用户名: 密码: 验证码:
非线性盲信号抽取及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在源信号和传输信道均未知情况下,从若干观测到的多个信号的混合信号中恢复出源信号的信号处理方法,称为盲信号分离(Blind Source Separation, BSS)。由于其在物医学工程、声呐、雷达、语音增强、无线通讯和图像处理等领域的广泛应用,盲信号分离成为信号处理领域的重要研究课题之一。目前提出的大多数的盲信号分离算法是基于线性瞬时混合模型,并且同时恢复出所有的未知源信号。在许多实际应用场景下,由于传感器非线性传输特性的影响,实际问题被建模为非线性混合方式将更加准确和符合实际情况,而且感兴趣的源信号往往只是少数几个甚至一个。此时,采用盲信号分离技术同时恢复出所有的未知源信号将带来很多不必要的计算,消耗大量的时间。针对上述问题,本学位论文重点研究了非线性盲信号抽取(Blind Source Extraction,BSE)及其在生物医学工程中的应用,取得了以下创新性成果:
     1.提出一种基于峭度的非线性盲抽取算法:该算法是将感兴趣源信号的归一化峭度范围这一先验知识当做约束条件加入到盲信号分离的对照函数中,从而构造成一个带有约束条件的优化问题。该优化问题通过增广拉格朗日函数法被转化为无约束的优化问题,然后利用标准的梯度下降学习法求解,从而抽取出感兴趣的源信号。由于先验知识的运用,该算法可以从后非线性混合信号中一次性地抽取感兴趣的源信号,从而有效地避免很多不必要的计算,节省了大量的时间。
     2.提出一种基于参考信号的非线性盲抽取算法:首先传统的限制独立成分分析框架被扩展到后非线性混合模型中,然后基于该框架,一种基于参考信号的非线性盲抽取算法被提出。该算法是将参考信号和抽取信号之间的相似性函数当作新的目标函数,采用标准梯度上升学习法交替更新该目标函数和盲信号分离的负熵对照函数,从而可以从后非线性混合信号中一次性地抽取出感兴趣源信号的准确波形。由于利用了参考信号这一先验知识,并避免了阈值设置问题,该算法可以大大地减少计算量,并有效地提高信号盲抽取的精度和准确性。
     3.提出了一种基于高斯化的非线性盲抽取算法:该算法分为两个阶段,第一个阶段根据中心极限定理,利用高斯化变换技术补偿掉后非线性混合模型中的未知非线性畸变,得到近似的线性混合信号;第二个阶段利用已知的感兴趣源信号的归一化峭度范围这一先验知识,从非线性畸变补偿之后得到的近似线性混合信号中抽取出我们感兴趣的源信号。因为规避了未知非线性函数的逼近和拟合问题,并分两个阶段实现后非线性混合信号的盲抽取,所以,该算法不仅简单灵活,而且还可以有效地提高信号盲抽取的效率。
     4.提出两种非线性胎儿心电信号抽取算法:胎儿心电信号抽取是生物医学工程领域的重要研究课题之一,它具有非常重要的临床意义。基于信息最小化原则,本学位论文提出了一种新的目标函数,并基于该目标函数提出了两种新颖的非线性胎儿心电信号抽取算法。第一种算法是采用直接估计和计算概率密度函数实现的,其推导过程简单明了。第二种算法规避了未知概率密度函数的估计问题,利用可逆变换不影响互信息大小这个良好性质推导实现的。计算机仿真实验结果证实了这两种算法的正确性和有效性。
Blind source separation (BSS) is a signal processing method which aims atrecovering the original sources simultaneously from all kinds of their observed mixtures,without the need for prior knowledge of the mixing process and the sources themselves.It has become an important research topic in the signal processing area due to its wideapplications in many fields, such as biomedical engineering, sonar, radar, speechenhancement, telecommunications, and image processing, and so on. Most existing BSSalgorithms have been specially designed for the linear instantaneous mixture model andrecovered all the unknown sources simultaneously. In many practical situations, it ismore appropriate to model many practical problems to the nonlinear mixtures due to thenonlinear distortions that sensors introduce. Besides, only a single source or a subset ofsources is subject of interest and separating all the sources at a time could take a largetime and have mach unnecessary computation. For the above problems, in this thesis thenonlinear blind source extraction (BSE) and its applications in the biomedicalengineering are focused on and the innovative results are obtained as follows:
     1. A kurtosis-based nonlinear blind source extraction algorithm is proposed. Inthis algorithm, the prior knowledge of the normalized kurtosis range about the desiredsource is treated as a constraint and incorporated into the contrast function of blindsource separation. Therefore, a constrained optimization problem is formulated. By theaugmented Lagrange function method, this constrained optimization problem istransformed into an unconstrained optimization problem, which is solved by thestandard gradient descent learning. Due to the use of the prior knowledge, the source ofinterest can be extracted at a time from the post-nonlinear (PNL) mixtures by thisalgorithm, which effectively avoids much unnecessary calculations and saves a lot oftime.
     2. A reference-based nonlinear blind source extraction algorithm is proposed.First, the traditional constrained independent component analysis (cICA) framework isextended to the PNL mixture model. Then, a reference-based nonlinear blind sourceextraction algorithm is proposed based on this new framework. In this algorithm, thecloseness measure between the estimated output and the reference signal is treated as a new objective function. By alternately optimizing the contrast function and this newobjective function with standard gradient ascent learning, the desired source can beextracted from the PNL mixtures. Due to the prior knowledge of the reference signaland circumventing the threshold per-determined problem, the computation time isreduced greatly and the accuracy of the desired source is improved.
     3. A Gaussianization-based nonlinear blind source extraction algorithm isproposed. The proposed algorithm is a two-stage process that consists of aGaussianizing transformation and extracting the desired source with specific kurtosisrange. First, according to the central limit theorem, the nonlinear distortions in the PNLmixture are compensated by the Gaussianizing transformation and the approximatelylinear-mixed signals are obtained. Then, with the augmented Lagrange function method,the source of interest is extracted from these signals by using the prior knowledge of thenormalized kurtosis range about the desired source. Due to two stages and avoiding theapproximation problem of the unknown functions, this algorithm is simple and flexible.Besides, the efficiency of blind source extraction is improved greatly.
     4. Two nonlinear fetal electrocardiogram (FECG) extraction algorithms areproposed. The extraction of FECG is an important research topic in the field of thebiomedical engineering and it has clinical significance. Based on the informationminimization principle, a new objective function is proposed. Then, based on this newobjective function, two novel algorithms to extract FECG from the nonlinear mixturesare proposed. The first one is relatively simple, in which the probability density function(PDF) is directly estimated and calculated. By the good nature of mutual informationthat it can’t be affected by the invertible transformation, the PDF estimation problem iscircumvented in the second algorithm. The correctness and validity of these twoalgorithms are confirmed by the computer simulations and experiments.
引文
[1] A. Hyvarinen, J. Karhumen, E. Oja. Independent component analysis. Wiley, New York,2001
    [2]国家自然科学基金“十一五”发展规划.国家自然科学基金委员会,2006.7
    [3]国家中长期科学和技术发展规划纲要.中华人民共和国科技部,2006.2
    [4]史习智.盲信号处理---理论与实践.上海:上海交通大学,2008.3
    [5] C. Jutten, J. Herault. Blind separation of source, part I: an adaptive algorithm based onneurominetic architecture. Signal Processing,1991,28:1-10
    [6] M. Cohen, A. Andreou. Current-mode subthreshold mos implementation of the Herault-Juttenautoadaptive network. IEEE Journal Solid-State Circuit,1992,27(5):714-727
    [7] E. Sorouchyari. Blind separation of sources, part III: Stability analysis. Signal Processing,1991,24(1):21-29
    [8] P. Comon, C. Jutten, J. Herault. Blind separation of sources, part II: Problems statement.Signal Processing,1991,24(1):11-20
    [9] Y. Deville. A unified stability analysis of the Herault-Jutten source separation neural network.Signal Processing,1996,51(3):229-233
    [10] Y. Deville. Analysis of the convergence properties of self-normalized source separation neuralnetwork. IEEE Transactions on Signal Processing,1999,47(5):1272-1287
    [11] G. B. Giannakis, A, Swami. New results on state-space and input-output identification ofnon-Gaussian processing using cumulants. Proceedings of SPIE’97, San Diego, CA,1997,82(6),1199-1205
    [12] L. Tong, R. Liu, V. C. Soon, et al. Indeterminacy and identifiability of blind identification.IEEE Transactions on Circuits and Systems,1991,38(5):499-509
    [13] X. R. Cao, R. W. Liu. General approach to blind source separation. IEEE Transactions onSignal Processing,1996,44(3):562-571
    [14] P. Comon. Independent component analysis, a new concept? Signal Processing,1994,36:287-314
    [15] B. A. Pearlmutter,L. C. Parra. A context sensitive generalization of ICA. IEEE InternationalConference on Neural Information Processing (ICNIP'96), Hong Kong, Sep.24-27,1996,151-156
    [16] J. F. Cardoso. Informax and maximum likelihood for source separation. IEEE SignalProcessing Letters,1997,4(4):112-114
    [17] S. Amari,A. Cichoeki,H. Yang. A new learning algorithm for blind signal separation.Advances in Neural Information Processing Systems,1996,8:757-763
    [18] D. T. Pham, P. Garrat, C. Jutten. Separation of a mixture of independent sources through amaximum likelihood approach.6th European Signal Processing Conference (EUSIPCO'92),Brussels, Belgium, Aug.1992,7711-774
    [19] D. T. Pham. Blind separation of instantaneous mixture of sources via an independentcomponent analysis. IEEE Transactions on Signal Process,1996,44(11):2768-2779
    [20] D. T. Pham, P. Garrat. Blind separation of mixture of independent sources through aquasi-maximum likelihood approach. IEEE Transactions on Signal Process,1997,45(7):1712-1725
    [21] J. F. Cardoso, S. I. Amari. Maximum likelihood source separation: equivariance and adaptivity.Proceedings of11th IFAC Symposium on System Identification (SYSID’97), Fukuoka, Japan,Jul.8-11,1997,1063-1068
    [22] A. J. Bell, T. J. Sejnowski. An information-maximization approach to blind separation andblind deconvolution. Neural Computation,1995,7(6):1129-1159
    [23] T. W. Lee, M. Girolami, T. J. Sejnowski. Independent component analysis using an extendedInfomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation,1999,11(2):417-441
    [24] A. Hyvarinen,E. Oja. A fast fixed-point algorithm for independent component analysis.Neural Computation,1997,9(7):1483-1492
    [25] A. Hyvarinen. A fast and robust fixed point algorithms for independent component analysis.IEEE Transaction on Neural Networks,1999,10(3):626-634
    [26] A. Hyvarinen. One unit contrast functions for independent component analysis: A statisticalanalysis. Neural Networks for Signal Processing,1997,388-397
    [27] A. Hyvarinen. A family of fixed point algorithm for independent component analysis: Astatistical analysis. IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP’97), Munich, Germany, Apr.21-24,1997,3917-3920
    [28] A. Hyvarinen. The fixed point algorithm and maximum likelihood estimation for independentcomponent analysis. Neural Processing Letter,1999
    [29] M. Kendall, A. Stuart. The advanced theory of statistics. Charles Griffin&Company,1958
    [30] A. Hyvarinen. New approximations of differential entropy for independent componentanalysis and projection pursuit. Advances in Neural Information Processing Systems,1998,10(3):273-279
    [31] J. F. Cardoso, B. Laheld. Equivariant adaptive source separation. IEEE Transactions on SignalProcessing,1996,44(12):3017-3030
    [32] S. I. Amari, A. Cichocki. Adaptive blind signal processing–neural network approaches.Proceedings of the IEEE, Oct.1998,86(10):2026-2048
    [33] H. H. Yang, S. I. Amari, A. Cichocki. Adaptive on-line algorithms for blindseparation-maximum entropy and minimum mutual information. Neural Computation,1997,7(9):1457-1482
    [34] S. I. Amari. Superefficiency in blind source separation. IEEE Transactions on SignalProcessing,1999,47(4):936-944
    [35] J. F. Cardoso. Source separation using higher order moments. IEEE International Conferenceon Acoustics, Speech and Signal Processing (ICASSP’89), Glasgow, UK, UK, May23-26,1989,28:2109-2112
    [36] J. F. Cardoso. Jacobi angles for simultaneous diagonalization. SIAM Journal of MathematicalAnalysis and Applications,1996,17(1):161-164
    [37] J. F. Cardoso. Higher-order contrast for independent component analysis. Neural Computation,1999,11(1):157-193
    [38] L. Xu. Least mean square error reconstruction principal for self-organizing neural nets.Neural Computation,1993,6:627-648
    [39] I. Jolife. Principal component analysis. Springer-Verlag,1986
    [40] J. Karhunen, P. Pajunen, E. Oja. The nonlinear PCA criterion in blind source separation:Relations with other approaches. Neurocomputing,1998,22:5-20
    [41] E. Oja, J. Karhunen, L. Wang, et al. Principle and independent components in neural networks-Recent developments. Proceedings of7th Italian Workshop Neural Networks (WIRN’95),Wietri, Italy,1995,20-26
    [42] J. Karhunen, J. Joutsensalo. Representation and separation of signals using nonlinear PCA typelearning. Neural Network,1994,7:113-127
    [43] B. Scholkopf, A. Smola, K. Muller. Nonlinear component analysis as a kernel eigenvalueproblem. Neural Computation,1998,10(5):1299-1319
    [44] B. Scholkopf, A. Smola, K. Muller. Principal component analysis. Advances in KernelMethods,1999
    [45] Y. Q. Li, C. Andrzej, S, Amari. Analysis of sparse representation and blind source separation.Neural Computation,2004,1193-1234
    [46] Z. S. He, S. L. Xie, Y. L. Fu. Sparsity analysis of signals. Progress in Natural Science,2006,16(9):1193-1234
    [47] D. D. Lee, H. S. Seung. Algorithms for nonnegative matrix factorization. Advance in NeuralInformation Processing Systems,2001,556-1562
    [48] V. Tuomas. Monaural sound source separation by nonnegative matrix factorization withtemporal continuity and sparseness Criteria. IEEE Transactions on Audio Speech andLanguage Processing,2007,15:1066-1074
    [49] A. Mansour, C. G. Puntonet, N. A. Ohnishi. A simple ICA algorithm based on geometricalapproach. Sixth International Symposium on Signal Processing and its Applications, KualaLumpur, Malaysia, Aug.13-16,2001,1:9-12
    [50] A. Mansour, N. A. Ohnishi, C. G. Puntonet. Blind multiuser separation of instantaneousmixture algorithm based on geometrical concepts. Signal Pressing,2002,82(8):1155-1175
    [51] L. D. Persia, D. Milone, M. Yanagida. Indeterminacy free frequency-domain blind separationof reverberant audio sources. IEEE Transactions on Audio Speech and Language Processing,2009,17(2):299-311
    [52] A. Cichocki, S. Amari. Adaptive blind signal and image processing: Learning Algorithms andApplications. John Wiley&Sons, Ltd,2002
    [53] M. Sato, Y. Kimura, S. Chida, et al. A novel extraction method of fetal electrocardiogram fromthe composite abdominal signal. IEEE Transaction on Biomedical Engineering, Jun.2007,54(1):49-58
    [54] R. Phlypo, V. Zarzoso, I. Lemahieu. Atrial activity estimation from atrial fibrillation ECGs byblind source extraction based on a conditional maximum likelihood approach. Medical andBiological Engineering and Computing,2010,48:483-488
    [55] M. Ye, Y. G Liu, M. Liu,等. Blind image extraction by using local smooth information.2009Fifth International Conference on Natural Computation, Tianjin, China, Aug.14-16,2009,415-420
    [56]张贤达.时间序列分析---高阶统计量方法.北京:清华大学出版社,1996
    [57]张贤达,保铮.通信信号处理.北京:国防工业出版社,2000
    [58]冯大政,史维祥.一种自适应盲分离和盲辨识的有效算法.西南交通大学学报,1998,32(5):76-79
    [59]何振亚,陈宇欣.一种归一化快速盲自适应波束形成算法.应用科学学报,1999,17(2):163-168
    [60]何振亚,陈宇欣.用hopefidl网络实现盲波束形成.通信学报,1999,20(12):86-91
    [61]凌燮亭.近场宽带信号源的盲分离.电子学报,1996,24(7):87-91
    [62]张昕,胡波,凌燮亭.盲信号分离在数字无线通信中的一种应用.通信学报,2000,21(2):73-77
    [63]李昕,胡波,凌燮亭,等.基于盲信号分离的胎儿心电提取.中国生物医学工程学报,2002,21(5):461-465
    [64]陈雷,张立毅,郭艳菊,等.基于细菌群体趋药性的有序盲信号分离算法.通信学报,2012,29(2):451-454
    [65]陈雷,张立毅,郭艳菊,等.基于细菌觅食优化的盲信号抽取算法.计算机工程与应用,2011,47(2):165-168
    [66]李承志,吴华,程嗣怡,等.独立分量分析在雷达盲信号处理上的应用.现代防御技术,2012,40(1):128-132
    [67]胡燕,王慧琴,马宗方,等.基于独立成分分析和支持向量机的图像型火灾探测.计算机应用,2012,32(3):889-892
    [68]胡光锐,虞晓.基于统计估计的盲信号分离算法.上海交通大学学报,1999,33(5):566-569
    [69]虞晓,胡光锐.基于高斯混合密度函数估计的语音分离.上海交.通大学学报,2000,34(2):177-180
    [70]史见智,张洪渊.一种用于超高斯和亚斯混合信号盲分离的新算法.电子学报,2001,29(10):1392-1396
    [71]章晋龙,谢胜利.基于旋转变换的最小互信息量盲分离算法.电子学报,2002,30(5):628-631
    [72]章晋龙,谢胜利,何昭水.基于遗传算法的有序盲信号提取.电子学报,2004,32(4):616-619
    [73]谢胜利,孙功宪,肖明,等.欠定和非完全稀疏性的盲信号抽取.电子学报,2010,38(5):1028-1031
    [74]焦李成,马海波,刘芳.多用户检测与独立分量分析:进展与展望.自然科学进展,2002,12(4):365-371
    [75]马建仓,牛奕龙,陈海洋.盲信号处理.北京:国防工业出版社,2006
    [76]杨福生,洪波.独立分量分析的原理与应用.北京:清华大学出版社,2006
    [77] N. Delfosse, P. Loubaton. Adaptive blind separation of independent sources: a DeflationApproach. Signal Processing,1995,45(1):59-83
    [78] A. Cichocki, R. Thawonmas, S. I. Amari. Sequential blind signal extraction in order specifiedby stochastic properties. Electronics Letters,1997,33(1):64-65
    [79] S. Y. Kung, C. Mejuto. Extraction of independent component from hybrid mixture: KuicNetlearning algorithm and applications. IEEE International Conference on Acoustics, Speech andSignal Processing (ICASSP'98), Seattle, WA, USA, May12-15,1998,2:1209-1212
    [80]尚晓辉,沈越泓,王建功,等.基于循环平稳特性的两步盲信号提取算法.军事通信技术,2011,32(4):62-66
    [81]王栋,陈映鹰,秦平.盲信号分离和序贯滤波的SAR影像水体提取.自动化学报,2008,34(2):142-149
    [82]白琳,陈豪.混合矩阵为病态情况下的盲信号提取快速算法.计算机工程与应用,2010,46(36):241-245
    [83]秦亮,石林锁,张亚洲.基于盲信号提取的机械振动信号消噪方法研究.电子测量技术,2009,32(6):4-6
    [84]郝红,徐常青,张新平.基于非负矩阵分解的航拍图像信息提取.浙江农林大学学报,2012,29(1):72-77
    [85]高涛.组合2DFLDA监督的非负矩阵分解和独立分离分析的特征提取方法.计算机应用研究,2012,29(4):1588-1594
    [86] S. Javidi, C. Cheong. Took, C. Jahanchahi, et al. Blind extraction of improper quaternionsources. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP2011), Prague, Czech Republic, May22-27,2011,2:3708-3711
    [87] Y. Washizawa, Y. Yamashita, A. Cichocki. Blind source extraction using spatio-temporalinverse filter. IEEE International Symposium on Circuits and Systems (ISCAS2009), Island ofKos, Greece, May24-27,2009,2786-2789
    [88] Wai Yie Leong. Qualitative performance analysis of blind source extraction.3rd IEEEConference on Industrial Electronics and Applications (ICIEA2008), Singapore, June3-5,2008,320-325
    [89] T. Tsalaile, R. Sameni, S. Sanei, et al. Sequential blind source extraction for quasi-periodicsignals with time-varying period. IEEE Transactions on Biomedical Engineering, March2009,56(3):646-655
    [90] Z. W. Shi, C. S. Zhang. Blind source extraction using generalized autocorrelations. IEEETransactions on Neural Networks, Sept.2007,18(5):1516-1524
    [91] F. Ghaderi, H. R. Mohseni, J. G. McWhirter, et al. Blind source extraction of periodic signals.IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP2009),Taipei, April19-24,2009,377-380
    [92] V. Zarzoso. Second-order criterion for blind source extraction. Electronics Letters,2008,44(22):1327-1328
    [93] F. Nesta, T. S. Wada, S. Miyabe, et al. On the Non-uniqueness Problem and the Semi-blindSource Separation. IEEE Workshop on Applications of Signal Processing to Audio andAcoustics (WASPAA2009), New Paltz, USA, Oct.18-21,2009,101-104
    [94] T. Kohonen. Self-Organization Maps. Springer,1995
    [95] T. Kohonen. Emergence of invariant-feature detectors in the adaptive-subspace self-organization map. Biological Cybernetics,1996,75:281-291
    [96] S. Haykin. Neural Networks–A Comprehensive Foundation. Prentice Hall,2nd edition,1998
    [97] C. M. Bishop, M. Svensen, C. K. I. Williams. GTM: The generative topography mapping.Neural Computation,1998,10:215-234
    [98] H. Valkama. Nonlinear independent component analysis using ensemble learning: Theory.Proceedings of2nd International Conference on Independent Component Analysis and BlindSource Separation (ICA'2000), Helsinki, Finland, Jun.19-22,2000,251-256
    [99] H. Valpola, T. Raiko, J. Karhunen. Building blocks for hierarchical latent varible models.Proceedings of3rd International Conference on Independent Component Analysis and BlindSignal Separation (ICA'2001), San Diego, California, USA, Dec.9-12,2001,710-715
    [100] H. Valpola, J. Karhunen. An unsupervised ensemble learning method for nonlinear dynamicstate-space models. Neural Computation,2002,14(11):2647-2692
    [101] H. Valpola, A. Honkela, J. Karhunen. An ensemble learning approach to nonlinear dynamicblind source separation using state-space models. Proceedings of International JointConference on Neural Networks (IJCNN'02), Honolulu, HI, USA, May12-17,2002,460-465
    [102] J. Karhunen, S. Malaroiou, M. Ilmoniemi. Local linear independent component analysisbased on clustering. International Journal of Neural Systems.2000,10(6):439-451
    [103] V. Koivunen, M. Enescu, E. Oja. Adaptive algorithm for blind separation from noisytime-varying mixtures. Neural Computation,2001,13(10):2339-2357
    [104] T. W. Lee, M. S. Lewicki, M. Girolami, T. J. Sejnowski. ICA mixture models for unsupervisedclassification of non-gaussian sources and automatic context switching in blind signalseparation. IEEE Transactions on Pattern Recognition and Machine Intelligence,2000,22(10):1-12
    [105] M. Zheng, W. X. Zhang, L. H. Zheng. Algorithm for nonlinear blind source separation basedon feature vector selection.2nd International Conference on Advanced Computer Control(ICACC2010), Changsha, China, March27-29,2010,575-578
    [106] A. Taleb, C. Jutten. Source separation in post-nonlinear mixtures. IEEE Transactions on SignalProcessing,1999,47(10):2807-2820
    [107] A. Taleb, C. Jutten. Nonlinear source separation: the post-nonlinear mixtures. EuropeanSymposium on Artificial Neural Networks (ESANN'97), Bruge, Belgium, Apr.16-18,1997,179-284
    [108] M. Solazzi, A. Uncini. Spline neural networks for blind separation of post-nonlinear-linearmixtures. IEEE Transactions on Circuits and Systems I-Regular Papers,2004,51(4):817-829
    [109] A. Ziehe, M. Kawanabe, S. Harmeling, et al. Blind separation of post-nonlinear mixture usinglinearizing transformations and temporal decorrelation. Journal of Machine Learning Research,Dec.2003,4:1319-1338
    [110] H. H. Yang, S. Amari,A. Cichoeki. Information-theoretic approach to blind separation ofsources in non-linear mixture. Signal Processing,1998,64(3):291-300
    [111] Z. N. Li. Y. D. Zeng, T. Fan, et al. Source separation method of machine faults based onpost-nonlinear blind source separation.7th World Congress on Intelligent Control andAutomation,(WCICA2008), Chongqing, China, June25-27,2008,1786-1789
    [112] W. Y. Leong, W. Liu. D. P. Mandic. Blind source extraction: standard approaches andextensions to noisy and post_nonlinear mixing. Neurocomputing,2008,71:2344-2355
    [113] W. Y. Leong, D. P. Mandic. Post-nonlinear blind extraction in the presence of ill-conditionedmixing. IEEE transaction on Circuits and Systems I: Regular Papers,2008,55(9):2631-2638
    [114] W. Y. Leong. Blind source extraction.10th International Conference on Control, Automation,Robotics and Vision, Hanoi, Vietnam, Dec.17-20,2008,1672-1677
    [115] W. Y. Leong, D. P. Mandic. Blind sequential extraction of post-nonlinearly mixed sourcesusing Kalman filtering. IEEE Nonlinear Statistical Signal Processing Workshop, Cambridge,UK, Sept.13-15,2006,137-140
    [116] J. F. Cardoso. Super-symmetric decomposition of the fourth-order cumulant tensor. BlindIdentification of More Sources than Sensors. IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP'91), Toronto, Ont., Canada, Apr.14-17,1991,5:3109-3112
    [117]肖明,谢胜利,傅予力.基于超平面法矢量的欠定盲信号分离算法.自动化学报,2008,34(2):142-149
    [118] Y. Q. Li, J. Wang. Sequential blind extraction of instantaneously mixed sources. IEEETransactions on Signal Processing,2002,50(5):997-1006
    [119] P. Bofill, M. Zibulevsky. Underdetermined blind source separation using sparserepresentations, Signal Processing,2001,81(11):2353-2362
    [120] N. Mourad, J. P. Reilly. Blind extraction of sparse sources. IEEE International Conference onAcoustics Speech and Signal Processing (ICASSP2010), Dallas, Texas, USA, March14-19,2010,2666-2669
    [121] T. W. Lee, M. S. Lewichi, M. Girolami, et. al. Blind source separation of more sources thanmixtures using Overcomplete Representation. IEEE Signal Processing Letters,1999,6(4):87-90
    [122] M. S. Lewichi, T. J. Sejnowski. Learning overcomplete representations. Neural Computation,2002,12(2):337-365D. L. Donoho, M. Elad, V. N. Temlyakov. Stable recovery of sparseovercomplete representations in the presence of noise. IEEE Transactions on InformationTheory,Jan.2006,52(1):6-18
    [123] D. L. Donoho, M. Elad, V. N. Temlyakov. Stable recovery of sparse overcompleterepresentations in the presence of noise. IEEE Transactions on Information Theory,Jan.2006,52(1):6-18
    [124] F. J. Theis, P. Georgiev, A. Cichocki. Robust sparse component analysis based on a generalizedhough transform. EURASIP Journal on Advances in Signal Processing, Jan.2007,1:172-178
    [125] Y. Washizawa, A. Cichocki. Sparse blind identification and separation by using adaptive K-orthdrome clustering. Neurocomputing,2008,71(10-12):2321-2329
    [126] M. Naini, G. H. Mohimani, M. Babaie-Zadeh, et al. Estimating the mixing matrix in SparseComponent Analysis (SCA) based on partial k-dimensional subspace clustering.Neurocomputing,2008,71:2330-2343
    [127] M. Zibulevsky, P. Kisilev, Y. Y. Zeevi, et al. Blind source separation via multimode sparserepresentation networks. Advances in Neural Information Processing Systems,2002,14:1049-1056
    [128] P. D. Grady, B. A. Pearmutter. Hard-LOST: modified K-mean for oriented Lines. Proceedingsof the Irish Signals and System Conference,2003,247-252
    [129] F. J. Theis, E. W. Lang, C. G. Puntonet. A geometric algorithm for overcomplete linear ICA,Neurocomputing,2004,56(1):381-398
    [130] M. G. Jafari, J. A. Chambers. Adaptive noise cancellation and blind source separation.Proceedings of4th International Symposium on Independent Component Analysis and BlindSource Separation (ICA’2003), Nara, Japan, Apr.1-4,2003,627-632
    [131]由科军,冶继民.超定盲信号分离RLS算法研究.电子科技,2009,22(9):59-63
    [132]熊英.超定条件下的盲信号提取算法.计算机应用,2008,28(7):1896-1897
    [133] K. Matsuoka. A neural net for blind separation of nonstationary signals. Neural Network,1995,3:311-319
    [134] S. Roberts, R. Everson. Independent Component Analysis: Principles and Practice. CambridgeUniversity Press,2001
    [135] K. Assaleh, H. Al-Nashash. A novel technique for the extraction of fetal ECG usingpoly-nominal networks. IEEE Transactions on Biomedical Engineering, Jun.2005,52(6):1148-1152
    [136] M. Ahmadi, M. Ayat, K. Assaleh, et al. Fetal ECG signal enhancement using polynomialclassifiers and wavelet denoising. International Conference on Biomedical Engineering(CIBEC'08), Cairo, Dec.18-20,2008,1-4
    [137] A. Parashiv-Ionescu, C. Jutten, A. M. Ionescu, et al. High performance magnetic field smartsensor arrays with source separation. Proceedings of the first International Conference onModeling and Simulation of Microsystems (MSM), Santa Clara, CA, Apr.1998,666–671
    [138] S. Prakriya, D. Hatzinakos. Blind identification of LTI-ZMNL-LTI nonlinear channel models.IEEE Transactions on Signal Processing, Dec.1995,43(12):3007–3013
    [139] M. J. Korenberg, I. W. Hunter. The identification of nonlinear biological systems: LNLCascade Models. Biomedical Cybernetics,1996,55:125–134
    [140] Y. L. Ye, P. Sheu, J. Z. Zeng, et al. An efficient semi_blind source extraction algorithm and itsapplications to biomedical signal extraction. Science in China Series F: Information Sciences,2009,52(10):1863-1874
    [141] Y. L. Ye, Z. L. Zhang, J. Z. Zeng, et al. A fast and adaptive ICA algorithm with its applicationto fetal electrocardiogram extraction. Applied Mathematics and Computation,2008,205:799-806
    [142] A. K. Barros, A. Cichocki. Extraction of specific signals with temporal structure. NeuralComputation,2001,13(9):1995-2003
    [143] Y. L. Ye, Z. L. Zhang, J. Chen, et al. A robust extraction algorithm based on a specific kurtosisvalue range. Third International Conference on Natural Computation (ICNC'07), Haikou,China, Aug.25-27,2007,49-53
    [144] Z. L. Zhang, Y. Zhang. Extraction of a source signal whose kurtosis value lies in a specificrange. Neurocomputing,2006,69(7-9):900-904
    [145] A. Ziehe, M. Kawanabe, S. Harmeling, et al. Separation of Post-nonlinear Mixtures using ACEand Temporal Decorrelation. Proceedings of3rd International Conference on IndependentComponent Analysis and Blind Signal Separation (ICA'2001), San Diego, California, USA,Dec.9-12,2001,433-438
    [146] A. Ziehe, M. Kawanabe, S. Harmeling, et al. Blind Separation of post-nonlinear mixturesusing Gaussianizing Transformations and Temporal Decorrelation. Proceedings of4thInternational Conference on Independent Component Analysis and Blind Signal Separation(ICA'2003), Nara, Japan, Apr.1-4,2003,269-274
    [147] T. W. Lee, B. Koehler, R. Orglmeister. Blind source separation of nonlinear mixing model.Neural Networks for Signal Processing VII, IEEE Press,1997:406-415
    [148] T. M. Dias, R. Attux, J. M. T. Romano, et al. Blind separation of post-nonlinear mixture usingevolutionary computation and gaussianization. Lecture Notes in Computer Science,2009,5441:235-242
    [149] J. Zhang, W. L. Woo, S. S. Dlay. Hidden Markov Blind source separation of post-nonlinearmixture. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'08), Las Vegas, NV, Mar.31-Apr.4,2008,1929-1932
    [150] F. Rojas, C. G. Puntonet, M. Rodriguez-Alvaarez, et al. Blind separation in post-nonlinearmixtures using competitive learning, simulated annealing and a genetic algorithm. IEEETransactions on System, Man and Cybernetics-Part C: Applications and Reviews,2004,34(4):407-415
    [151] C. Puntonet, M. Alvarez, A. Prieto, et al. Separation of sources in a class of post-nonlinearmixtures. European Symposium on Artificial Neural Networks (ESANN'98), Bruges Belgium,1998,321-326
    [152] M. Babaie-Zadeh, C. Jutten, K. Nayebi. A geometric approach for separating post nonlinearmixtures.11th European Signal Processing Conference (EUSIPCO'2002), Toulouse, France,Sep.3-6,2002, II:11-14
    [153] M. Babaie-Zadeh, C. Jutten, K. Nayebi. Separating convolutive post nonlinear mixtures.Proceedings of third International Conference on Independent Component Analysis and BlindSignal Separation (ICA'2001), San Diego, California, USA, Dec.9-12,2001,138-143
    [154] S. Squartini, A. Bastari, F. Piazza. A practical approach based on gaussianization forpost-nonlinear underdetermined BSS. Proceeding of2006International Conference onCommunications, Circuits and Systems, Guilin, China, Jun.25-28,2006,528-532
    [155] Z. L. Sun. An extension of MISEP for post-nonlinear-linear mixture separation. IEEETransactions on Circuits and Systems-II: Express Briefs, Aug.2009,56(8):654-658
    [156] C. L. Li, G. S. Liao, Y.L. Shen. An improved method for independent component analysis withreference. Digital Signal Processing,2010,20:575-580
    [157] Z. L. Sun, L. Shang. An improved constrained ICA with reference based unmixing matrixinitialization. Neurocomputing,2010,73:1013-1017
    [158] W. Liu, D. P. Mandic, A. Cichocki. Blind source extraction based on a linear predictor. IETSignal Processing, Mar.2007,1(1):29-34
    [159] A. Cichocki, R. Thawonmas. On-line algorithm for blind signal extraction of arbitrarilydistributed, but temporally correlated sources using second order statistics. Neural ProcessingLetter,2000,12(1):91-98
    [160] E. Santana, J. Principe, E. E. Santana, et al. Extraction of signals with specific temporalstructure using kernel methods. IEEE Transaction Signal Processing, Jun.2010,99:1-9
    [161]陈宝林.最优化理论与算法(第2版).北京:清华大学出版社,2007,10
    [162] Simon Kaykin.神经网络原理,叶世伟,史忠植.北京:机械工业出版社,2004:146-150
    [163] W. Liu, J. C. Rajapakse. Constrained independent component analysis. Advances in NeuralInformation Processing Systems13(NIPS'2000), Malmo, Sweden, Jan.3-7,2001,570-576
    [164] FastICA matlab package. The Math Works, Inc., Natick, MAAvailable: http://cis.hut.fi/projects/ica/fastica
    [165] Chang Su Lee, Martin Masek, Chiou Peng Lan, et al. Towards higher accuracy and betternoisy-tolerance for fetal heart rate monitoring using Doppler ultrasound. IEEE Region10Conference, Singapore, Jan.26-26,2009,1-6
    [166] A. H. Muhammad, I. I. Muhammad, B. I. R. Mamun, et al. VHDL modeling of FECGextraction from the composite abdominal ECG using artificial Intelligence. IEEE InternationalConference on Industrial Technology, Churchill, Victoria, Australia, Feb.10-13,2009,1-5
    [167]马明,邹志斌,杨玉林,等.采用盲源提取和后小波滤波的胎儿心电图提取.仪器仪表学报,2010,31(5):1096-1101
    [168]高莉,黄力宇.基于自适应梯度盲源分离算法的胎儿心电提取.仪器仪表学报,2008,29(8):1757-1760
    [169] S. L. Yang, Zh. H. Wang. A new algorithm for extraction fetal electrocardiogram. FifthInternational Conference on Natural Computation, Tianjin, China, Aug.14-16,2009,97-99
    [170]张玉洁,祁锐,李宏伟.基于ICA和高阶累积量的AR序列的分解与复原.仪器仪表学报,2008,29(9):1836-1840
    [171] B. De Moor. Database for the identification of systems.Available: http://homes.esat.kuleuven.be/smc/daisy/daisydata.html
    [172] S. Javidi, D. P. Mandic, C. Cheong Took, A. Cichocki. Kurtosis based blind source extractionof complex noncircular signals with application in EEG artifact removal in real-time. Frontiersin Neuroprosthetics,2011,5(105):1-18
    [173] G. Gratton. Dealing with artifacts: The EOG contamination of the event-related brain potential.Behaviour research methods instruments and computers,1998,30:44-53
    [174] S. P. Fitzgibbon, D. M. W. Powers, K. J. Pope, et al. Removal of EEG noise and artifact usingblind source separation. Journal of Clinical Neurophysiology,2007,24(3):232-243
    [175] G. Gratton, M. G. H. Coles, E. Donchin. A new method for off-line removal of ocular artifact.Electroencephalography and Clinical Neurophysiology,1983,55(4):468-484
    [176] J. C. Woestenburg, M. N. Verbaaten, J. L. Slangen. The removal of the eye-movement artifactfrom the EEG by regression analysis in the frequency domain. Biological Psychology,1983,16(1-2):127-147
    [177] J. L. Kenemans, P. C. M. Molenaar, M. N. Verbaten, J. L. Slangen. Removal of the ocularartifact from the EEG: a comparison of time and frequency domain methods with simulatedand real data. Psychophysiology,1991,28(1):114-121
    [178] T. P. Jung, C. Humphries, T. W. Lee, et al. Extended ICA removes artifacts fromelectroencephalographic recordings. Advances in Neural Information Processing Systems,1998,10:894-900
    [179] A. Delorme, S. Makeig, T. Sejnowski. Automatic artifact rejection for EEG data usinghigh-order statistics and independent component analysis. Proceeding of3rd InternationalConference on Independent Component Analysis and Blind Signal Separation (ICA'2001),San Diego, California, USA, Dec.9-12,2001,457-462
    [180] http://www.commsp.ee.ic.ac.uk/~mandic/research/BSS_Stuff.htm.
    [181] C. A. Joyce, I. F. Gorodnitsky, M. Kutas. Automatic removal of eye movement and blinkartifacts from EEG data using blind component separation. Psychophysiology,2004,41:3-325
    [182] W. Liu, J.C. Rajapakse. Approach and applications of constrained ICA. IEEE Transactions onNeural Networks, Jan.2005,16(1):203-212
    [183] W. Liu, J.C. Rajapakse. ICA with reference. Neurocomputing,2006,69:2244-2257
    [184] C. J. James, O. J. Gibson. Temporally constrained ICA: an application to artifact rejection inelectromagnetic brain signal analysis. IEEE Transactions on Biomedical Engineering, Sep.2003,50(9):1108-1116
    [185] D. S. Huang, J. X. Mi. A new constrained independent component analysis method. IEEETransactions on Neural Networks, Sep.2007,18(5):1532-1535
    [186] B. D. Rao, K. Engan, S. F. Cotter, et al. Subset selection in noise based on diversity measureminimization. IEEE Transactions on Signal Process,2004,51:760-770
    [187]朱孝龙,张贤达.基于奇异值分解的超定盲信号分离.电子与信息学报,2004,26(3):337-343
    [188] X. L. Zhu, X. D. Zhang. Overdetermined blind source separation based on singular valuedecomposition.2004,26(3):337-343
    [189]任东晓,叶茂,赵明峰,殷英.基于互信息最小的非线性混合胎儿心电信号提取方法.电子测量与仪器学报, Jul.2010,24(7):680-685
    [190] L. B. Almeida. MISEP-an ICA method for linear and nonlinear mixtures based on mutualinformation. Proceedings of the2002International Joint Conference on Neural Networks(IJCNN'2002), Honolulu, Hawaii, May12-17,2002,442-447.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700