用户名: 密码: 验证码:
高速LIGBT电势控制理论与新结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,绝缘栅双极性晶体管(Insulated Gate Bipolar Transistor,IGBT)具有驱动功耗低、导通能力强、热稳定性好、耐压特性高和安全工作区大等优点,既能做成分立器件,又可以集成在体硅基或SOI(Silicon On Insulator)基的功率集成电路中,广泛的应用于各种电力电子系统,是电导调制新型半导体功率器件的典型代表器件。电导调制效应使IGBT具有较低导通压降,但与依靠多数载流子输运的MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)器件相比,漂移区存储的大量非平衡电子空穴对使IGBT关断速度明显减慢,限制了应用频率并增加了开关损耗,成为IGBT进一步应用的主要障碍。寻找提高IGBT关断速度的新理论和新方法,改善“导通压降-关断时间”之间的约束关系成为迄今尚待更好解决的基本问题。
     本文针对此约束关系,以SOI基高速横向IGBT器件(SOI LIGBT)为具体研究对象,采用由多数载流子输运的单极导通模式向非平衡载流子输运的双极导通模式转变的电势控制解析分析、数值仿真和实验验证三者相结合的方法,对LIGBT新技术和新结构开展深入研究,提出高速LIGBT电势控制(PA,Potential-Adjusted)理论及其两类新结构:电势控制高速LIGBT器件和三维电势控制高速LIGBT器件。
     主要创新点如下:
     第一、提出高速LIGBT电势控制(PA)理论(IEEE Electron Device Letters,2010年5月)。给出的电势控制PA区新概念,用以调节导通态内置逆向二极管结构的电势分布、构造关断态非平衡载流子的抽出通道,从而改善器件导通态和关断态的电特征,实现器件的无振荡开启、大电流导通和高速关断特性。高速LIGBT电势控制技术及其指导设计的两类新结构都是通过增大导通态时内置逆向二极管结构在阳极区部分的电势分布,达到降低由单极导通模式向双极导通模式转变的转变点阳极电压、消除Snapback现象、增大导通电流,同时实现关断态时非平衡载流子的抽出效应、提高关断速度,优化了导通压降和关断时间之间的约束关系。表达式V_(sb)=(1+K·r)V0给出了转变点阳极电压V_(sb)和空穴激发注入压降V0(硅材料约为0.7V)之间的关系,说明PA技术指导高速LIGBT器件设计的主要思路是减小电势控制因子r或三维调节因子K。典型新结构:双通道三维PA区阳极高速LIGBT器件(NPN-NCA-LIGBT),在消除Snapback现象和保持大导通电流能力的前提下,转变点阳极电压降至约Vsb=1.1V;并且,NPN-NCA-LIGBT与部分NPN控制阳极LIGBT器件(SA-NPN-LIGBT)和常规LIGBT器件的关断时间的比值分别为1:1.57和1:35.58。
     第二、提出电势控制高速LIGBT器件。通过提高PA区的电势分布减小电势控制因子r的取值,该类新结构包括:(1)PA区阳极高速LIGBT器件(NCA-LIGBT),清楚的展示了电势控制PA区创新性概念在高速LIGBT器件设计中所起到的显著作用,但大导通能力特性有所牺牲,存在进一步改善的潜力;(2)改进型PA区阳极高速LIGBT器件,包括槽型工艺新结构(TNCA-LIGBT)、埋层新结构(BNCA-LIGBT)和分离阳极新结构(SNCA-LIGBT)等三种器件,是对导通压降增大的NCA-LIGBT器件的进一步优化;(3)增强型PA区阳极高速LIGBT器件(ENCA-LIGBT),其PA区的形成利用了绝缘介质层结构,同时具有阳极掩蔽层的注入增强效应和非平衡载流子的抽出效应;(4)耗尽型PA区阳极高速LIGBT器件(DNCA-LIGBT),其电势控制PA区在器件的制造过程中由SOI底片的P-区自动形成,工作中处于耗尽状态,简化了工艺步骤,增强了电势控制能力。
     第三、提出三维电势控制高速LIGBT器件。通过电势控制抽出结构的三维设计同时减小电势控制因子r和三维调节因子K的取值,该类新结构包括:(1)分段PA区阳极高速LIGBT器件(Seg-NCA-LIGBT),利用电势控制PA区概念和抽出结构的三维设计实现了低导通特性和高速关断特性之间的方便选择;(2)双通道三维PA区阳极高速LIGBT器件(NPN-NCA-LIGBT),将电势控制PA区概念、部分NPN控制阳极概念和抽出结构的三维设计结合在一起,实现了关断态非平衡载流子的直接导通模式和NPN反向注入模式的双通道抽出机制;(3)复合PA区阳极高速LIGBT器件,包括常规型复合阳极新结构(Split-NCA-LIGBT)和透明型复合阳极新结构(Split-Striped-NCA-LIGBT)两种器件,复合阳极设计使阳极结构分为相互独立又彼此联系的两部分,弱化了导通态特性和关断态特性之间的制约关系。
     高速LIGBT电势控制理论及其新结构不仅适用于SOI技术的LIGBT,也适用于体硅基和其它半导体材料的LIGBT、纵向结构IGBT和高速Diode等其它电导调制型半导体功率器件。
Widely used in all kinds of power electronics systems, IGBT(Insulated GateBipolar Transistor), which has some advantages, such as low driving power dissipation,high current holding capability, good thermal stability, high breakdown voltage andlarge SOA (Safe Operating Area), and which can be fabricated as discrete device or beintegrated to silicon-based and SOI-based (Silicon-On-Insulator-based) power IC(Integrated Circuit), is a typical structure of the new semiconductor power devices withconductivity modulation effect characteristics. The conductivity modulation effectpermits IGBT to have a low on-state voltage drop (von), but due to the removal of storedelectron-hole plasma in drift region, which is strongly dependent on the recombinationprocess of electron-hole pairs during turn-off period, it cause the turn-off time (toff)longer than that of MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor),which conducts by majority carrier during on and turn-off states. Long turn-off time,which limits the working frequency and make large turn-off power dissipation, is thebiggest barrier for further applications of IGBT. Finding new theory and new method ofaccelerating turn-off speed, improving the constraint relation of vonand toffis the basicquestion needing better solving.
     In this thesis, aiming at the basic constraint relation, with high speed Lateral IGBTon SOI substrate (SOI LIGBT) as the object of study, adopting the associative methodsof potential-adjusted analysis of the turn point from unipolar mode to bipolar mode,numerical simulation and experimentation, the new theory and the new device structuresare researched. A new theory, named Potential-Adjusted (PA) theory of high speedLateral IGBT, is proposed. Based on PA technology, two kinds of novel devices (highspeed LIGBTs with potential adjusting and3-D potential adjusting) are reported. Maininnovations of the research include:
     1. Potential-Adjusted (PA) theory of high speed Lateral IGBT is proposed. Theconcept of PA region, created by PA technology, is used to adjust the potentialdistribution of built-in reverse diode structure during on state, and to form an effective extracting path for excess carriers during turn-off state, which improves the electriccharacteristics of on state and turn-off state. This permits the device havenon-oscillation turning-on characteristics, high current holding capability,and highturn-off speed. For the PA technology and the new devices, to improve the constraintrelation of vonand toff, increasing the potential difference of the part located in anoderegion of the reverse diode structure is the common method to reduce the anode voltage(V_(sb)) of turn point from unipolar mode to bipolar mode, which eliminates snapbackphenomenon in I-V characteristics and increases conducting current during on state, andto form an effective extracting path for excess carriers, which accelerates the turn-offspeed during turn-off state. The expression of V_(sb)=(1+K·r)V0(IEEE Electron DeviceLetters, May,2010), providing the relation of anode voltage of turn point (Vsb) and holeinjecting voltage (V_0,0.7V for silicon), gives the way to design new high speed LIGBTbased on PA technology, which is reducing the potential adjusting factor (r) or3-Dadjusting factor (K). Eliminating snapback phenomenon and handling high current, atypical new structure, named NPN-NCA-LIGBT, make the anode voltage of turn pointfall to about Vsb=1.1V; and the ratios of turn-off times for the NPN-NCA-LIGBTcomparing to that of SA-NPN-LIGBT and conventional LIGBT are1:1.57and1:35.58,respectively.
     2. Based on PA technology, high speed LIGBTs with potential adjusting are firstlypresented. Increasing the potential difference of PA region is used to reduce the potentialadjusting factor (r), these novel structures include:(1) high speed LIGBT withnormalized PA region anode (NCA-LIGBT), it shows the prominent effect of thecreative concept of PA region in designing high speed LIGBT, but its high currentholding capability is sacrificed somewhat;(2) high speed LIGBTs with improved PAregion anode, including LIGBT with trench PA region anode (TNCA-LIGBT), LIGBTwith buried PA region anode (BNCA-LIGBT) and LIGBT with separated PA regionanode (SNCA-LIGBT), which are the improved structures of NCA-LIGBT;(3) highspeed LIGBT with enhanced PA region anode (ENCA-LIGBT), the forming of PAregion is used by isolative layer, and the device has both advantages of enhancedconductivity modulation effect and potential-adjusted electron extracting path;(4) highspeed LIGBT with depleted PA region anode (DNCA-LIGBT), the forming of PA regionis used by P-region of SOI wafer, and it is depleted during operation, the process flow is simplified and the capability of potential adjusting is enhanced.
     3. Based on PA technology, high speed LIGBTs with3-D potential adjusting arereported. The3-D design of potential adjusted extracting structure are used to reduceboth the potential adjusting factor (r) and3-D adjusting factor (K), these novelstructures include:(1) high speed LIGBT with segmented PA region anode(Seg-NCA-LIGBT), due to the concept of PA region and the3-D design of extractingstructure, it has the free selection between high current and high speed;(2) high speedLIGBT with dual extracting paths3-D PA region anode (NPN-NCA-LIGBT), due to theconcepts of PA region, NPN controlled and3-D design of extracting structure used foranode, it has two extracting paths for excess carriers during turn-off state, one is directconducting mode, and another is NPN reverse injecting mode;(3) high speed LIGBTswith split PA region anode, including LIGBT with normalized split PA region anode(Split-NCA-LIGBT) and LIGBT with striped split PA region anode(Split-Striped-NCA-LIGBT), split anode concept makes the anode split to independentbut coupled two parts, which eases up the constraint relation of on state and turn-offstate characteristics.
     The Potential-Adjusted (PA) theory of high speed Lateral IGBT and the newstructures are not only used for LIGBT on SOI substrates, but also used for othersemiconductor power devices with conductivity modulation effect characteristics, suchas silicon and other materials LIGBT, vertical IGBT, high speed diodes and so on.
引文
[1] K. J. P. Macken, D. MacNair, M. N. Nguyen, et al. IGBT PEBB Technology for Future HighEnergy Physics Machine Operation Applications. Applied Power Electronics Conference andExposition, APEC2011Twenty-Sixth Annual IEEE2011:1319-1337
    [2] S. Bhattacharya, T. Zhao, G. Wang, et al. Design and Development of Generation-I Siliconbased Solid State Transformer. Applied Power Electronics Conference and Exposition, APECIEEE2010, palm Springs, CA, February21-25,2010:1666-1673
    [3] Marina Antoniou, Florin Udrea, Friedhelm Bauer. The Super junction Insulated Gate BipolarTransistor Optimization and Modeling. IEEE Transactions on Electron Devices,2010,57(3):594-600
    [4] Marina Antoniou, Florin Udrea, Friedhelm Bauer. The Semi-Super junction IGBT. IEEEElectron Device Letters,2010,31(6):591-593
    [5] L. Ngwendson, M. R. Sweet, E. M. Sankara Narayanan. An Overview of the RecentDevelopments in High-Voltage Power Semiconductor MOS-Controlled Bipolar Devices.Bipolar/BiCMOS Circuits and Technology Meeting,2009, BCTM2009, IEEE2009:198-205
    [6] M. Antoniou, F.Udrea, F. Bauer. The3.3kV Semi-Super Junction IGBT for Increased CosmicRay Induced Breakdown Immunity. Proc. IEEE Int. Symp. Power Semiconductor DevicesISPSD,2009:168-171
    [7] S. C. Yuan, Y. M. Liu. Two-Mask Silicides Fully Self-Aligned for Trench Gate Power IGBTswith Super junction Structure. IEEE Electron Device Letters, August2008,29(8):931-933
    [8] Benoit Bakeroot, Jan Doutreloigne, Piet Vanmeerbeek, et al. Analysis of a Narrow-Base LateralIGBT With Double Buried Layer for Junction-Isolated Smart-Power Technologies. IEEETransactions on Electron Devices, Jan.2008,55(1):435-445
    [9] Kimmer, T., Oehmen, J., Tuerkes, P., et al. Reverse Conducting IGBT-A new Technology toIncrease the Energy Efficiency of Induction Cookers. Power Electronics Specialists Conference,2008. PESC2008. IEEE2008:2284-2287
    [10] M. Antoniou, F. Udrea, F. Bauer. Optimisation of super Junction bipolar transistor for ultra-fastswitching applications. Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD,2007:101-104
    [11] F. Bauer. The super junction bipolar transistor: A new silicon power device concept for ultralow loss switching applications at medium to high voltages. Solid State Electron., May2004,48(5):705-714
    [12] E. M. Sankara Narayanan, O. Spulber, M. Sweet, et al. Progress in MOS-controlled bipolardevices and edge termination technologies. Microelectronics Journal,2004,35:235-248
    [13] B. J. Baliga, M.S. Alder, P. V. Gray, et al. The Insulated Gate Rectifier (IGR): A New PowerSwitching Device. IEEE International Electron Devices Meeting, IEDM,1982:264-267
    [14] J. P. Russell, A. M. Goodman, J. M. Neilson. The Comfet: a new high conductance MOS-gateddevice. IEEE Electron Device Letters1983,4(3):63-65
    [15] B. J. Baliga, M. S. Adler, R. P. Love, et al. The insulated gate transistor: a new three-terminalMOS controlled bipolar device. IEEE Transactions on Electron Devices,1984,31(6):821-828
    [16] D. N. Pattanayak, A. L. Robinson, T. P. Chow, et al. N-channel lateral insulated gate transistors:part I-steady state characteristics. IEEE Transactions on Electron Devices, December1986,53:1956-1963
    [17] N. Sakurai, M. Mori, T. Yatsuo. High Speed, High Current Capacity LIGBT and Diode forOutput Stage of High Voltage Monolithic Three-phase Inverter IC. Proc. Proc. IEEE Int. Symp.Power Semiconductor Devices ISPSD,1990:66-71
    [18] L.Sabesan, P Mawby, M S Towers, et al. Simulation of transient turn-off characteristics of atrench emitter insulated gate bipolar transistor (IGBT). Proc.20th International Conference onMicroelectronics (MIEC95),12-14September,1995,2:697-700
    [19] F. J. Niedernostheide, H. J. Schulze, U. Kellner-Werdehausen. Self-Protected High-PowerThyristors. Proc PCIM’2001, Power Conversion, Nuremberg, Germany,2001:51-56
    [20] H. J. Schulze, F. J. Niedernostheide, U. Kellner-Werdehausen. Thyristor with IntegratedForward Recovery Protection Function. Proc. IEEE Int. Symp. Power Semiconductor DevicesISPSD, Osaka, Japan,2001:199-202
    [21] Y. Onishi, S. Momota, K. Kondo, et al. Analysis on Device Structures for Next GenerationIGBT. Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD,1998:85-88
    [22] M. Kitagawa, I. Omura, S. Hasegawa, et al. A4500V IEGT operating in a mode similar to athyristor. IEEE International Electron Devices Meeting, IEDM,1993:679-682
    [23] Vinod Kumar Khanna. IGBT theory and design. IEEE press,2003
    [24] Wanjun Chen, Bo Zhang, Zehong Li, et al. Design and optimization of a versatile700V SPICprocess using a fully implanted triple-well technology. Proc. IEEE Int. Symp. PowerSemiconductor Devices ISPSD,2006:1-4
    [25] Ming Qiao, Bo Zhang, Zhiqiang Xiao, et al. High-Voltage Technology Based on Thin LayerSOI for Driving Plasma Display Panels. Proc. IEEE Int. Symp. Power Semiconductor DevicesISPSD, May,2008:52-55
    [26] T. Laska, M. Münzer, R. Rupp, et al. Review of Power Semiconductor Switches for Hybrid andFuel Cell Automotive Applications. Proceedings APE June2006, France
    [27] Sumida. H, Hirabayashi. A, Kobayashi. H. A high-voltage lateral IGBT with significantlyimproved on-state characteristics on SOI for an advanced PDP scan driver IC. IEEE SOIConference,2002:64-65
    [28] J. Lehmann, S. Pawel, R. Herzer, et al. Compact High Power System Design with Smart PowerICs. Proc. PCIM Europe2002:347-352
    [29] Kim S., Lepkowski W., Thornton T. J., et al. CMOS compatible high-voltage compliantMESFET-based analogue IC building blocks. Electronics Letters,2009,45(12):624-626
    [30] Finco S., Melo W., Castaldo F., et al. A smart power integrated circuit educational tool. IEEETransactions on Power Electrons,2009,22:1290-1302
    [31] Igic P., Jankovic N. New high voltage partial SOI technology for smart-power applications.9thInternational Seminar on Power Semiconductors,2008:255-259
    [32] Udrea Florin. SOI-based devices and technologies for high voltage ICs. Proceeding of theIEEE Bipolar/BiCMOS Circuits and Technology Meeting,2007:74-81
    [33] Wessels P. J. J. SOI based technology for smart power applications. IEEE International SOIConference,2007:5-7
    [34] Ying-Keung Leung, Paul. A. K, Plummer. J. D. Lateral IGBT in thin SOI for high voltage, highspeed power IC. IEEE Transactions on Electron Devices,1998,45(10):2251-2254
    [35] A. Nakagawa, Y. Yamaguchi, T. Ogura, et al.500V three phase inverter ICs based on a newdielectric isolation technique. Proc. Proc. IEEE Int. Symp. Power Semiconductor DevicesISPSD,1992:328-332.
    [36] Horstmann M., Wiatr M., Wei A., et al. Advanced SOI CMOS transistor technology for highperformance microprocessors. Proceeding of the10th International Conference on UltimateIntegration of Silicon,2009:11-14
    [37] Yu Xiaomei, Tang Yaquan, Zhang Haitao. Monolithic integration of micro machine sensors andCMOS circuits based on SOI technologies. Journal of Micromechanics and Micro engineering,2008,18(3):037002(7pp)
    [38] Herrera G. V., Bauer Todd, Blain M. G., et al. SOI-enabled MEMS processes lead to novelmechanical, optical, and atomic physics devices. IEEE International SOI Conference,2008:5-8
    [39] M. Rossberg, R. Herzer, S. Pawel. Latch-up free600V SOI gate driver IC for medium powerand high temperature applications. European Conference on Power Electronics andApplications,2005:1665922
    [40] Sun I. S. M., Wai Tung Ng, Kanekiyo K., et al. Lateral high-speed bipolar transistors on SOIfor RF SoC applications. IEEE Transactions on Electron Devices,2005,52(7):1376-1383
    [41] Kim Jonghae, Plouchart Jean-Olivier, Zamdrner Noah. Design and manufacturability aspect ofSOI CMOS RFICs. Proceedings of the IEEE Custom Integrated Circuits Conference,2004,1:541-548
    [42] C. Sorin. Far-future trends in SOI technology: a guess. Journal of High Speed Electronics andSystem,2002,(12)2:137-145
    [43] Cristoloveanu Sorin. Silicon on insulator technologies and devices: From present to future.Solid-State Electronics,2001,45(8):1403-1411
    [44] Disney. D. R. SOI smart IGBT with low cost and high performance. Proc. IEEE Int. Symp.Power Semiconductor Devices ISPSD,1997:289-292
    [45] F. Udrea, W.Milne, A. Popescu. Lateral insulated-gate bipolar transistor (LIGBT) structurebased on partial isolation SOI technology. Electronics Letters, May1997,33:907-909
    [46] A. Nakagawa, N. Yasuhara. Prospects of high voltage power ICs on thin SOI. IEEEInternational Electron Devices Meeting, IEDM,1992:229-232
    [47] Tetsuya Okamoto, Yusuke Ishida, Yoshihito Kato, et al. Development of Low Voltage2-LevelIGBT Inverter and Converter for Industrial Applications. Power Electronics and ECCE Asia(ICPE&ECCE),2011IEEE8th International Conference on2011:2466-2473
    [48] Wei L., Kerkman R. J. Lukaszewski R., Lu H., et al. Analysis of IGBT Power CyclingCapabilities Used in Doubly Fed Induction Generator Wind Power System. Proc. of the IEEEECCE, Atlanta,2010
    [49] S. Kouro, M. Malinowski, K. Gopakumar, et al. Recent Advances and Industrial Applicationsof Multilevel Converters. IEEE Transactions on Industrial Electronics,2010,34:1-1
    [50] Tomoyuki Yamazaki, Yuichi Onozawa, Masahito Otsuki, et al. Advanced IGBT ChipTechnology for Industrial Motor Drive Applications. Power Electronics Conference (IPEC),2010International,2010:783-789
    [51] Chen Z., Guerrero, J. Blaabjerg F. A Review of the State of the Art of Power Electronics forWind Turbines. IEEE Transactions on Power Electronics,2009,24(8)
    [52] R. Alvarez, F. Filsecker, S. Bernet. Characterization of a new4.5kV press pack SPT+IGBT formedium voltage converters. Proc.1st IEEE Energy Conversion Congress and Exposition, SanJose, USA,2009
    [53] Wen Huiqin,Liu Jun,Zhang Xuhui, et al. Design of high power electronic building block basedon parallel of IGBTs for electric vehicle. Power Electronics and Motion Control Conference,Beijing,2008
    [54] T. Ericsen, Y. Khersonsky, P. Schugart, et al. PEBB-Power Electronics Building Blocks, fromconcept to reality. Proc. Int. Conference on Power Electronics, Machines and Drives, Dublin,Ireland, Apr.4-6,2006:12-16
    [55] M. Bartram, J von Bloh, Rik W. De Doncker. Doubly-fed-machines in wind-turbine systems: Isthis application limiting the lifetime of igbt-frequency-converters? Power electronics specialistsconference35, Aachen,2004:2583-2587
    [56] Charles E. Mullett, PSMA Chair. A5-year power technology roadmap. Applied PowerElectronics Conference and Exposition, APEC IEEE2004:11-17
    [57] Jeffery D. Shepard. Power electronics futures. IEEE Proc. APEC’04Applied Power ElectronicsConference and Exposition, APEC IEEE,2004:31-34
    [58] Bernet S. Recent developments of high power converters for industry and traction applications.IEEE Transactions on Power Electronics,2000,15(6):1102-1117
    [59] J. G. Kassakian. Automotive electrical systems-the power electronics market of the future.Applied Power Electronics Conference and Exposition, APEC IEEE2000:3-9
    [60] T. Laska, L. Lorenz, A. Mauder. The new IGBT generation a great improvement potential formotor drive systems. Proc. IEEE Industry Applications Conf.,2000,5:2885-2889
    [61] B. Jayant Baliga. Trends in power discrete devices. Proc. IEEE Int. Symp. PowerSemiconductor Devices ISPSD,1998:5-10
    [62] Held M., Jacob P., Nicoletti G., et al. Fast Power Cycling Tests for IGBT Modules in TractionApplications. Proc. of the IEEE PEDS,1997
    [63] Stephen P. Robb, Judy L. Sutor. Recent advance in power integrated circuits with high levelintegration. Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD,1994:342-348
    [64] David L. Blackburn. Status and trends in power semiconductor devices. IEEE IAS Conference,1993:619-624
    [65] Bimal K. Bose. Recent advances in power electronics. IEEE Tran. on Power Electronics,1992,7(1):2-16
    [66] P. J. Carlson. Reliability implications in using intelligent power integrated circuits (PICs).Proceedings of Power Conversion,1989:450-454
    [67] Wensuo Chen, Bo Zhang, Zhaoji Li. Area efficient, fast speed lateral IGBT with a3-D n-regioncontrolled anode. IEEE Electron Device Letters,2010,31(5):467-469
    [68] Chen Wensuo, Zhang Bo, Fang Jian, et al. A Novel Lateral IGBT with a Controlled Anode forOn-off-state Losses Trade-off Improvement. Journal of Semiconductors,2011,32(7):074005
    [69] Chen Wensuo, Zhang Bo, Li Zhaoji, et al. Conductivity modulation enhanced lateral IGBTwith SiO2shield layer anode by SIMOX technology on SOI substrate. Journal ofSemiconductors,2010,31(6):064004
    [70] Wensuo Chen, Gang Xie, Bo Zhang, et al. Novel Lateral IGBT with n-region Controlled Anodeon SOI Substrate. Journal of Semiconductor,2009,30(11):114005-4
    [71] Wensuo Chen, Gang Xie, Bo Zhang, et al. Fast speed lateral IGBT with buried n-regioncontrolled anode on SOI substrate. IEEE EDSSC2009,2009,15.1
    [72] Wensuo Chen, Gang Xie, Bo Zhang, et al. New Lateral IGBT with controlled anode on SOIsubstrate for PDP scan driver IC. IEEE ICCCAS2009,2009:628-630
    [73] G. Deboy, M. Marz, J.-P. Stengl, et al. A new generation of high voltage MOSFETs breaks thelimit line of silicon. IEEE International Electron Devices Meeting, IEDM,1998:683-685
    [74] Y. Onishi, S. Iwamoto, T. Sato, et al.24mΩ cm2680V silicon super junction MOSFET. Proc.IEEE Int. Symp. Power Semiconductor Devices ISPSD,2002:241-244
    [75] P. N. Kondekar, S. O. Hawn, Y. B. Cho, et al. The effect of static charge imbalance on theon-state behavior of the super junction power MOSFET: Cool MOS. Proc.5th Int. Conf. PEDS,2003,1:77-80
    [76] X. B. Chen. Semiconductor power devices with alternating conductivity type high-voltagebreakdown regions. U.S. Patent, Jun.1,1993,5216275
    [77] H. Ikeda, H. Yoshida, T. Onikura. High-frequency, high-power MOS-FET. IEEE InternationalElectron Devices Meeting, IEDM,1982:246-9
    [78] Y. Shimada, K. Kato, S. Ikeda, et al. Low input capacitance and low loss VD-MOSFETrectifier element. IEEE Transactions on Electron Devices,1982,29:1332-1334
    [79] D. Ueda, H. Takagi, and G. Kano. A new vertical double diffused MOSFET the self-alignedterraced-gate MOSFET. IEEE Transactions on Electron Devices,1984,31:416-20
    [80] H. Wang, E. Napoli, F. Udrea. Breakdown voltage for super junction power devices withcharge imbalance: An analytical model valid for both punch through and non punch throughdevices. IEEE Transactions on Electron Devices, Dec.2009,56(12):3175-3183
    [81] E. Napoli, H.Wang, F. Udrea. The effect of charge imbalance on super junction power devices:An exact analytical solution. IEEE Electron Device Letters, Mar.2008,29(3):249-251
    [82] S. Xu, K. P. Can, P. D. Foo, et al. Graded gate VDMOSFET. IEEE Electron Device Letters,2004,21:176-8
    [83] Fujishima. N. Ivaya M, Sawada M. A low on-resitance trench lateral power MOSFET in a0.6um smart power technology for20-30V applicantions. IEEE International Electron DevicesMeeting, IEDM, San Franceisco, CA,2002:455-456
    [84] P. M. Shenoy, A. Bhalla, G. M. Dolny: Analysis of the effect of charge imbalance on the staticand dynamic characteristics of super junction MOSFET. Proc. IEEE Int. Symp. PowerSemiconductor Devices ISPSD,1999:99-102
    [85] B.J. Baliga, M.S. Adler, P.V. Gray, et al. Suppressing latch-up in insulated gate transistors.IEEE Electron Device Letters1984,5(8):323-325
    [86] T. P. Chow, B. J. Baliga. The Effect of MOS Channel Length on the Performance of InsulatedGate Transistors. IEEE Electron Device Letters, IEEE, New York, August1985,6(8):413-415
    [87] T. P. Chow, B. J. Baliga. The Effect of Channel Length and Gate Oxide Thickness on thePerformance of Insulated Gate Transistors. IEEE Transactions on Electron Devices, Vol.32, No.11, November1985:2554
    [88] H. Yilmaz. Cell Geometry Effect on IGBT Latch-Up. IEEE Electron Device Letters, Vol.6, No.8, August1985:419-421
    [89] T. P. Chow, B. J. Baliga, D. N. Pattanayak. Counter-Doping of MOS Channel (CDC)-A NewTechnique of Improving Suppression of Latching in Insulated Gate Bipolar Transistors. IEEEElectron Device Letters, IEEE, New York, January1988,9(1):29-31
    [90] B. J. Baliga, S. R. Chang, P. V. Gray, et al. New Cell Designs for Improving IGBT SafeOperating Area. IEEE International Electron Devices Meeting, IEDM, New York, Abstract34.5,1988:809-812
    [91] S. Eranen, M. Blomberg. The Vertical IGBT with an Implanted Buried Layer. Proc. IEEE Int.Symp. Power Semiconductor Devices ISPSD, New York,1991:211
    [92] N. Thapar, B. J. Baliga. A New IGBT Structure with Wider Safe Operating Area (SOA). Proc.IEEE Int. Symp. Power Semiconductor Devices ISPSD, New York, Abstract4.3,1994:177-181
    [93] D. Green, K. Vershinin, M. Sweet, et al. Anode Engineering for the Insulated Gate BipolarTransistor-A Comparative Review. IEEE Trans on Power Elect., Sept.2007,22(5):1857-1866
    [94] P. A. Gough, M. R. Simpson, V. Rumenik. Fast switching lateral insulated gate transistor. IEEEInternational Electron Devices Meeting, IEDM,1986:218-221
    [95] Mark R. Simpson. Analysis of Negative Differential Resistance in the I-V Characteristics ofShorted-Anode LIGBT’s. IEEE Transactions on Electron Devices,1991,38(7):1633-1640
    [96] M. Rahimo, A. Kopta, U. Schlapbach, et al. The Bi-mode Insulated Gate Transistor (BiGT)-Apotential technology for higher power applications. Proc. IEEE Int. Symp. PowerSemiconductor Devices ISPSD,2009:283-287
    [97] M. Rahimo. A High Current3300V Module Employing Reverse Conducting IGBTs Setting aNew Benchmark in Output Power Capability. Proc. IEEE Int. Symp. Power SemiconductorDevices ISPSD,2008:68-71
    [98] Johnny K. O. Sin, Satyen Mukherjee. Lateral insulated-gate bipolar transistor (LIGBT) with asegmented anode structure. IEEE Electron Device Letters,1991,12(2)
    [99] M. G rtner, D. Vietzke, D. Reznik, et al. Bistability and hysteresis in the characteristics ofsegmented-anode lateral IGBTs. IEEE Transactions on Electron Devices, July1998,45:1575-1579
    [100] M. Antoniou1, F. Udrea1, F. Bauer, et al. A new way to alleviate the RC IGBT snapbackphenomenon: The Super Junction Solution. Proc. IEEE Int. Symp. Power SemiconductorDevices ISPSD,2010:153-156
    [101] Liutauras Storasta, Arnost Kopta, Munaf Rahimo. A comparison of charge dynamics in theReverse-Conducting RC-IGBT and Bi-mode Insulated Gate Transistor BiGT. Proc. IEEE Int.Symp. Power Semiconductor Devices ISPSD,2010:391-394
    [102] H. Takahashi, A. Yamamoto, S. Anon, et al.1200V Reverse Conducting IGBT. Proc. IEEE Int.Symp. Power Semiconductor Devices ISPSD,2004:133-137
    [103] Fei Zhang, Lina Shi, Chengfang Li. Novel Plugged p+Collector Structure forHigh-Performance IGBT. IEEE Transactions On Plasma Science, June2006,34(3):1026-1032
    [104] N. Luther-King, M. Sweet, O. Splulber, et al. Striped anode engineering: a concept for fastswitching power devices. Solid-State Electron,2002,46(6):903-909
    [105] Tsugutomo Kudoh, Tanemasa Asano. Si/SiGe hetero junction collector for low loss operationof Trench IGBT. Applied Surface Science.15March2004,224(1-4):399-404
    [106] Fei Zhang, Lina Shi, Chengfang Li, et al. Adjustable high-speed insulated gate bipolartransistor. IEEE Transactions on Plasma Science, June2006,34(3-3):1021-1025
    [107] P. Li, M. You, Y. Su, et al. Theory and simulation of SiGe anode LIGBT. Proc.5th Int. Conf.Solid-State and Integrated Circuit Technology,1998:156-159
    [108] S. Azzopardi, Y. Belmehdi, F. Capy, et al. Evaluation of the performances of a novel PunchThrough Trench IGBT using a Si(1-x)Ge(x) N+buffer layer by using finite elementssimulations. The2010International Power Electronics Conference,2010:149-155
    [109] Hua Ye, Pradeep Haldar. A MOS Gated Power Semiconductor Switch Using Band-to-BandTunneling and Avalanche Injection Mechanism. IEEE Transactions on Electron Devices, June2008,55(6):1524-1528
    [110] S. Hardikar, R. Tadikonda, M. Sweet. A fast switching segmented anode npn controlledLIGBT. IEEE Electron Device Letters,2003,24:701-703
    [111] David W. Green, Mark Sweet, Konstantin V. Vershinin, et al. Performance analysis of thesegment npn anode LIGBT. IEEE Transactions on Electron Devices,2005,52(1)
    [112] Z. Qin, E. M. S. Narayanan. Npn controlled lateral insulated gate bipolar transistor.Electronics Letters,1995,31:2045-2047
    [113] Jung-Hoon Chun, Dae-Seok Byeon, Jae-Keun Oh. A fast-switching SOI SA-LIGBT withoutNDR region. Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD,2000
    [114] Venkatesh Nagapudi, Ravishankar Sunkavalli, B. Jayant Baliga. Effect of Collector Structureon the FBSOA of the Dielectrically Isolated LIGBT. IEEE Transactions on Electron Devices,1998,45(5):1155-1161
    [115] H.P. Yee, P.O. Lauritzen, Robert B. Darling. The Fast Turn Off Advanced IGBT, a New DeviceConcept. Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD,1994:63-67
    [116] E. M. Sankara Narayanan, G. A. J. Amaratunga, W. I. Milne. CMOS Compatible ShortedAnode Auxiliary Cathode Lateral Insulated Gate Bipolar Transistors. IEEE Trans. On ElectronDevices,1993,40(10):1880-1883
    [117] A. Nakagawa. Numerical experiment for2500V double gate bipolar mode MOSFETs(DGIGBT) and analysis for large safe operating area (SOA). Power Electronics SpecialistsConf. PESC’88,1988,1:84-90
    [118] Yang Hongqiang, Chen Xingbi. A High Speed IGBT Based on Dynamic ControlledAnode-Short. Chinese Journal of Semiconductors,2002,23(4):347-351
    [119] Tomohide, Tershima. A novel driving technology for a passive gate on a lateral-IGBT. Proc.IEEE Int. Symp. Power Semiconductor Devices ISPSD, Barcelona, Spain, June2009:45-48
    [120] T. Tershima, J. Moritani. Configuration of JI-LIGBT for over100kHz switching. Proc. IEEEInt. Symp. Power Semiconductor Devices ISPSD,2007:225-228
    [121] T. Tershima, J. Moritani. High speed Lateral-IGBT with a passive gate. Proc. IEEE Int. Symp.Power Semiconductor Devices ISPSD,2005:91-94
    [122] Nishad K. Udugampola, Richard A. Mcmahon, Florin Udrea, et al. Analysis and design of thedual-gate inversion layer emitter transistor. IEEE Transactions on Electron Devices, January2005,52(1)
    [123] Florin Udrea, Gehan A.J. Amaratunga. The Double Gate Lateral Inversion Layer EmitterTransistor-A Novel Power Device Concept with a Dynamic Emitter. IEEE BCTM.1996:73-76
    [124] F. Udrea, U. N. K. Udugampola, K. Sheng. Experimental demonstration of an ultra-fast doublegate inversion layer emitter transistor (DG-ILET). IEEE Electron Device Letters,2002,23(12):725-727
    [125] Byeong-Hoon Lee, Jung-hoon Chun, Seong-Dong Kim, et al. A new gradual hole injectiondual-gate LIGBT. IEEE Electron Device Letters, December1998,19(12)
    [126] You-sang Lee, Byeong-Hoon Lee, Won-Oh Lee, et al. Analysis of dual-gate LIGBT withgradual hole injection. IEEE Transactions on Electron Devices,2001,48(9)
    [127] S. Hardikar, E.M. S. Narayanan, M. M. De Souza, et al. A novel dual gated lateralMOS-bipolar power device. Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD,1999:261-264
    [128] F. Udrea, U. N. K. Udugampola, T. Trajkovic, et al. Reverse Conducting Double Gate LateralInsulated Gate Bipolar Transistor in SOI Based Technology. Proc. IEEE Int. Symp. PowerSemiconductor Devices ISPSD, May,2007:221-224
    [129] F. Udrea, A. Popescu, W. I. Milne.3D RESURF double-gate MOSFET: A revolutionary powerdevice concept. Electron. Lett., Apr.1998,34(8):808-809
    [130] Y. Bai, A. Q. Huang. Comprehensive Investigations of High Voltage Non-Punch throughDouble Gate-Injection Enhanced Gate Transistor. Solid State Electron., October2000,44(10):1783-1787
    [131] B. Gutsmann. Explanation of IGBT Tail Current Oscillations by a Novel Plasma ExtractionTransit Time Mechanism. Solid-State Device Research Conference,2001:255-258
    [132] Robert Plikat, Shuming Xu, Dieter Silber. Comparison of Different Switched Anode EmitterShort Concepts for IGBTs. Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD,1998:257-260
    [133] Akio Nakagawa, Yoshihiro Yamaguchi, Kiminori Watanabe. Two types of500V double gatelateral n-ch bipolar-mode MOSFETs in dielectrically isolated P and N silicon islands. IEDM,1988:817-820
    [134] M. Mori, H. Kobayashi, T. Saiki, et al.3.3kV Punchthrough IGBT with Low Loss and FastSwitching. Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD,1997:229-232
    [135] Chihiro Tadokoro, M. Kaneda, K. Takano, et al. Physical Analysis of Carrier LifetimeControlled IGBT. Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD,2011:136-139
    [136] Bayerer R., Herrmann T., Licht T., et al. Model for Power Cycling Lifetime of IGBT Modules-Various Factors Influencing Lifetime. Proc. of CIPS, Nürnberg,2008
    [137] Jian Fang, Xinwei Tang, Zhaoji Li, et al. Numerical and experimental study of localizedlifetime control LIGBT by low energy He ions implantation. Internatioal Conference onCommunications, Circuits and Systems,2004,2:1502-150
    [138] Jian Fang, Zhaoji Li, Hongyan Li. High speed LIGBT with localized lifetime control by usinghigh dose and low energy Helium implantation. Proc ICSICT,2001:174
    [139] S. Hardikar, G. Cao, Y. Xu, et al. A Local Charge Control Technique to Improve the ForwardBias Safe Operating Area of LIGBT. Solid State Electron., July2000,44(7):1213-1218
    [140] V.Raineri, M.Saggio. Voids in silicon power devices. Solid-State Electronics,1998,42(12):2295-2310
    [141] M. Saggio, V. Raineri, R. Letor, et al. Innovative localized lifetime control in high-speed IGBT.IEEE Electron Device Letters,1997,18:333-335
    [142] V. Raineri, G. Fallica. Lifetime control in silicon devices by voids induced by He ionimplantation, J. Appl. Phys,1996,79(12):9012-9016
    [143] Y.Konishi, Y.Onishi, S.momota, et al. Optimized local lifetime control for the superior IGBTs.Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD,1996:335-338
    [144] Marisa Francesca Catania, Ferruccio Frisina, Nella Tavolo, et al. Optimization of the TradeoffBetween Switching Speed of the Internal Diode and On-Resistance in Gold-andPlatinum-Implanted Power Metal-oxide-Semiconductor Devices. IEEE Transactions onElectron Devices, Dec1992,39(12)
    [145] M. C. Antonio, P. L. Robert. Localized lifetime control in insulated-gate transistors by Protonimplantation. IEEE Transactions on Electron Devices,1992,33(11):1667-1671
    [146] Hajime Akiyama, Masana Harda, Hisao Kondoh, et al. PARTIAL Lifetime Control in IGBT byHelium Irradiation Through Mask Patterns. Proc. IEEE Int. Symp. Power SemiconductorDevices ISPSD,1991:187-191
    [147] Antonio Mogro-Campero, Robert P. Love, Mike F.Chang, et al. Localized Lifetime Control inInsulated-Gate Transistors by Proton Implantation. IEEE Transactions on Electron Devices,Nov1986,33(11)
    [148] A.K.Temple. Optimizing carrier lifetime profile for improved trade-off between turn-off timeand forward drop. IEEE Transactions on Electron Devices,1983,30(7):782-790
    [149] R. O. Carlson, Y. S. Sun, H. B. Assalit. Lifetime control in silicon power devices by electronor gamma irradiation. IEEE Transactions on Electron Devices,1977,24:1103-1108
    [150] Y. Onozawa, D. Ozaki, H. Nakano, et al. Development of the next generation1700Vtrench-gate FS-IGBT. Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD,2011:52-55
    [151] H. Nakano, Y. Onozawa, R. Kawano, et al.600V trench-gate FS-IGBT with Micro-P structure.Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD, June2009:13-16
    [152] Y. Onozawa, H. Nakano, M. Otsuki, et al. Development of the next generation1200Vtrench-gate FSIGBT featuring lower EMI noise and lower switching loss. Proc. IEEE Int.Symp. Power Semiconductor Devices ISPSD, June2007:13-16
    [153] Kwang-Hoon Oh, Jaegil Lee, Kyu-Hyun Lee, et al. A Simulation Study on Novel Field StopIGBTs, IEEE Transactions on Electron Devices, April,2006,53(4):884-890
    [154] M. Rahimo, A. Kopata, S. Eicher. Next Generation of HV-IGBT with SPT+. PCIM PowerElectronics,2005
    [155] A. Nakagawa, T. Matsudai, T. Matsuda, et al. MOSFET-mode Ultra-Thin Wafer PT IGBTs forSoft Switching Application---Theory and Experiments. Proc. IEEE Int. Symp. PowerSemiconductor Devices ISPSD,2004:103-106
    [156] M. Otsuki, Y. Onozawa, S. Yoshiwatari, et al.1200V FS-IGBT module with enhanceddynamic clamping capability. Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD,2004:339-342
    [157] M. Momose, K. Kumada, H. Wakimoto, et al. A600V Super Low Loss IGBT with AdvancedMicro-P structure for the next Generation IPM. Proc. IEEE Int. Symp. Power SemiconductorDevices ISPSD, June2002:355-358
    [158] M. Pfaffenlehner, T. Laska, R. Mallwitz, et al.1700V IGBT3: Field Stop Technology withOptimized Trench Structure-Trend setting for the High Power Application in Industry andTraction. Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD, June2002:355-358
    [159] T. Laska, M. Münzer, F. Pfirsch, et al. The Field Stop IGBT (FS IGBT)-A New Power DeviceConcept with a great improvement Potential. Proc. IEEE Int. Symp. Power SemiconductorDevices ISPSD, June2000:355-358
    [160] S. Dewar, S. Linder, C. von Arx, et al. Soft punch through (SPT) Setting new standard in1200V IGBT. Proc. PCIM,2000:593-600
    [161] M. Mori, Y. Uchino, J. Sakano, et al. A Novel High-Conductivity IGBT (HEGT) with a ShortCircuit Capability. Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD,1998:429-432
    [162] Mutsuhiro Mori. A Planar-Gate High-Conductivity IGBT (HiGT) With Hole-Barrier Layer.IEEE Transactions on Electron Devices, June,2007,54(6):1515-1520
    [163] Mutsuhiro Mori. A Trench-Gate High-Conductivity IGBT (HiGT) With Short-CircuitCapability. IEEE Transactions on Electron Devices, August,2007,54(8):2210-2216
    [164] Manabu Takei, Shinji Fujikake, Haruo Nakazawa. DB (Dielectric Barrier) IGBT with ExtremeInjection Enhancement. Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD,2010:383-386
    [165] M. Momose, K. Kumada, H. Wakimoto, et al. A600V Super Low Loss IGBT withAdvanced Micro-P Structure for the next Generation IPM. Proc. IEEE Int. Symp. PowerSemiconductor Devices ISPSD,2010:379-382
    [166] J. Sakano, S. Shirakawa, K. Hara, et al. Large Current Capability270V Lateral IGBT withMulti-Emitter. Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD,2010:84-86
    [167] N. Luther-King, M. Sweet, E.M.S Narayanan. Performance of Trench PMOS-gated, planar1.2kV CIGBT. Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD,2009:164-167
    [168] John F. Donlon, Katsumi Satoh. IGBT Chip Improvements for Industrial Motor Drives.Electric Motor and Drive Technology Conference,2009
    [169] M. Sweet, N. Luther-King, S. T. Kong, et al. Experimental Demonstration of3.3kV PlanarCIGBT in NPT Technology. Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD,2008:48-51
    [170] T. Takahashi, Y. Tomomatsu, K. Satoh. CSTBT(III) as the Next Generation IGBT. Proc. IEEEInt. Symp. Power Semiconductor Devices ISPSD,2008:72-75
    [171] Katsumi Satoh, Tetsuo Takahashi, Hidenori Fujii, et al. New Chip Design Technology for NextGeneration Power Module, PCIM Europe Conference Record,2008
    [172] Tetsuo Takahashi, Yoshifumi Tomomatsu, Katsumi Sato. CSTBTTM(III) as the nextgeneration IGBT. Proc. Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD,2008:72-75
    [173] Nicholas Clark, John Donlon, Shinichi Iura. New1700V A-Series IGBT Modules withCSTBT and Improved FRD. Power Electronics Technology Conference Record,2006
    [174] S. Iura, E. Suekawa, K. Morishita, et al. New1700V IGBT Modules with CSTBT. PCIMEurope2004
    [175] S. Huang, G. A. J. Amaratunga, F. Udrea. The injection efficiency controlled IGBT. IEEEElectron Device Letters,2002, vol.23:88-90
    [176] K. Nakamura, S. Kusunoki, H. Nakamura, et al. Advanced Wide Cell Pitch CSTBTs HavingLight Punch Through (LPT) Structures. Proc. IEEE Int. Symp. Power Semiconductor DevicesISPSD,2002:277-280
    [177] N. Luther-King, M. Sweet, O. Spulber, et al. The6.5kV Clustered Insulated Gate BipolarTransistor in Homogeneous Base Technology. Solid State Electron., January2001,45(1):71-78
    [178] H. Nakamura, K. Nakamura, S. Kusunoki, et al. Wide Cell Pitch1200V NPT CSTBTs withShort Circuit Ruggedness. Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD,2001:299-302
    [179] E. M. S. Narayanan, M. R. Sweet, N. Luther-King, et al. Novel, clustered insulated gatebipolar transistor for high power applications. Proc. Int. Semiconductor Conf. CAS,2000,1:173-181
    [180] M. Sweet, K. Vershinin, C. K. Ngw, et al. A Novel Trench Clustered Insulated Gate BipolarTransistor (TCIGBT), IEEE Electron Device Letters, December2000,21(12):613-615
    [181] Zuxin Qin, E. M. Sankara Narayanan. A Novel Multi-cell Lateral Insulated Gate BipolarTransistor in the DELDI Technology. Power Electronics and Drive Systems,1997. Proceedings,1997International Conference on1997,1:72-77
    [182] H. Funaki, T. Matsudai, A. Nakagawa, et al. Multi-channel SOI lateral IGBT swith large SOA.Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD,1997:33-36
    [183] Han-sin Lee, Yo-Han Kim, Ey-Goo Kang, et al. Design and analysis of insulate gate bipolartransisitor (IGBT) with P+/SiO2collector structure applicable to high voltage to1700V. Proc.IEEE ICSE,2006:489-492
    [184] M. Kitagawa, I. Omura, S. Hasegawa, et al. A4500V injection enhanced insulated gate bipolartransistor (IEGT) operating in a mode similar to a thyristor. IEEE International ElectronDevices Meeting, IEDM,1993:679-682
    [185] D. M. Boisvert. The complementary insulated gate bipolar transistor (CIGBT)-A new powerswitching devices. IEEE Electron device letters,1990,11(9):368-370
    [186] Seung-Chul Lee, Jae-Keun Oh, Su-Sung Kim, et al. Cascading structure of LDMOS andLIGBT for increasing the forward biased safe operating area (FBSOA). Semiconductor DeviceResearch Symposium,2001International,2001:138-140
    [187] S. P. Choi, J. K. Oh, M. K. Han, et al. Dual anode LIGBT on SOI substrates. Proc. IEEE Int.Symp. Power Semiconductor Devices ISPSD, Dec.2001:153-158
    [188] Hardikar, S., Sankara Narayanan, E. M., De Souza, M. M., et al. A novel dual gated lateralMOS-bipolar power device. Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD,1999:261-264
    [189] T. P. Chow,B. J. Baliga. A Hybrid VIGBT-LDMOS Transistor. IEEE Transactions onElectron Devices, December,1988,35(12):24-27
    [190] E. M. Sankara Narayanan, Tadikonda Ramakrishna, David W. Green. RESURFed QuasiLateral IGBT Structure for High Current PICs. Proc. IEEE Int. Symp. Power SemiconductorDevices ISPSD,2007:245-248
    [191] H. Yilmaz, W. R. Van Dell, K. Owyang, et al. Insulated gate transistor modeling andoptimization. IEEE IEDM Tech. Dig.,1984:274
    [192] A. R. Hefner, D. L. Blackburn, K. F. Galloway. The effect of neutrons on the characteristics ofthe insulated gate bipolar transistor (IGBT). IEEE Trans. Nucl. Sci.,1986, NS33:1428
    [193] Allen R. Hefner JR., David L. Blackburn. A performance trade-off for the Insulated GateBipolar Transistor: buffer layer versus base lifetime reduction. IEEE Tran. On Power Electrons,July,1987, PE2(3)
    [194] Vasantha Pathirana, Ettore Napoli, Florin Udrea, et al. An Analytical Model for the LateralInsulated Gate Bipolar Transistor (LIGBT) on Thin SOI. IEEE Tran. On Power Electrons, July,2006,21(6)
    [195] D. S. Kuo et al. Modeling the turn-off characteristics of the bipolar-MOS transistor. IEEEElectron Device Letters,2002,23(12):725-727
    [196] D. M. Garner, F. Udrea, H. T. Lim, et al. An analytic model for turn off in thesilicon-on-insulator LIGBT. Solid State Electron., Oct.1999,43(10):1855-1868
    [197] A. Ramamurthy, S. Sawant, B. J. Baliga. Modeling the [dV/dt] of the IGBT during inductiveturn off. IEEE Trans. Power Electron., Jul.1999,14(4):601-606
    [198] M. Trivedi, K. Shenai. Modeling the turn-off of IGBT’s in hard-and soft-switchingapplications. IEEE Trans. Electron Devices, May1997,44(5):887-893
    [199] Zhaoji Li, Ming Zhang, Jian Yang, et al. Analytical Turn-off Current Model for Type ofConductivity Modulation Power MOSFETS with Extracted Excess Carrier. Solid-StateElectronics,2000,44(1):1-9
    [200] Zhaoji Li, Juan Du. Transient Characteristics of Complementary Insulated-Gate BipolarTransistor. IEEE Trans. Electron. Devices,1994,41(12):2468-2471
    [201] Atlas User’s Manual Copyright,2008
    [202] Y. S. Huang, B. J. Baliga. Extension of RESURF principle to dielectrically isolated powerdevices. Proc. IEEE Int. Symp. Power Semiconductor Devices ISPSD,1991:27-30
    [203] Adriaan W. Ludikhuize. A review of RESURF technology. ISPSD,2000
    [204] MEDICI User’s Manual,2001
    [205] DAVINCI User’s Manual,2001
    [206] Y. Hiraoka, S. Matsumoto, et al. Application of the thin-film SOI power MOSFET fabricatedby sub-um-rule CMOS/SOI process for the DC-DC converter. Proc. IEEE Int. Symp. PowerSemiconductor Devices ISPSD,1998:145-148
    [207] Y. K. Leung, S.C. Kuehne. High voltage, high speed lateral IGBT in thin SOI for power IC.IEEE International SOI Conference,1996:132-133
    [208] Y. S. Huang, B. J. Baliga. Comparison of DI and JI lateral IGBTs. Proc. IEEE Int. Symp.Power Semiconductor Devices ISPSD,1992:40-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700