用户名: 密码: 验证码:
随机光照双目立体测量系统中的若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物体表面轮廓的三维点云测量在航空航天、车辆船舶、机械制造、生物医学、文物考古、游戏娱乐等领域有着广泛的应用需求。随着现代工业和科学技术的发展,各行业对三维点云测量技术的测量精度、测量效率、数据质量、自动化及稳定性等性能要求日益提高,而如何提高三维点云测量技术的测量性能以满足这些行业的需求是当前迫切需要解决的问题。本文以提高基于随机光照的双目立体测量系统性能为目标,对基于图像的三维点云测量中的自身遮挡、被测物体表面高光反射、三维重建的全过程快速自动处理、多视角测量数据的自拼合等难点问题开展深入研究,主要内容与贡献包括:
     1、提出并实现了随机散斑纹理图像的立体点对高效自动匹配方法。结合特征匹配技术和区域匹配技术,提出了一个自动化的特征提取和稳健匹配算法,获取一定数量的匹配点对,作为后续基于区域生长的稠密匹配起始点,从而一方面解决了整个匹配过程的自动化问题,另一方面解决了图像上散斑纹理不连续区域的匹配生长问题。另外,针对随机散斑纹理图像上稠密点对匹配效率较低的问题,采用基于GPU的高效并行加速技术,有效提高了基于区域生长的立体点对匹配效率。
     2、针对三维点云测量结果中边缘和棱边等细节的点云生成效果不理想问题,深入研究了图像稠密点对的亚像素匹配技术,并提出了相应的匹配算法。在边缘点对匹配算法中,为避免因背景点像素灰度干扰而引起的匹配点错位,提出了一种自适应变形窗口的相关匹配算法,在一定程度上提高了亚像素匹配精度,同时通过散斑点的区域约束,有效排除了位于背景区域的误匹配点,提高了算法的鲁棒性,改善了被测物体边缘的三维重建效果。在棱边等细节匹配方面,首先采用经典相关匹配方法对随机纹理图像进行快速匹配,初步获取物体表面点云数据,然后基于这些重建数据进行曲面曲率分析,据此对细节区域上的匹配点再次采用改进的相关匹配方法进行匹配,从而提高了亚像素匹配精度,更好地重建了物体表面的细节特征。
     3、针对随机光照双目立体测量中的自身遮挡和高光反射问题,提出了单/双目结合的三维轮廓点云测量方法。该方法采用双目立体结构重建两个摄像机的公共区域,同时由单摄像机-投影器构成的两个单目测量单元,对双目测量结果中出现的缺失区域进行填补,使测量结果更加完整,有效避免了由于单个摄像机视线方向存在遮挡或高光等原因引起的三维测量数据缺失。提出的随机光场投射器的投射光线标定方法,其过程简便易行,不需实际确定投影中心的具体位置,且精度不受投影镜头畸变的影响。通过对单/双目测量单元各自产生的数据集中的重叠对应点进行查找和融合,自动生成一个无冗余的三维数据点集。
     4、提出了借助微小型姿态传感器进行多视角测量数据拼合的新方法。将一个微小型姿态传感器固定于测量设备上,首先提出了姿态传感器与测量传感器相对安装姿态(旋转变换)的标定方法。每次测量过程中,利用标定结果和姿态传感器实时输出的自身姿态参数,实时解算测量传感器的自身旋转变换,并对该次测取的点云数据进行相应的旋转变换;然后基于数据集重叠区域处数据点法矢方向相同原理,采用聚类方法稳定获取不同视角下测量数据的平移变换,从而实现多视角测量数据拼合。实验表明,这种新方法简便易行、实时在线、稳定可靠,可以很好地用于多视角测量之间数据粗拼合的自动实现。
     5、结合多视图几何理论框架下的多站位相机自定位技术与双目立体测量技术,提出了一种多视角点云测量数据自拼合的新方法。该方法不借助任何辅助手段,首先提取两个不同测量视角下左、右相机拍摄的4幅自然纹理图像上的特征点,建立两两图像之间的特征匹配集;然后根据双目立体结构的内在属性,联立两次测量中4幅图像之间的有效匹配约束,采用多视几何理论自动解算两个测量视角的相对位姿。该方法首次将多视图几何求解理论用于双目立体多视角测量数据拼合问题,不仅松弛了测量数据的可拼合条件,有助于测量效率,而且由于充分利用了尽可能多的冗余约束参与拼合问题的求解,提高了算法的鲁棒性,且能获得更高的拼合精度。
     本文提出的算法均进行了对比分析和实例验证,且大部分已经应用于自主研发的ReCreator三维测量系统。
Three-dimensional (3D) shape measurement of real-world objects has been widespread applied inthe fields of aerospace, vehicle navigation, machinery manufacturing, biomedicine, heritagepreservation, gaming and entertainment, etc. With the modern industrial and scientific technologicaldevelopment, the requirements of3D point cloud measurement technology for measurement precision,measurement efficiency, data quality, measurement automation and stability are increasing. But howto improve the performance of3D point cloud measurement to meet the increasing requirements hasbecome a critical problem that needs to be addressed. The research in this thesis aims to improve themeasurement performance of binocular stereo measurement system based on random illumination.Several key issues in3D point cloud measurement based on images are further studied in this paper,including self-occlusion, local highlight effect, high-speed automatic3D reconstruction, automaticregistration of multiple range images, etc. The main contents and contributions are as follows.
     A stereo matching algorithm with high-efficiency and automation is put forward for the speckleimages. By combining the feature matching and area matching methods, an algorithm for automaticfeature extraction and stable feature matching is proposed to collect a number of pointcorrespondences. These correspondences are taken as the seeds of dense point matching propagatingprocedure, so it can not only solve the automatic implementation of the whole matching process, butalso effectively avoid point absence in discontinuous regions. Besides, the parallel accelerationtechnology based on GPU is adopted to rapidly obtain dense image point correspondences in thematching propagating procedure.
     The sub-pixel matching methods of dense image point correspondences are deeply studied. Twomatching algorithms are respectively proposed to improve the quality of the measurement data inedge and minutia regions. In the edge point matching algorithm, to alleviate the matching error causedby the intensity disturbance of background, a correlation matching algorithm with adaptive deformedwindow is put forward to improve the sub-pixel matching precision. The speckle area constraint isimposed to filter out false correspondences located in the background region, which improves therobustness of the algorithm and the quality of the reconstructed edge points. In the minutia matchingalgorithm, the classical correlation matching algorithm is first adopted to rapidly obtain3D pointclouds on the object’s surface. Then according to the curvature properties of these reconstructedpoints, the improved correlation matching algorithm is applied in minutia regions again. Therefore, it improves the sub-pixel matching accuracy, and better reconstructs detail features on object’s surface.
     To alleviate the effect of self-occlusion and local highlight of the random-illumination-basedbinocular stereo measurement system, a novel3D shape measurement method is proposed withmonocular/binocular measurement modes. In this method, binocular stereo structure is utilized toreconstruct the common field of view of the two cameras, and the unreconstructed area (data absence)is filled up by two monocular measurement units, which are composed of one single camera and therandom pattern projector. The binocular measurement unit and the two monocular measurement unitsworking together can make the measurement results more integrated and effectively avoid pointabsence caused by the highlight and occlusion in any single camera’s view. A simple and effectivecalibration method is presented to locate the projected rays of the random pattern projection. It isunnecessary to determine the projection center or calibrate the distortion of projector lens, since thesystem precision is not affected by these issues. By searching and integrating the overlapped pointsbetween the three measurement datasets obtained in the binocular and monocular units respectively,the3D measurement data output in one measurement has no redundancy.
     A novel scheme for in-process registering multi-view scans with the aid of a miniature attitudesensor has been presented. Since the attitude sensor is fixed on the scanner during the measurementprocess, a simple yet effective algorithm is proposed for calibrating the relative attitudes (rotationtransformation) between the attitude sensor and the scanner. When the scanner is moved from onestandpoint to another in a measuring process, both the calibration results and the real-time readings ofthe attitude sensor are utilized to compute the rotation movement of the scanner. After applying therotation transformation to the current point dataset, the translation movement is efficiently determinedby exploiting the normal vector constraint between the correspondence points. Experimentsdemonstrate that the proposed registration can be done in-process with convenience and stability, andthe rigid transformation obtained can serve as a qualified initial estimate for further fine registration.
     By introducing multi-view geometry theory to binocular stereo measurement technology for thefirst time, a novel algorithm is proposed for automatically registering the measurement data takenfrom two orientations by a stereo sensor, without any instrument for assistance. The pointcorrespondences between two of the four natural intensity images, which are captured by the left andright cameras in the two orientations, are first obtained. Then the calibrated parameters of thebinocular stereo structure, together with the effective matching constraints between the four images,are utilized to calculate the relative pose of the stereo sensor based on the multi-view geometry theory.The proposed algorithm not only looses the registration condition, which is helpful to improve the measurement efficiency, but also improves the registration accuracy and robustness since itincorporates as much constraints as possible in the algorithm.
     The proposed algorithms have all been fully comparative analyzed and experimental verified, andmost of them have been applied in the ReCreator measurement system developed in our lab.
引文
[1] D. A. Forsyth, J. Ponce, Computer Vision: A Modern Approach. Prentice Hall,2002.
    [2] M. M. P. A. Vermeulen, P. C. J. N. Rosielle, P. H. J. Schellekens. Design of a high-precision3D-coordinate measuring machine. CIRP Annals-Manufacturing Technology,1998,47(1):447-450.
    [3]张国雄.坐标测量技术发展方向.红外与激光工程,2008,37(4):1-5.
    [4] F. Chen, G. Brown, M. Song. Overview of three-dimensional shape measurement using opticalmethods. Optical Engineering,2000,39(1):10-22.
    [5]陈晓荣,蔡萍,施文康.光学非接触三维形貌测量技术新进展.光学精密工程,2002,10(5):528-532.
    [6] F. Blais. Review of20years of range sensor development. Journal of Electronic Imaging,2004,13(1):231-240.
    [7]刘升平,王剑,葛红.超声波测距系统的开发与研究.计算机工程与应用,2009,45(25):78-81.
    [8] á. Hernández, J. Ure a, M. Mazo, et al. Reduction of blind zone in ultrasonictransmitter/receiver transducers. Sensors and Actuators A: Physical,2007,133(1):96-103.
    [9]王贤刚,郭志平,彭亚辉.用几何参数实现快速三维重建CT图像.清华大学学报,2002,42(5):655-658.
    [10]王贤刚,叶青,郭志平.两种典型三维CT系统及应用. CT理论与应用研究,2009,18(4):26-33.
    [11] X. Wang, T. A. Clarke. Separate adjustment of close range photogrammetric measurements.ISPRS,1998,32(5):177-184.
    [12]王桂平.数字近景工业摄影测量关键技术研究与应用[D].天津:天津大学,2005.
    [13] T. Luhmann. Close range photogrammetry for industrial applications. ISPRS Journal ofPhotogrammetry and Romote Sensing,2010,65(6):558-569.
    [14]韩建栋.结构光测量中若干关键技术研究[博士学位论文].北京:北京邮电大学,2009.
    [15] O. Ozeki, T. Nakano, S. Yamamoto. Real-time range measurement device for three-dimensionalobject recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(4):550-554.
    [16] S. J. Gordon, W. P. Steering. Real-time part position sensing. IEEE Transactions on PatternAnalysis and machine Intelligence,1988,10(3):374-386.
    [17]王鹏.线结构光三维自动扫描系统关键技术的研究[博士学位论文].天津:天津大学,2008.
    [18] J. Salvi, J. Pagès, J. Batlle. Pattern codification strategies in structured light systems. PatternRecognition,2004,37(4):827-849.
    [19] R. J. Valkenburg, A. M. McIvor. Accurate3D measurement using a structured light system.Image and Vision Computing,1998,16(2):99–110.
    [20] J. Gühring. Dense3-D surface acquisition by structured light using off-the-shelf components.Proceedings of SPIE–the International Society for Optical Engineering,2001,4309:220–231.
    [21]盖绍彦.光栅投影三维测量系统的关键技术研究[博士学位论文].南京:东南大学,2008.
    [22] R. A. Morano, C. Ozturk, R. Conn, et al. Structured light using pseudorandom codes, IEEETransactions on Pattern Analysis and Machine Intelligence,1998,20(3):322-327.
    [23] M. Sj dahl, P. Synnergren. Measurement of shape by using projected random patterns andtemporal digital speckle photography. Applied Optics,1999,38(10):1153-1158.
    [24]代红军,苏显渝.数字散斑时间序列相关三维面形测量方法.光学学报,2001,21(10):1208-1213.
    [25] Z. J. Geng. Rainbow3-dimensional camera: New concept of high-speed3-dimensional visionsystems. Optical Engineering,1996,35(2):376-383.
    [26] T. Miyasaka, K. Kuroda, M. Hirose, et al. High speed3-D measurement system usingincoherent light source for human performance analysis. Proceedings of the19thCongress ofThe International Society for Photogrammetry and Remote Sensing, The Netherlands,Amsterdam,2000,65-69.
    [27] X. Y. Su, W. J. Chen. Fourier transform profilometry: a review. Optics and Lasers inEngineering,2001,35(5):263-284.
    [28] X. F. Mao, W. J. Chen, X. Y. Su. Improved Fourier transform profilometry. Applied Optics,2007,46(5):664-668.
    [29] S. D. Cochran, G. Medioni.3-D surface description from binocular stereo. IEEE Transactionson Pattern Analysis and Machine Intelligence,1992,14(10):981-994.
    [30] J. Mulligan, V. Isler, K. Daniilidis. Trinocular stereo: a real-time algorithm and its evaluation.International Journal of Computer Vision,2002,47(1-3):51-61.
    [31] R. Klette, A. Koschan, K. Schluns. Computer vision: three-dimensional data from images.Singapore.1998.
    [32] M. Bleyer, M. Gelautz. A layered stereo matching algorithm using image segmentation andglobal visibility constraints. Photogrammetry Remote Sensing,2005,59(3):128-150.
    [33]刘贵民.无损检测技术.北京,国防工业出版社,2006.
    [34] Scottish School of Non-Destructive Testing. Non-Destructive Testing. InstrumentationReference Book (Fourth Edition),2010,567-592.
    [35] T. Varady, R. Martin, J. Cox. Reverse engineering of geometric models——an introduction.Computer Aided Design,1997,29(4):255-268.
    [36]张丽艳.逆向工程中模型重建关键技术研究[博士学位论文].南京:南京航空航天大学,2001.
    [37]郑亚红,廖金玉.逆向工程中三维曲面测量技术应用.沈阳工业大学学报,2006,28(4):446-448.
    [38] F. Pozzi. Comparison of3D measurement techniques in cultural heritage application: user pointof view. Proceeding of the First International Symposium on3D Data Processing Visualizationand Transmission,2002,762-765.
    [39]吴立军,肖玉军.浅谈数字化测量技术在田野考古中的应用.江汉考古,2006,3(100):74-77.
    [40] A. Karasik, U Smilansky.3D scanning technology as a standard archaeological tool for potteryanalysis: practice and theory. Journal of Archaeological Science,2008,35:1148-1168.
    [41]查选平.计算机辅助投射条纹乳房三维形体测量系统的研制[D],广州:第一军区大学,2005.
    [42] F. Kong, G. Yang. A method for reconstruction of solder joint surface. Proceedings of the FourthInternational Conference on Natural Computation,2008,5:352-356.
    [43] P. Debevec. Rendering synthetic objects into real scenes: bridging tranditional and image-basedgraphics with global illumination and high dynamic range photography. Computer Graphics,Annual Confernce Series, ACM SIGGRAPH, New Orlean,1996:11-20.
    [44] F. Losasso, H. Hoppe. Geometry clipmaps: terrain rendering using nested regular grids. ACMTransactions on Graphics,2004,23(3):769-776.
    [45]王晶,张秀山,王锋.虚拟现实技术在军校教育中的应用研究.计算机与数字工程,2006,34(12):97-100.
    [46]徐奕,周军,周源华.立体视觉匹配技术.计算机工程与应用,2003,15:1-5,62.
    [47] D. Yehui, G. Jia. Research on stereo matching algorithms. IFMBE Procedings,2010,25(4):521-524.
    [48] A. Kuijper, L. M. J. Florack. On the creations of critical points in scale space with applicationsto medical image analysis. UU-CS-2001-25TR,2005.
    [49] R. V. Ee, C. M. Schor. Unconstrained stereoscopic matching of lines. Vision Research,2000,40:151-162.
    [50] B. J. Supa, W. N. Klariquist. Patch-based stereo in a general binocular viewing. Theory andexperiment,1997,19(3):247-252.
    [51] S. J. D. Prince, R. D. Eagle. Weighted directional energy model for human stereocorrespondence. Vision Research,2000,40(9):1143-1155.
    [52] H. Chao, Y. F. Zheng, S. C. Ahalt. Object tracking using the Gabor wavelet transform and thegolden section algorithm. IEEE Transactions on Multimedia,2002,4(4):528-538.
    [53] M. J. Tsai, C. C. Hung. Development of a high-precision surface metrology system usingstructured light projection. Measurement,2005,38(3):236-247.
    [54] Z. Y. Wang, H. W. Li, D. P. Li et al. A direct calibration method for structured light. Proceedingsof the IEEE international conference on Mechatronics and Automation, Niagara Falls, Canada,2005,3:1283-1287.
    [55] G. Sansoni, M. Trebeschi, F. Docchio. Fast3D profilometer based upon the projection of asingle fringe pattern and absolute calibration. Measurement Science Technology,2006,17(7):1757-1766.
    [56] C. C. Liebe, C. Padgett, J. Chang. Three dimensional image utilizing structured light.Proceedings of the IEEE Aerospace Conference,2004:2647-2655.
    [57] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on PatternAnalysis and Machine Intelligence,2000,22(11):1330-1334.
    [58] R. Y. Tsai. A versatile camera calibration technique for high-accuracy3D machine visionmetrology using off-the-shelf TV cameras and Lenses. IEEE Journal of Robotics andAutomation,1987,3(4):323-344.
    [59] R. Dewar. Self-generated targets for spatial calibration of structured light optical sectioningsensors with respect to an external coordinate system. Proceedings of Robots and Vision’88Conference,1988,5-13.
    [60]段发阶,刘凤梅,叶声华.一种新型线结构光传感器结构参数标定方法.仪器仪表学报,2000,21(1):108-110.
    [61] D. Q. Huynh, R. A. Owens, P. E. Hartmann. Calibrating a structured light stripe system: a novelapproach. International Journal of Computer Vision,1999,33(1):73-86.
    [62]徐光祐,刘立峰,曾建超等.一种新的基于结构光的三维视觉系统标定方法.计算机学报,1995,18(6):450-456.
    [63] F. Q. Zhou, G. J. Zhang. Complete calibration of a structured light stripe vision sensor throughplanar target of unknown orientations. Image and Vision Computing,2005,23(1):59-67.
    [64] X. B. Chen, J. T. Xi, Y. Jin et al. Accurate calibration for a camera-projector measurementsystem based on structured light projection. Optics and Lasers in Engineering,47(3-4):310-319.
    [65] S. Zhang, P. S. Huang. Novel method for structured light system calibration. OpticalEngineering,2006,45(8):083601(1-8).
    [66] D. Shin, J. Kim. Point to point calibration method of structured light for facial datareconstruction. Lecture Notes in Computer Science,2004,3072:1-22.
    [67] R. J. Valkenburg, A. M. Mclvor. Accurate3D measurement using a structured light system.Image and Vision Computing,1998,16(2):99-110.
    [68] D. Gorpas, K. Politopoulos, D. Yova. A binocular machine vision system for three dimensionalsurface measurement of small objects. Computerized Medical Imaging and Graphics,31(8):625-637.
    [69] J. H. Sun, G. J. Zhang, Z. Z. Wei et al. Large3D free surface measurement using a mobile codedlight-based stereo vision system. Sensors and Actuators A,132(2):460-471.
    [70] H. Zhang, L. Y. Zhang, H. T. Wang et al. Surface measurement based on instantaneous randomillumination. Chinese Journal of Aeronautics,2009,22(3):316-324.
    [71] R. Q. Yang, S. Cheng, Y. Z. Chen. Flexible and accurate implementation of a binocularstructured light system. Optics and Lasers in Engineering,2008,46(5):373-379.
    [72] M. Rodrigues, R. Fisher, Y. Liu. Special issue on registration and fusion of range images.Computer Vision and Image Understanding,2002,87(1-3):1-7.
    [73] J. A. Sung, W. Rauh, M. Recknagel. Circular coded landmark for optical3D_measurement androbot vision. IEEE Transactions on Intelligent Robots and Systems,1999,2:1128-1133.
    [74] D. Akca. Full automatic registration of laser scanner point clouds. Optical3D measurementtechniques VI, Zurich, Switzerland,2003:330-337.
    [75] M. Franaszek, G. S. Cheok, C. Witzgall. Fast automatic registration of range images from3Dimaging systems using sphere targets. Automation in Construction,2009,18(3):265-274.
    [76]胡民政,陈晓波,习俊通.两轴转台结构光三维扫描仪及多视自动拼合.测试技术学报,2010,24(2):161-169.
    [77] S. Y. Park, M. Subbarao. A multiview3D modeling system based on stereo vision techniques.Machine Vision and Application,2005,16(3):148-156.
    [78] S. Larsson, J. A. P. Kjellander. Motion control and data capturing for laser scanning with anindustrial robot. Robotics and Autonomous Systems,2006,54(6):453-460.
    [79] Leica geosystems. Leica T-Scan TS50-A: more than just a line scanner,http://metrology.leica-geosystems.com.
    [80] P. J. Besl, N. D. McKay. A method for registration of3-D shapes. IEEE Transactions on PatternAnalysis and Machine Intelligence,1992,14(2):239-256.
    [81] Y. Chen, G. Medioni. Object modeling by registration of multiple range images. Image andVision Computing,1992,10(3):145-155.
    [82] D. F. Huber, M. Hebert. Fully automatic registration of multiple3D data sets. Image and VisionComputing,2003,21(7):637-650.
    [83] A. Almhdie, C. Léger, M. Deriche et al.3D registration using a new implementation of the ICPalgorithm based on a comprehensive lookup matrix: Application to medical imaging. PatternRecognition Letters,2007,28(12):1523-1533.
    [84] Z. Xie, S. Xu, X. Li. A high-accuracy method for fine registration of overlapping point clouds.Image and Vision Computing,2010,28(4):563-570.
    [85] F. Boughorbel, M. Mercimek, A. Koschan et al. A new method for the registration ofthree-dimensional point-sets: the Gaussian fields framework. Image and Vision Computing,2010,28(1):124-137.
    [86] L. Zhang, A. Razdan, G. Farin et al.3D face authentication and recognition based on bilateralsymmetry analysis. The Visual Computer,2006,22(1):43-55.
    [87] J. Feldmar, N. Ayache. Rigid and affine registration of smooth surfaces using differentialproperties. Proceedings of the3rd European Conference on Computer Vision, Stockholm,Sweden,1994:397-406.
    [88] C. S. Chua, R. Jarvis. Point signatures: a new representation for3D object recognition.International Journal of Computer Vision,1997,25(1):63-85.
    [89] C. Chen, Y. P. Hung, J. B. Cheng. A fast automatic method for registration of partiallyoverlapping range images. International Conference on Computer Vision, Bombay,1998:242-248.
    [90] C. Chen, Y. Hung, J. Cheng. Ransac-based darces: a new approach to fast automatic registrationof partially overlapping range images. IEEE Transactions on Pattern Analysis and MachineIntelligence,1999,21(11):1229-1234.
    [91] G. Roth. Registering two overlapping range images. Processing of the Second InternationalConference on3D Digital Imaging and Modeling, Ottawa, Ontario, Canada,1999:191-200.
    [92] J. V. Wyngaerd, L. J. Van Gool. Combining texture and shape for automatic crude patchregistration. IEEE International Conference on3D Digital Imaging and Modeling (3DIM),Banff, Canada,2003:179-186.
    [93] G. H. Bendels, P. Degener, R. Wahl, et al. Image-based registration of3D-range data usingfeature surface elements. Proceeding of the5th International Symposium on Virtual Reality,Archaeology and Cultural Heritage,2004:115-124.
    [94] X. Li, I. Guskov. Multiscale features for approximate alignment of point-based surfaces.Symposium on Geometry Processing, Eurographics Association,2005:217-226.
    [95] L. Ellekilde, J. Valls Miro, G. Dissanayake. Fusing range and intensity images for generatingdense models of three-dimensional environment. Proceeding of the2006IEEE InternationalConference on Man-Machine Systems,2006.
    [96] H. T. Ho, D. Gibbins. A curvature based approach for multi-scale feature extraction from3Dmeshes and unstructured point clouds. IET Computer Vision,2009,3(4):201-212.
    [97] T. R. Lo, J. P. Siebert. Local feature extraction and matching on range images:2.5d sift.Computer Vision and Image Understanding,2009,113(12):1235-1250.
    [98] F. Hou, Y. Qi, X. Shen, et al. Automatic registration of multiple range images based on cyclespace. The Visual Computer,2009,25(5-7):657-665.
    [99]韦虎.三维外形测量系统中的数据处理关键技术研究[博士学位论文].南京:南京航空航天大学,2010.
    [100] J. V. Wyngaerd, L. Van Gool. Automatic crude patch registration: toward automatic3D modelbuilding. Computer Vision and Image Understanding,2002,87(1-3):8-26.
    [101] I. Stamos, M. Leordeanu. Automatic feature-based range registration of urban scenes of largescale. IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2003:555-561.
    [102] J. P. Tarel, H. Civi, D. B. Cooper, et al. Pose estimation of free-form3D objects without pointmatching using algebraic surface models. Proceedings of IEEE Worshop Model Based3DImage Analysis, Mumbai, India,1998:13-21.
    [103] D. H. Chung, I. D. Yun, S. U. Lee. Registration of multiple-range views using thereverse-calibration technique. Pattern Recognition,1998,31(4):457-464.
    [104]陈晓波.结构光三维测量系统误差分析、控制及补偿技术的研究[博士学位论文].上海:上海交通大学,2009.
    [105]吴庆阳.线结构光三维传感中关键技术研究[博士学位论文].四川:四川大学,2006.
    [106]徐平,陈文静,苏显渝.高精度的数字光投影傅里叶变换轮廓术.光电工程,2004,32(11):59-62.
    [107]张宏伟.双目视觉形貌测头的研究[博士学位论文].天津:天津大学,2002.
    [108]张辉.基于随机光照的双目立体测量关键技术及其系统研究.南京:南京航空航天大学,2008.
    [109] P. F. Luo, Y. J. Chao, M. A. Sutton. Application of stereo vision to three-dimensionaldeformation analyses in fracture experiments. Optical Engineering,1994,33(3):981-990.
    [110] V. Tiwari, M. A. Sutton, S. R. McNeill et al. Application of3D image correlation for full-fieldtransient plate deformation measurements during blast loading. International Journal of ImpactEngineering,2009,36(6):862-874.
    [111] Nicola D'Apuzzo. Modeling human faces with multi-image photogrammetry. Proceeding ofSPIE on Three-Dimensional Image Capture and Applications V, San Jose, California, USA,2002,4661(191):191-197.
    [112] J. García, Z. Zalevsky, P. García-Martínez et al. Three-dimensional mapping and rangemeasurement by means of projected speckle patterns. Applied Optics,2008,47(16):3032-3040.
    [113] H. Zhang, L. Y. Zhang, H. T. Wang et al. Surface measurement based on instantaneous randomillumination. Journal of Aeronautics,2009,22(3):316-324.
    [114] A Kato. Detection of fatigue damage in steel using laser speckle. Optics and Lasers inEngineering,2000,33(5):232-333.
    [115] A. J. Klemm, P. Sanjeevan. Application of laser speckle analysis for the assessment ofcementitious surfaces subjected to laser cleaning. Applied Surface Science,2008,254(9):2642-2649.
    [116] W. H. Press, B. P. Flannery, S. A. Teukolsky et al. Numerical recipes: the art of scientificcomputing. Cambridge University Press, Cambridge, UK,1986.
    [117] W. Tong. An evaluation of digital image correlation criteria for strain mapping applications.Strain,2005,41(4):167-175.
    [118] B. Pan, H. M. Xie, Z. Y. Wang et al. Study on subset size selection in digital image correlationfor speckle patterns. Optics Express,2008,16(10):7037-7048.
    [119] D. M. Tsai, C. T. Lin, J. F. Chen. The evaluation of normalized cross correlations for defectdetection. Pattern Recognition Letters,2003,24(15):2525-2535.
    [120] L. D. Stefano, S. Mattoccia, F. Tombari. ZNCC-based template matching using bounded partialcorrelation. Pattern Recognition Letters,2005,26(14):2129-2134.
    [121] A. W. Gruen. Adaptive lease-squares correlation: a powerful matching technique.Photogrammetric engineering and remote sensing,1988,54(5):633-641.
    [122] E. Trucco, A. Verri. Introductory techniques for3-D computer vision. New Jersey: Prentice Hall,1998.
    [123] M. Z. Brown, D. Burschka, G. D. Hager. Advances in computational stereo. Analysis andMachine Intelligence,2003,25(8):993-1008.
    [124] C. Harris, M. Stephens. A combined corner and edge detector. Proceeding of the4th AlveyVision Conference, Manchester, UK,1988:147-151.
    [125] K. Mikolajczyk, C. Schmid. Indexing based on scale invariant interest points. Proceedings ofthe8th IEEE International Conference on Computer Vision,2001,1:525-531.
    [126] K. Mikolajczyk, C. Schmid. Scale and affine invariant interest point detectors. InternationalJournal of Computer Vision,2004,60(1):63-86.
    [127] D. G. Lowe. Distinctive Image Features from scale-invariant keypoints. International Journal ofComputer Vision,2004,60(2):91-101.
    [128] M. Bleyer, M. Gelautz. Graph-cut-based stereo matching using image segmentation withsymmetrical treatment of occlusions. Signal Processing: Image Communication,2007,22(2):127-143.
    [129] Y. Ohta, T. Kanade. Stereo by intra-and inter-scanline search using dynamic programming.IEEE Transactions on Pattern Analysis and Machine Intelligence,1985,7(2):139-154.
    [130] K. J. Yoon, I. S. Kweon. Adaptive support-weight approach for correspondence search. IEEETransactions on Pattern Analysis and Machine Intelligence,2006,28(4):650-656.
    [131] K. Mikolajczyk, C. Schmid. A performance evaluation of local descriptors. IEEE Transactionson Pattern Analysis and Machine Intelligence,2005,27(10):1615-1630.
    [132] F. Mindru, T. Tuytelaars, L. V. Gool, et al. Moment invariants for recognition under changingviewpoint and illumination. Computer Vision and Image Understanding,2004,94:3-27.
    [133] G. Carneiro, A. Jepson. Multi-scale phase-based local features. Proceedings of2003IEEEComputer Society Conference on Computer Vision and Pattern Recognition,2003,1(1):736-743.
    [134] M. A. Sutton, J. H. Yan, X. M. Deng et al. Three-Dimensional digital image correlation toquantify deformation and crack-opening displacement in ductile aluminum under mixed-modeI/III loading. Optical Engineering,2007,46(5):051003-1-051003-16.
    [135] J. D. Owens, M. Houston, D. Luebke et al. GPU computing. Proceedings of the IEEE,2008,96(5):879-899.
    [136] S. Che, M. Boyer, J, Y. Meng et al. A performance study of general-purpose applications ongraphics processors using CUDA. Journal of Parallel and Disributed Computing,2008,68(10):1370~1380.
    [137] M. Januszewski, M. Kostur. Accelerating numerical solution of stochastic differential equationswith CUDA. Computer Physics Communications,2010,181(1):183-188.
    [138] J. D. Owens, D. Luebke, N. Govindaraju et al. A survey of general-purpose computation ongraphics hardware. Computer Graphics Forum,2007,26(1):80-113.
    [139]吴恩华.图形处理器用于通用计算的技术、现状及其挑战.软件学报,2004,15(10):1493-1504.
    [140] W. H. Peters, W. F. Ranson. Digital imaging techniques in experimental stress analysis. OpticalEngineering,1982,21(3):427-431.
    [141] I. Yamaguchi. A laser-speckle strain gauge. Journal of Physics E: Scientific Instruments,1981,14:1270-1273.
    [142] H. W. Schreier, M. A. Sutton. Systematic errors in digital image correlation due toundermatched subset shape functions. Experimental Mechanics,2002,42(3):303-310.
    [143] W. Tong. An evaluation of digital image correlation criteria for strain mapping applications.Strain,2005,41(4):167-175.
    [144] B. Pan, H. M. Xie, B. Q. Xu, et al. Performance of sub-pixel registration algorithms in digitalimage correlation, Measurement Science&Technology,2006,17(6):1615-1621.
    [145] T. M. Lehmann, C. Gonner and K. Spitzer. Survey: interpolation methods in medical imageprocessing. IEEE Transactions on Medical Image,1999,18(11):1049-1075.
    [146] B. Pan, K. M. Qian, H. M. Xie et al. Two-dimensional digital image correlation for in-planedisplacement and strain measurement: a review. Measurement Science and Technology,2009,20(6):20062001
    [147] M. A. Sutton, W. J. Wolters, W. H. Peters et al. Determination of displacements using animproved digital correlation method. Image and Vision Computing,1983,1(3):133-139.
    [148] T. C. Chu, W. F. Rason, M. A. Sutton et al. Application of digital image correlation techniquesto experimental mechanics. Experimental Mechanics,1985,25(3),232-244.
    [149]芮嘉白,金观昌,徐秉业.一种新的数学散斑相关方法及其应用.力学学报,1994,26(5):599-607.
    [150] H. A. Bruck, S. R. McNeil, M. A. Sutton et al. Digital image correlation using Newton-Raphsonmethod of partial differential correction. Experimental Mechanics,1989,29(3):261-267.
    [151] S. Weerakoon, T. G. I. Fernando. A variant of Newton’s method with accelerated third-orderconvergence. Applied Mathematics Letters,2000,13(8):87-93.
    [152] A. Y. Ozban. Some new variants of Newton’s method. Applied Mathematics Letters,2004,17(6):677-682.
    [153] C. B. Chun. Construction of third-order modifications of Newton’s method. AppliedMathematics and Computation,2007,189(1):662-668.
    [154] G. W. Vendroux, G. Knauss. Submicron deformation field measurement: Part2. ImprovedDigital Image Correlation. Exp. Mech.,1998,38(2):86-92.
    [155] H. W. Wang, Y. L. Kang. Improved digital speckle correlation method and its application infracture analysis of metallic foil. Optical Engineering,2002,41(11):2793-2798.
    [156]孟利波.数字散斑相关方法的研究和应用.北京,清华大学,2005.
    [157] L. B. Meng, G. C. Jin, X. F. Yao. Application of iteration and finite element smoothingtechnique for displacement and strain measurement of digital speckle correlation. Optics andLasers in Engineering,2007,45(1):57-63.
    [158] D. J. Chen, F. P. Chiang, Y. S. Tan et al. Digital speckle-displacement measurement using acomplex spectrum method. Applied Optics,1993,32(11):1839-1849.
    [159] L. Oriat, E. Lantz. Subpixel detection of the center of an object using a spectral algorithm on theimage. Pattern Recognition,1998,31(6):761-771.
    [160]王世斌,李翔宇,李林安等.后验概率算法用于位移场的确定.实验力学,2004,19(3):371-375.
    [161] A. Pilch, A. Mahajan, T. Chu. Measurement of whole-field surface displacements and strainusing a genetic algorithm based intelligent image correlation method. Journal of DynamicSystem, Measurement, and Control,2004,126(3):479-488.
    [162] H. Jin, H. A. Bruck. Pointwise digital image correlation using genetic algorithms. ExperimentalTechniques,2005,29(1):36-39.
    [163] M. C. Pitter, C. W. See, M. G. Somekh. Fast subpixel digital image correlation using artificialneural networks. Proceedings of the2001International Conference on Image Processing,2001,2:901-904.
    [164] M. C. Pitter, C. W. See, M. G. Somekh. Subpixel microscopic deformation anslysis usingcorrelation and artificial neural networks. Optics Express,2001,8(6):322-327.
    [165] E. M. Barj, M. Afifi, A. A. Idrissi et al. Speckle correlation fringes denoising using stationarywavelet transform. Application in the wavelet phase evaluation technique. Optics&LaserTechnology,2006,38():506-511.
    [166]尤玉虎,周孝宽.数字图像最佳插值算法.中国空间科学技术,2005,25(3):14-18.
    [167]金海丁,周孝宽.数字图像自适应插值法.激光与红外,2006,36(9):907-910.
    [168] H. W. Schreier, J. R. Braasch, M. A. Sutton. Systematic errors in digital image correlationcaused by intensity interpolation. Optical Engineering,1999,39(11):2915-2921.
    [169] R. W. Schafer, L. R. Rabiner. A digital signal processing approach to interpolation. Proceedingsof the IEEE,1973,61(6):692-702.
    [170]朱心雄.自由曲线曲面.北京,科学出版社,2000.
    [171] W. G. Knauss, I. Chasiotis, Y. Huang. Mechanical measurements at the micron and nanometerscales. Mechanics of Materials,2003,35(3-6):217-231.
    [172]夏勇.基于特征的纹理图像分割技术研究[D].西安:西北工业大学,2006.
    [173] R. C. Gonzalez, R. E. Woods,阮秋琦等(译).数字图像处理.北京,电子工业出版社,2003.
    [174] H. Lu, P. D. Cary. Deformation measurements by digital image correlation: Implementation of asecond-order displacement gradient. Experimental Mechanics,2000,40(4):393-400.
    [175]雷彦章,赵慧洁,姜宏志.一种单双目视觉系统结合的三维测量方法.光学学报,2008,28(7):1338-1342.
    [176]张辉,张丽艳,韦虎.双目立体测量系统标定的三步法.中国机械工程,2009,20(16):1899-1903.
    [177]郭龙源.计算机视觉立体匹配相关理论与算法研究[博士学位论文].南京,南京理工大学,2008.
    [178] J. Weng, P. Cohen, M. Herniou. Camera calibration with distortion models and accuracyevaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(10):965-980.
    [179] J. H. Wang, F. H. Shi, J. Zhang et al. A new calibration model of camera lens distortion. PatternRecognition,2008,41(2):607-615.
    [180] J. More. The levenberg-marquardt algorithm, implementation and theory. In G. A. Watson editor,Numerical Analysis, Lecture Notes in Mathematics630. Springer-Verlag,1977.
    [181] G. Q. Wei, S. D. Ma. Two plane camera calibration: a unified model. Proc of IEEE Conferenceof Computer Vision and pattern recognition,1991,133-138.
    [182] G. Q. Wei, S. D. Ma. Implicit and explicit camera calibration: theory and experiments. IEEETransactions on Pattern and Machine Intelligence,1994,16(5):469-480.
    [183] K. H. Esbensen, P. Geladi. Principal component analysis: concept, geometrical interpretation,mathematical background, algorithms, history, practice. Comprehensive Chemometrics,2009,211-226.
    [184] B. Curless, M. Levoy. A volumetric method for building complex models from range images.Proceedings of the23rdAnnual Conference on Computer Graphics and Interactive Techniques,New York, ACM,1996:303-312.
    [185] A. Hilton, J, Illingworth. Geometric fusion for a hand-held3D sensor. Machine Vision andApplications,2000,12(1):44-51.
    [186] A. Hilton, J. Illingworth. Multi-resolution geometric fusion. International Conference on RecentAdvances in3D Digital Imaging and Modeling, Los Alamitos,1997,181-188.
    [187] R. Sagawa, K. Nishino, K. Ikeuchi. Adaptively merging large-scale range data with reflectanceproperties. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3):392-405.
    [188] Y. Sun, C. Dumont, M. Abidi. Mesh-based integration of range and color images. AeroSenseAerospace Defense Sensing and Controls, Sensor Fusion: Architectures, Algorithms, andApplications, Orlando, Florida,2000:110-117.
    [189] Y. Sun, J. Paik, A. Koschan, et al. Surface modeling using multi-view range and color images.Integrated Computer-Aided Engineering,2003,10(1):37-50.
    [190]韦虎,张丽艳,张辉等.双目立体测量中多视角深度图同时融合算法.计算机辅助设计与图形学学报,2008,20(11):1446-1451.
    [191]李晓沛,张琳娜,赵凤霞.简明公差标准应用手册.上海,上海科学技术出版社,2005.
    [192] D. W. Eggert, A. Lorusso, R. B. Fisher. Estimating3-D rigid body transformations: acomparison of four major algorithms. Machine Vision and Applications,1997,9(5-6):272-290.
    [193] C. J. R. Chua. Point signatures: a new representation for3d object recognition. InternationalJournal of Computer Vision,1997,25(1):63-85.
    [194] A. E. Johnson. Spin-images: a representation for3-d surface matching[Ph.D. thesis], CarnegieMellon University, USA,1997.
    [195] J. Feldmar, N. Ayache. Rigid, affine and locally affine registration of free-form surfaces.International Journal of Computer Vision,1996,18(2):99-119.
    [196] J. Salvi, C. Matabosch, D. Fodi et al. A review of recent range image registration methods withaccuracy evaluation. Image and Vision Computing,2007,25(5):578-596.
    [197] L. Silva, O. R. P. Bellon, K. L. Boyer. Precision range image registration using a robust surfaceinterpenetration measure and enhanced genetic algorithms, IEEE Transactions on PatternAnalysis and Machine Intelligence,2005,27(5):762-776.
    [198] M. Maeda, T. Ogawa, K. Kiyokawa et al. Tracking of user position and orientation by stereomeasurement of infrared markers and orientation sensing. Proceedings of the EighthInternational Symposium on Wearable Computers.2004:77-84.
    [199] W. Komorniczak, T. Górski, A. Kawalec et al. Electronic instability compensation forsurveillance sensor set in miniature UAV. Metrology and Measurement Systems,2009,16(4):683-688.
    [200] R. Williamson, B. J. Andrews. Detecting absolute human knee angle and angular velocity usingaccelerometers and rate gyroscopes. Medical and Biological Engineering and Computing,2003,39(3):294-302.
    [201] D. Roetenberg, H. J. Luinge, C. T. M. Baten et al. Compensation of magnetic disturbancesimproves inertial and magnetic sensing of human body segment orientation. IEEE Transactionson Neural Systems and Rehabilitation Engineering,2005,13(3):395-405.
    [202] R. J. Housden, G. M. Treece, A. H. Gee et al. Calibration of an orientation sensor for freehand3D ultrasound and its use in a hybrid acquisition system. BioMedical Engineering OnLine,2008,7:5, http://www.biomedical-engineering-online.com/content/7/1/5.
    [203] K. S. Arun, T. S. Huang, S. D. Blostein. Least-squares fitting of two3-d point sets. IEEETransactions on Pattern Analysis and Machine Intelligence,1987,9(5):698-700.
    [204]戴华.矩阵论.北京:科学出版社,2001.
    [205] C. H. Lee, A. Varshney, D. W. Jacobs. Mesh saliency. ACM SIGGRAPH2005, New York, USA,ACM,2005:659-666.
    [206] E. Magid, O. Soldea, E. Rivlin. A comparison of Gaussian and mean curvature estimationmethods on triangular meshes of range image data. Computer Vision and Image Understanding,2007,107(3):139-159.
    [207] H. T. Ho, D. Gibbins. A curvature based approach for multi-scale feature extraction from3dmeshes and unstructured point clouds. IET Computer Vision,2009,3(4):201-212.
    [208] A. Jagannathan and E. Miller. Three-dimensional surface mesh segmentation usingcurvedness-based region growing approach. IEEE Transactions on Pattern Analysis andMachine Intelligence,2007,29(12):2195-2204.
    [209] J. J. Koenderink, A. J. Van Doorn. Surface shape and curvature scales. Image and VisionComputing,1992,10(8):557-564.
    [210] C. Dorai, A. K. Jain. Cosmos-a representation scheme for3D free-form objects. IEEETransactions on Pattern Analysis and Machine Intelligence,1997,19(10):1115-1130.
    [211]韦虎,张丽艳,刘胜兰等.基于支撑域的网格简化算法.中国图象图形学报,2011,16(5):892-897.
    [212] S. Chen, J. Wu. Estimating normal vectors and curvatures by centroid weights. Computer AidedGeometric Design,2004,21(5):447-458.
    [213] Richard O. Duda, Perer E. Hart, David G. Stork. Pattern Classification(Second Edition). TheWiley Editorial Department,2000.
    [214] G. Roth. Registering two overlapping range images. Processing of the Second InternationalConference on3D Digital Imaging and Modeling, Ottawa, Ontario, Canada,1999:191-200.
    [215] R. Hartley and A. Jepson. Multiple view geometry in computer vision. Cambridge UniversityPress, UK2000.
    [216] H. C. Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections.Nature,1981,293:133-135.
    [217] R. Hartley. In defense of the eight-point algorithm. IEEE Transactions Pattern Analysis andMachine Intelligence.1997,19(6):580-593.
    [218] R. Tsai, T. Huang. Uniqueness and Estimation of Three-Dimensional Motion Parameters ofRigid Objects with Curved Surfaces. IEEE Transactions Pattern Analysis and MachineIntelligence,1984,6(1):13-27.
    [219] H. Stewénius, D. Nistér, F. Kahl, et al. A minimal solution for relative pose with unknown focallength. Image and Vision Computing,2008,26(7):871-877.
    [220] H. X. Zhong, Y. J. Pang, Y. P. Feng. A new approach to estimating fundamental matrix. Imageand Vision Computing,2006,24(1):56-50.
    [221] X. Armangue, J. Salvi. Overall view regarding fundamental matrix estimation. Image andVision Computing,2003,21(2):205-220.
    [222] C. Feng, Y. Hung. A robust method for estimating the fundamental matrix. Proceeding of theSeventh Digital Image Computing: Techniques and Applications,2003:633-642.
    [223] Z. Y. Zhang, C. Loop. Estimating the fundamental matrix by transforming image points inprojective space. Computer Vision and Image Understanding,2001,82(2):174-180.
    [224] P. Torr, D Murray. The development and comparison of robust methods for estimating thefundamental matrix. International Journal of Computer Vision,1997,24(3):271-300.
    [225] Z. Z. Chen, C. K. Wu, P. Y. Shen et al. A robust algorithm to estimate the fundamental matrix.Pattern Recognition Letters,2000,21(9):851-861.
    [226] D. Nister. An efficient solution to the five-point relative pose problem. IEEE Transactions onPattern Analysis and Machine Intelligence,2004,26(6):756-770.
    [227] T. S. Huang, O. D. Faugeras. Some proprieties of the E matrix in two-view motion estimation.IEEE Trannsactions on Pattern Analysis and Machine Intelligence,1989,11(12):1310-1312.
    [228] A. Habed, B. Boufama. Camera self-calibration from bivariate polynomials derived fromKruppa’s equations. Pattern Recognition,2008,41(8):2484-2492.
    [229] C. R. Huang, C. S. Chen, P. C. Chung. An improved algorithm for two-image cameraself-calibration and Euclidean structure recovery using absolute quadric. Pattern Recognition,2004,37(8):1713-1722.
    [230] M. Pollefeys, R. Koch, L.Gool. Self-calibration and metric reconstruction in spite of varyingand unknown internal camera parameters. Computer Vision,1999,32(1):7-25.
    [231] Z. Y. Zhang. Flexitbhle camera calibration by viewing a plane from unknown orientations.Proceedings of the7IEEE International Conference on Computer Vision.1999:666-673.
    [232] D. J. Zheng, L. Y. Zhang, X. Y. Du, et al.3D curve structure reconstruction from a sparse set ofunordered images. Computers in Industry,2009,60(2):126-134.
    [233] M. A. Fischler, R. C. Bolles. Random sample consensus: a paradigm for model fitting withapplications to image analysis and automated cartography. Communications of the ACM,1981,24(6):381-395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700