用户名: 密码: 验证码:
面向业务的基于模糊关联规则挖掘的网络故障诊断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代社会中,网络已经成为信息交流和通信的基础载体。网络即使发生微小故障,也会给人类的社会活动、经济活动带来巨大影响。因此,智能化的网络故障诊断是下一代网络高可信度的重要保障。当故障发生时,要求网络管理员在最短时间内识别故障类型和故障级别,正确判断出故障根源所在位置,并及时对网络进行修复。相对传统网络以网络设备为管理对象而言,用户更关心的是网络业务的正常性。然而设备的正常运行并不意味着业务的正常运行,这使得业务故障管理缺乏面向用户的根本性。另一方面,网管系统经历了基础平台建设和系统整合两个阶段,基于设备进行管理的模式越来越不适应网络发展的要求,支持面向业务的网络管理是必然趋势。
     本论文将网络业务作为主要被管理对象,以包含业务信息的网络告警为载体,研究了面向业务的QoS参数与面向资源的网络性能参数之间的映射。根据网元和业务的映射关系,得到设备告警与业务告警之间的对应关系。同时,将模糊理论、模糊推理与数据挖掘结合起来,对多域多层的网络故障信息进行动态模糊关联规则的挖掘。
     论文综合讨论了层间模糊关联规则挖掘、分布式模糊关联规则挖掘以及多支持度动态模糊关联规则挖掘算法,全方位地进行了网络故障相关性分析。最终由面向业务的网络告警,生成模糊关联规则知识库,并建立模糊推理系统。旨在解决告警信息不确定的情况下,快速准确地进行网络故障诊断、定位与恢复,从而提高通信网络的效率和性能。本课题研究的创新性主要体现在以下几个方面:
     第一,运用模糊逻辑定义的隶属度函数进行网络告警的预处理和模糊化,使之更接近于实际应用环境,有效降低多维告警的粒度和复杂度,提高了告警关联规则挖掘效率。模糊化后的网络告警,其物理意义表达了与根源告警的接近程度,从而能有效反映该告警在网络中的相对重要程度和影响范围,使在此基础上的告警相关性分析、模糊推理和网络故障诊断更加科学。
     第二,针对网络层次化划分的管理特点,考虑以业务层故障作为主要被管对象,在网络告警中融入业务层、网络层直至网元层的分层信息属性,记为“告警类型”。使得当网络业务受到影响发生故障时,将网络性能故障映射到与之相关的业务应用QoS故障层面,面向终端用户,解决网络故障诊断问题,为新一代智能化网络管理奠定基础。
     第三,针对多厂商设备环境以及多地域子网的管理特点,提出了分布式并行关联规则挖掘思想:区别于传统分布式挖掘算法,横向分割大型数据库,采用多处理器并行挖掘子数据库的以资源代价换取时间效率的策略;而将分布式网络中的各局域网告警数据视为不同子数据库进行同步挖掘,即设立全局站点与局部站点在时间维度上同时采集数据,全局站点负责局间关联规则挖掘,而局部站点负责局内关联规则挖掘。并由此提出多层多域模糊关联规则挖掘算法——MMDFARM,由层次和地域两个方面考虑了挖掘算法的适应性问题。
     第四,通信网络的设备信息、拓扑结构乃至业务需求都是动态变化的,从而导致网络告警数据库也呈现渐进式的变化。当出现新增的告警数据时,需要对整个数据库进行重新挖掘,以找出与新告警关联的规则信息。这不仅造成大量资源的浪费,也完全忽略了历史告警的作用。根据告警数据的时间关联性,提出多支持度动态关联规则挖掘算法——IDFARM,由时间维度方面考虑了挖掘算法的适应性问题。
     第五,深入研究了基于模糊关联规则的模糊推理算法,定义了推理过程中各模糊算子的数学形式,比较和验证了不同模糊组合下的推理结果,从中优选出适合通信网告警相关性分析的最佳方法,建立起特征化的网络故障诊断模型。该模型拥有良好的人机接口界面,通过模糊推理模块进行诊断,能快速准确地定位出引发当前告警的根源故障所在,从而有效恢复网络通信,提高网络的稳健性。
     总之,实现面向业务的、基于模糊关联规则挖掘、快速准确的网络故障诊断和智能化的网络管理,是本课题的特色所在。
In the modern information age, even a minor fault in communication networks willbring strong affects on social and economic activities of human beings. Therefore, theintelligent network fault diagnosis is a vital guarantee of next-generation networks.Once alarms occur, it is important for the network operator to identify the alarm typesand levels a.s.a.p, and accurately locate the root alarms to recover networkcommunications promptly. Despite the fact that traditional networks take networkdevices as managed objects, users care more about the normality of network services.However, the normal operation of devices does not reflect the normal operation ofcorresponding services, which means fault managements of services lack user-orientedfeatures. On the other hand, network management experiences two stages as:fundamental platform construction and system integration. It makes device-based faultmanagement no longer suitable for the developing requirements of the communicationnetwork, and there is an inevitable trend of service-oriented network management.
     This project takes network services as main managed objects, and considersnetwork alarms that contain service information as carriers to study the mappingrelationship between service-oriented QoS parameters and device-oriented networkperformance parameters to get the association of device alarms and service alarmsaccording to the above relationship. Meanwhile, fuzzy theory, fuzzy reasoning and datamining are combined together to realize dynamic fuzzy association rule mining ofmulti-layer multi-domain network fault information.
     The author discusses multi-layer fuzzy association rule mining, distributed fuzzyassociation rule mining and dynamic fuzzy association rule mining, comprehensivelystudies network fault correlation analysis, at last develops fuzzy association rule basedfuzzy reasoning system. The system can deal with situations when alarm information isuncertain, quickly carry out network fault diagnosis, and accurately locate as well asrecover faults to improve the efficiency and performance of communication networks.The innovation of this study is mainly reflected in the following aspects:
     (1) Apply fuzzy logic and fuzzy membership function to pretreatment and fuzzification of network alarms, which effectively reduce granularity and complexity ofmulti-dimensional network alarms and improve the mining efficiency. Also the actualmeaning of fuzzy membership degree is the relationship between current alarm and rootalarm, which reflects relative importance and influence areas of network alarms.Performing alarm correlation analysis, fuzzy reasoning and network fault diagnosisbased on fuzzy alarms will be more reasonable.
     (2) According to hierarchical features of network management, integrate layerinformation when generating alarms. Once the services are affected by network faults,QoS faults of applications are mapped into associated performance faults of networks.
     (3) Propose the idea of parallel mining distributed fuzzy association rules.Differing from traditional distributed mining algorithms, which horizontally partitionhuge database and use multiple processors for parallel mining rules in sub-database, thisis a trade off between resource and efficiency. This study vertically partition database,and collect alarm information according to time dimension in both global site andlocal site, where the former is in charge of mining inter-network association rules whilethe latter is in charge of mining intra-network association rules. Then develop multi-level multi-dimensional distributed fuzzy association rule mining algorithm–MMDFARM, which considers different sides of algorithm adaptability for networkmanagement in complex environment.
     (4) In practical environments, the device information, the topology of network andthe service requirements change dynamically, which result in changes of the alarmdatabase. When there is a new alarm, one of the solutions is to remine the wholedatabase to find association rules with the new alarm information. This not only causesa lot of waste of resources, but also completely ignores the knowledge of historicalalarms. The author proposes incremental dynamic fuzzy association rules miningalgorithm–IDFARM according to the time correlation of network alarms, whichconsiders time dimension of algorithm adaptability for the updating communicationnetwork.
     (5) Deeply study fuzzy association rules based fuzzy reasoning strategy and definemathematic models of fuzzy matching operators, fuzzy implication operators as well asfuzzy composition operators in the process of inference. Experiments are carried out tovalidate the accuracy and efficiency of different combinations of fuzzy operators, and the best one of our synthetic communication network is selected to develop acharacteristic system for network fault diagnosis, which build optimal inference engineby verifying and evaluating various fuzzy reasoning methods and designingfine human-machine interface of network fault management system. Applying fuzzyreasoning to realize automatic and intelligent network management can accuratelydiagnose and well position root alarms, resulting in shortening the recovery time andimproving the performance of communication networks.
     All in all, realizing quickly and accurately network fault diagnosis based on fuzzyassociation rules of service-oriented alarms and improving intelligent network faultmanagement, are the highlights of this project. In view of the encouraging results, it isthe authors' belief that a fuzzy reasoning will be a valuable tool to assist network faulttroubleshooters in handling the task of diagnosing failure components and for furtherpractical implementation.
引文
[1] L.A.Zadeh, Syllogistic Reasoning in Fuzzy Logic and Its Application on Usuality andReasoning with Dispostion, IEEE SMC.15(4),1985
    [2] L.A.Zadeh, Fuzzy Logic, IEEE Transaction, Computer,21(4),1988
    [3] L.A.Zadeh, Dispositional Logic, Applications of Mathematics Letter,1,1988
    [4] L.A.Zadeh, Shadows of fuzzy sets, Probl. Peredachi Inf.2,37-44(1966)
    [5] L.A.Zadeh, Probability measures of fuzzy events, J. Math. Anal. Appl.23,421-427(1968)
    [6] L.A.Zadeh, Fuzzy Alogorithms, Inf. Control12,94-102(1968)
    [7]高雅,马琳,戴齐.模糊关联规则的挖掘算法.西南交通大学学报,2005, Vol.40, No.1:26-29.
    [8] L.A.Zadeh, Fuzzy languages and their relation to human and machine intelligence, in Proc. Int.Conf. on Man and Computer, Bordeaux, France, S.Karger, Basel,130-165(1972)
    [9] L.A.Zadeh, Outline of a new approach to the analysis of Complex system and decisionprocesses, IEEE Trans. Syst., Man and Cybern, SMC-3,28-44(January1973)
    [10] L.A. Zadeh, Fuzzy sets as a Basis for Theory of Possibility, Fuzzy Sets and Systems, No.1,pp.3-28,1978
    [11] L.A.Zadeh, Quantitative fuzzy semantics, Inf. Sci.3,159-176(1971)
    [12] Sun He. Research on multilevel control model of network performance based on social-agents.Control and Decision Conference(CCDC),2011:1972-1976.(in Chinese)
    [13]刘耀和,胡宝清.模糊关联规则及其挖掘算法.应用科学学报,2003, Vol.21, No.4:373-376.
    [14]崔新春,韩莉莉.多层次模糊关联规则挖掘算法.计算机工程与应用,2004, NO.10:187-189.
    [15]陆建江,徐宝文等.模糊关联规则的并行挖掘算法.东南大学学报(自然科学版),2005, Vol.35,No.2:165-170.
    [16]汪培庄,张洪敏.真值流推理及其动态分析[J].北京师范人学学报,1989;25(1):1-12.
    [17] L.A.Zadeh, A fuzzy set theoretic interpretation of linguistic hedges, J.Cybern,2,4-34(1972)
    [18] ITU-T Recommendation M.20. Maintenance philosophy for telecommunication networks,October1992
    [19] A.T. Bouloutas, S.Calo, A.Finkel. Alarm Correlation and Fault Identification in CommunicationNetworks. IEEE Transactions on Communications,1994,42(2/3/4):523-533
    [20] R. Agrawal, R. Srikant. Fast Algorithm for Mining Association Rules. Proceedings of the20thVLDB Conference, Santiago, Chile,1994,487-499
    [21] R. J. Bayardo, Jr, R. Agrawal. Mining the most interesting rules. Proceedings of the fifth ACMSIGKDD international conference on Knowledge discovery and data mining, San Diego,California, United States,1999,145-154
    [22] J. Han, J. Pei, Y. Yin, et al. Mining Frequent Patterns without Candidate Generation: AFrequent-Pattern Tree Approach. Data Mining and Knowledge Discovery,2004,1(8):53-87
    [23] D. C. Pi, X. L. Qin, W. F.Gu, et al. STBAR: A More Efficient Algorithm for Association RuleMining. Proceedings of the Fourth International Conference on Machine Learning andCybernetics, Guangzhou, China,2005, Vol.3:1529-1533
    [24] Lee, T. P. Hong, W. Y. Lin. Mining association rules with multiple minimum supports usingmaximum constraints. International Journal of Approximate Reasoning,2005,40(1-2):44-54
    [25] E. Cohen, M. Datar, et al. Finding Interesting Associations without Support Pruning. IEEETransactions on Knowledge and Data Engineering,2001,13(1):64-78
    [26] R. Ng, L. V. S. Lakshmanan, J. Han, et al. Exploratory mining and pruning optimizations ofconstrained association rules. Proceedings of SIGMOD’98, Seattle, Washington,1998,13-24
    [27] S. sarawagi, S. Thomas, R. Agrawal. Integrating association rule mining with relationaldatabase system: Alternatives and implications. Proceedings of SIGMOD’98, Seattle,Washington,1998,343-354
    [28] G. Grahne, J. Zhu. Fast Algorithms for Frequent Itemset Mining Using FP-Trees. IEEETransactions on Knowledge and Data Engineering,2005,17(10):1347-1382
    [29] M. J. Song, S. Rajasekaran. A transaction mapping algorithm for frequent itemsets mining.IEEE Transactions on Knowledge and Data Engineering,2006,18(4):472–481
    [30] Y. J. Bei, G. Chen, L. Shou, et al. Bottom-up discovery of frequent rooted unordered subtrees.Information Sciences,2009,179(1):70–88
    [31] Q. Ding, Q. Ding, W. Perrizo. PARM–an efficient algorithm to mine association rules fromspatial data. IEEE Transactions on Systems, Man, and Cybernetics,2008,38(6):1513–1524
    [32] B. Elena, C. Tania, C. Silvia. IMine: index support for itemset mining. IEEE Transactions onKnowledge and Data Engineering,2009,21(4):493–506
    [33] T. M. Hu, S. Y. Sung, H. Xiong, Q. Fu. Discovery of maximum length frequent itemsets,Information Sciences,2008,178(1):69–87
    [34] N.L.Sarda and N.V.Srinivas. An adaptive algorithm for incremental mining of association rules.In Proc.DEXA Workshop'98, pages240-245,1998.
    [35] E.Omiecinski and A.Savasere. Efficient mining of association rules in large dynamic databases.In Proc.BNCOD'98, pages49-63,1998.
    [36] S.Thomas, S.Bodagala, K.Alsabti, and S.Ranka. An efficient algorithm for the incrementalupdation of association rules in large databases. In Proc.KDD'97, pages263-266,1997.
    [37] D. W. Cheung, S. D. Lee, B. Kao. A general incremental technique for maintaining discoveredassociation rules. Proceedings of DASFAA, Melbourne, Australia,1997, Vol.6:185-194
    [38] J.S.Park, M.S.Chen, and P.S.Yu. An effective hash based algorithm for mining association rules.In Proc. ACM SIGMOD'95, pages175-186, May1995.
    [39] C. K.-S. Leung, Q. I. Khan, T. Hoque. CanTree: A Tree Structure for Efficient incrementalMining of Frequent Patterns. Proceedings of ICDM, Houston, Texas, USA,2005,274-281
    [40] C. K. Leung, Q. I. Khan, T. Hoque. CanTree: a canonical-order tree for incrementalfrequent-pattern mining. Knowledge and Information Systems,2007,11(3):287-311
    [41] W. OUYANG, C. ZHENG, O. S.CAI. Discovery of Weighted Association Rules in Databases.Journal of software,2001,12(4):612-619
    [42] W. Wang, J. Yang, P. Yu. Efficient mining of weighted association rules (WAR). Proceedings ofthe ACM SIGKDD Conf. on Knowledge Discovery and Data Mining, Boston, USA,2000,270-274
    [43] U.Yun. Mining lossless closed frequent patterns with weight constraints. Knowledge-BasedSystems,2007,20(1):86-97
    [44] U.Yun. An efficient mining of weighted frequent patterns with length decreasing supportconstraints. Knowledge-Based Systems,2008,21(8):741-752
    [45] U. Yun. On pushing weight constraints deeply into frequent itemset mining. Intelligent DataAnalysis,2009,13(2):359-383
    [46] Agrawal R, Shafer JC.Parallel mining of association rules.IEEE Transactions on Knowledgeand Data Engineering.1996.8(6),962-969
    [47] Srikant R, Agrawal R. Mining quantitative association rules in large relational tables [A]. In:Proceedings of the ACM2SIGMOD Conference on Management of Data [C]. Montreal,Canada,1996.1-12.
    [48] Chen G Q, Yan Peng, Kerre Etienne E. Computationally efficient mining for fuzzy implicationbased rules in quantitative databases [J]. Int. J of General Systems,2004,33(2):163-182.
    [49] Lopez F J, Blanco A, Garcia F, et al. Fuzzy association rules for biological data analysis: Acase study on yeast [J]. BMC Bio informatics,2008,9(1):107.
    [50] Didier Dubois, Henri Prade, Thomas Sudkamp. On the representation, measurement, anddiscovery of fuzzy associations [J]. IEEE Trans on Fuzzy Systems,2005,13(2):250-262.
    [51] Mathieu Serrurier, Didier Dubois, Henri Prad, et al. Learning fuzzy rules with their implicationoperators [J]. Data and Knowledge Engineering,2007,60(1):71-89.
    [52]龙升照,汪培庄. Fuzzy控制系统寻优及其仿真研究[J].模糊数学,1982,(3):105-112.
    [53] L.A.Zadeh. Quantitative fuzzy semantics. Information Sciences,1971,3:159-176.
    [54] Dubois D.&Pradc H. Fuzzy sets in approximate reasoning. Part1: Inference with possibilitydistributions. Fuzzy Sets and Systems,1991,40:143-202.
    [55] Dubois D.&Pradc H. Fuzzy sets in approximate reasoning. Part2: Logical approaches. FuzzySets and Systems,1991,40:203-244.
    [56] D. W. Cheung, J. Han, V. T. Ng, et al. Maintenance of discovered association rules in largedatabases: an incremental updating technique. Proceedings of ICDE, New Orleans,1996,106-114
    [57] Bldwin J.F. A new approach to approximate reasoning using a fuzzy logic. Fuzzy Sets andSystems,1979,309325.
    [58] Baldwin J.F.&Pilsworth B.W. Axiomatic approach to implication for approximate reasoningwith fuzzy logic. Fuzzy Sets and Systems,1980,4:193-219.
    [59] Mizumoto M.&Ziminermann H.J. Comparison of fuzzy reasoning methods. Fuzzy Sets andSystems,1982,8:253-283.
    [60] Kisszka J.B.&Kochanska M.E.&Sliwinska D.S. The influence of some fuzzy models, part I.Fuzzy Sets and Systems,1985,15:111-128.
    [61] Kisszka J.B.&Kochanska M.E.&Sliwinska D.S. The influence of some fuzzy models, part II.Fuzzy Sets and Systems,1985,15:223-240.
    [62] CAO Z.Q&Kandel.A. Applicability of some fuzzy implication operators. Fuzzy Sets andSystems,1989,31:151-186.
    [63] L.A.Zadeh. The concept of a linguistic variable and its applications to approximate reasoning(I). Information Sciences,1974,8(2):199-249.
    [64] Tsukamoto Y. An approach to fuzzy reasoning method. In: Gupta, M.M., Ragade, R.K. andYager.R.R.Eds. Advances in Fuzzy Sets Theory and Application.
    [65] Sugeno M.&Takagi T. Multi-dimensional fuzzy reasoning. Fuzzy Sets and Systems,1983,9:313-325.
    [66] Wang G.J. Fuzzy continuous input-output controllers are universal approximators. Fuzzy Setsand Systems.1998,97:95-98.
    [67]王国俊.模糊推理的全蕴涵三I算法.中国科学(E辑),1999,29(1):43-53.
    [68]王国俊.模糊推理的一个新方法.模糊系统与数学,1999,13(3):1-10.
    [69]王国俊.非经典数理逻辑与近似推理.北京:科学出版社,2000.
    [70]傅丽,王国俊.三I算法的统一形式.陕西师范大学学报(自然科学版).2004,32(3):2-17.
    [71]周保魁,王国俊.不同蕴涵算子下的三I算法.陕西师范大学学报(自然科学版).1998,26(4):1-5.
    [72]李洪兴,彭家寅,王加银,侯健.基于三I算法的模糊系统及其响应性能.系统科学与数学,2006,25(5):578-590.
    [73]高小军,李俊名,赵东元. RL型三I算法.西安电子科技大学学报(自然科学版),2002,29(3):280-381.
    [74] Song S.J.&Feng C.B.&Wu C.X. Theory of restriction degree of Triple I method with totalinference rules of fuzzy reasoning. Progress in Natural Science,2001,11(1):58-66.
    [75]宋世吉,吴澄.模糊推理的反向三I算法.中国科学(E辑),2002,32(2):230-246.
    [76]彭家寅,侯健,李洪兴.基于某些常见蕴涵算子的反向三I算法.自然科学进展,2005,15(4):404-410.
    [77]郭方芳,陈图云,夏尊诠.基于极大模糊熵原理的模糊推理三I算法.模糊系统与数学,2003,17(4):55-59.
    [78]宋世吉,吴澄.模糊推理的反向三I约束算法.自然科学进展,2002,12(1):95-100.
    [79]汪培庄.真值流推理及其动态分析.北京师范大学学报(自然科学版),1989,25(1):1-12.
    [80] L.A.Zadeh. The role of fuzzy logic in the management of uncertainty in expert systems. FuzzySets and Systems,1983,11:199-227.
    [81] Chen Y.Y Statistical reasoning of characteristics. Fuzzy Systems and Mathematics,1987,1:13-20.
    [82] Yager R.R. Connectives and quantifiers in fuzzy sets. Fuzzy Sets and Systems.1990,40:39-75.
    [83] Ying M.S. Some notes on multidimensional fuzzy reasoning. Cybernetics, Systems,1988.19:281-293.
    [84]吴望名.模糊推理的原理和方法.贵阳:贵阳科技出版社,1994.
    [85] Wu Bin, Zhang Hongying, Sun He. Research on Multilevel Control Model of NetworkPerformance Based on Multi-agent. Advanced Computer control,2009.ICACC’09.2009:762-766.
    [86] LIN Chuang, WANG YuanZhuo, REN FengYuan. Research on QoS in Next GenerationNetwork [J]. CHINESE J OURNAL OF COMPUTERS,2008,31(9):1526-1527.
    [87] Wong D, Ting C, Cherng Yeh. From Network Management to Service Management-AChallenge to Telecom Service Providers. Innovative Computing, Information and Control,2007.ICICIC’07.2007:280
    [88]于瑞芷.面向客户感知的网络性能评价方法的研究.北京邮电大学硕士论文.2011
    [89] M. Hauptmann, J. H. Lubin, P. Rosenberg, et al. The use of sliding time windows for theexploratory analysis of temporal effects of smoking histories on lung cancer risk. Statistics inMedicine,2000,19(1):2185-2194
    [90] ITU-T Recommendation M.20. Maintenance philosophy for telecommunication networks,October1992
    [91] A.T. Bouloutas, S.Calo, A.Finkel. Alarm Correlation and Fault Identification in CommunicationNetworks. IEEE Transactions on Communications,1994,42(2/3/4):523-533
    [92] T.A.M. DeCastro, J.M.S. Nogueira. An Alarm Correlation System for SDH networks.Proceedings of ITS’98International Telecommunications Symposium, Sao Paulo, Brazil,1998,492-497
    [93] M. Hauptmann, J. H. Lubin, P. Rosenberg, et al. The use of sliding time windows for theexploratory analysis of temporal effects of smoking histories on lung cancer risk. Statistics inMedicine,2000,19(1):2185-2194
    [94] W. W. Yan, J. L. Chang, H. H. Shao. Least Square SVM Regression Method Based on SlidingTime Window and Its Simulation. Journal of Shanghai Jiaotong University,2004,4(9):524-526
    [95] V. S. Van, J. Via, I. Santamana. A Sliding-Window Kernel RLS Algorithm and Its Application toNonlinear Channel Identification. Proceedings of ICASSP2006, Toulouse, France,2006
    [96] Saaty T L. The analytic hierarchy process. New York: McGraw-Hill Company,1980
    [97] C.H.Cai, Ada, W.C.Fu, et al. Ming Association Rules with Weighted Items. In: Proceedings ofIEEE International Database Engineering and Applications Symposium (IDEAS’98).1998.68-77
    [98] Cheung D W,Han Jiawei.Efficient mining association rules in distributed database.IEEETransactions on Knowledge and data Engineering,l996,8(6),910-921
    [99] Cheung, D.W., Han, J., Ng, V.T., and Wong, C.Y.(1996),“Maintenance of DiscoveredAssociation Rules in Large Databases: An Incremental Updating Technique,” Proceedings of1996Int’l Conf. on Data Engineering (IEEE ICDE'96), pp.106-114.
    [100] Cheung, D.W., Lee, S.D., and Kao, B.(1997),“A General Incremental Technique forUpdating Discovered Association Rules,” Proceedings of International Conference On DatabaseSystems For Advanced Applications, pp.185-194
    [101] S.Rrin, R.Motwani, J.D.UIIman, and S.Tsur. Dynamic itemset counting and implicationrules for market basket data. In Proceedings of ACM SIGMOD International Conference onManagement of Data, pages255-264, AZ,1997
    [102]张仰森.人工智能原理与应用.北京:高等教育出版社,2004.
    [103]王立新,王迎军.模糊系统与模糊控制教程.北京:清华大学出版社,2003.
    [104]杨纶标,高英议.模糊数学.广州:华南理工大学出版社,2004.
    [105]钟诗胜.工程方案设计中的模糊理论与技术.哈尔滨:哈尔滨工业大学出版社,2000.
    [106] Nakanishi H.&Turksen I.B.&Sngeno M. A review and comparison of six reasoningmethods. Fuzzy Sets and Systems,1993,57(3):257-267.
    [107] Jerzy B.K.&Maria E.K.&Danuta S.S. The inference of some fuzzy implication operatorson the accuracy of a fuzzy model, part I. Fuzzy Sets and Systems,1985,15:111-128.
    [108] Fukami S.&Mizumoto M.&Tanaka K. Some considerations on fuzzy conditionalinference. Fuzzy Sets and Systems,1980.4:243-273.
    [109] Jerzy B.K.&Maria E.K.&Danuta S.S. The inference of some fuzzy implication operatorson the accuracy of a fuzzy model, part I. Fuzzy Sets and Systems,1985,15:223-240.
    [110]尤飞,冯艳宾,李洪兴.模糊蕴涵算子及其构造(I).北京师范大学学报,2003,39(5):606-611.
    [111]尤飞,冯艳宾,王加银,李洪兴.模糊蕴涵算子及其构造(II).北京师范大学学报,2004,40(2):168-176.
    [112] Lotfi A. Zadeh.模糊集与模糊信息粒理论.北京:北京师范大学出版社,2000.
    [113]扬松林.工程模糊理论方法及其应用.国防工业出版社,1996.
    [114]王国俊.模糊推理的全蕴涵三I算法.中国科学(E辑),1999,Vol.29,No.1:43-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700