004年10月.
    [196]赵奎,蔡美峰,饶运章,等.采空区块体稳定性的模糊随机可靠性研究[J].岩土力学,2003,24(6):987-990.
    [197]洪雄.基于似三棱柱的三维地学空间构模技术研究[硕士学位论文][D].武汉:中国地质大学研究生院,2005.
    [198]吴立新,史文中.论三维地学空间构模[J].地理与地理信息科学,2005,21(1):1-4.
    [199]徐云和,赵吉先,程朋根,等.地矿3维GIS模型的构建及可视化[J].中国矿业,2003,12(4):60-62.
    [200]ZHU H. L., Eastman J. R., Toledano J. Triangulated irregular network optimization form contour data using bridge and tunnel edge removal [J]. International Journal of Geographical Information Science,2001,15(3): 271-286.
    [201]Keppel E. Approximating complex surfaces by triangulation of contour lines [J]. IBM J. RES.DEVELOP,1975, January:1-11.
    [202]Fuchs H., Kedem Z. M., Uselton S. P. Reconstruction from planar contours [J]. Communications of the ACM,1977,20(10):693-702.
    [203]YANG Bi-sheng, LI Qing-quan, SHI Wen-zhong. Constructing multi-resolution triangulated irregular network for visualization [J]. Computers and Geosciences.2005,31:77-86.
    [204]高志武,秦德先.数值矿床概述[J].金属矿山,2005,344(2):54-56.
    [205]Itasca Consulting Group Inc. FLAC3D theoretical background (version 2.1) [R]. Minneapolis:Itasca Consulting Group Inc.,2003.
    [206]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [207]Hao H., Wu C. Q. Scaled-distance relationships for chamber blast accidents in underground storage of explosives. Int J Blast Fragmentation 2001; 5(1-2): 57-90.
    [208]Kuhlmeyer R. L., Lysmer J. Finite element method accuracy for wave propagation problems [J]. Journal of Soil Mechanics and Foundation Division, ASCE 1973,99:421-427.
    [209]Ma G. W., An X. M. Numerical simulation of blasting-induced rock fractures. Inter J Rock Mech Min Sci 2008; 45(6):966-975.
    [210]Wei X. Y., Zhao Z. Y., Gu J. Numerical simulations of rock mass damage induced by underground explosion. Int J Rock Mech Min Sci 2009; 46(7): 1206-1213.
    [211]Govindjee S., Kay G. J., Simo J. C. Anisotropic modelling and numerical simulation of brittle damage in concrete. Int J Numer Methods Eng 1995; 38(21):3611-3633.
    [212]Yang R., Bawden W. F., Katsabanis P. D. A new constitutive model for blast damage. Int J Rock Mech Min Sci & Geomech. Abstr 1996; 33:245-254.
    [213]Liu L., Katsabanis P. D. Development of a continuum damage model for blasting analysis. Int J Rock Mech Min Sci 1997; 34(2):217-231.
    [214]Qian Q. H., Zhou X. P. Quantitative analysis of rockburst for surrounding rocks and zonal disintegration mechanism in deep tunnels. J Rock Mech Geotech Eng 2011; 3(1):1-9.
    [215]Ma G. W., Hao H., Wang F. Simulations of explosion-induced damage to underground rock chambers. J Rock Mech Geotech Eng 2011; 3(1):19-29.
    [216]Taylor L. M., Chen E. P., Kuszmaul J. S. Micro-crack induced damage accumulation in brittle rock under dynamic loading. Computer Mech Appl Mech Eng 1986; 55:301-320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700