用户名: 密码: 验证码:
有机电子器件电荷输运及相关电性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电子器件具有一系列优异特性并展现出巨大的应用潜力,近年来受到国内外学术界和产业界的广泛关注。但它们同时表现出的运转速度慢、工作效率低、使用寿命短等缺点也严重阻碍了其进一步发展。要从根本上解决这些问题,使有机电子器件更好地为我们所用,就需要进一步提高有机半导体材料的性能,设计更合理的有机电子器件结构。而要达到这一目的,就要求我们必须正确认识有机半导体材料及有机电子器件的电荷输运问题,这对有机半导体材料的合成及有机电子器件的设计具有重要指导意义。本论文正是基于这一主题,深入研究了有机半导体材料及器件的电荷输运及相关的电性质,获得了一些有益于有机半导体材料合成及有机电子器件设计的重要结果。论文的主要工作和创新点如下:
     一、提出了一种特别的求解描述空间电荷限制电流(SCLC)耦合方程的非均匀离散化数值计算方法。基于这种数值方法和扩展高斯无序模型(EGDM),计算了基于有机半导体聚合物MEH-PPV和P3HT的空穴型二极管J V特性,证实了数值计算结果同实验测试数据相当吻合。此外,进一步计算和分析了器件的J V特性随边界载流子浓度的变化关系以及载流子浓度和电场强度随有机活性层中位置的分布情况。结果表明:太大或太小的边界载流子浓度将导致不正确的J V特性,载流子浓度为有机层中位置的减函数而电场强度为位置的增函数,载流子浓度的最大值和场强的最小值出现在界面处。
     二、在W. F. Pasveer等人提出的只考虑了非阿列纽斯温度依赖关系的扩展高斯无序模型的基础上,全面考虑阿列纽斯温度依赖关系和非阿列纽斯温度依赖关系对载流子迁移率的影响,提出了一种基于两种温度依赖关系的载流子迁移率依赖于场强、温度及载流子浓度的统一理论模型,并证实了该模型能更好地描述有机电子材料及器件的电荷输运,尤其在高载流子浓度和高场强区域。此外,将该模型应用于基于有机半导体聚合物NRS-PPV、OC1C10-PPV及MEH-PPV的空穴型器件,证实了使用该模型计算的J V特性同实验测试结果非常吻合,表明改进模型相对于初始模型可以更好地描述有机电子器件的J V特性,更好地俘获了有机电子材料及器件的电荷输运本质,更适用于有机半导体材料及器件电荷输运及相关电性质的研究。
     三、实验上制备了基于有机小分子半导体NPB的器件,测试了不同厚度器件室温下的J V特性,证实了改进模型仅用一组模型参数就能同时描述不同厚度器件的J V特性;其次,将改进模型应用于基于聚芴PFO的空穴型器件,证实了改进模型可以仅用一组模型参数就极好地描述相同厚度不同温度或相同温度不同厚度的PFO基空穴型器件的J V特性;最后,将改进模型应用于基于聚噻吩类有机半导体P3HT的空穴型器件,结果显示改进模型很好地描述了P3HT基空穴型器件的J V特性。所有这些结果表明改进模型非常适合于研究各类有机半导体材料的电荷输运。
In the past decade organic electronic devices have been extensively studied due totheir good properties and potential applications in many fields. However, their defects inpractical operation hamper progress toward the next step, such as the slow operationspeed, low work efficiency, short service life and so on. In order to slove these problem,people should synthesize better organic electronic materials and further improve thedevice structure. To achieve this purpose, people should understand the charge transportin organic electronic materials and devices properly. In this dissertation, we study thecharge transport and electrical properties in organic electronic materials and devices,and obtain some important results that allow the rational design of organic electronicmaterials and devices. Some important and valuable results which bring forth some newideas are listed as follows:
     1. A particular numerical method adopting the uneven discretization and NewtonIteration Method to solve the coupled equations describing the space-charge limitedcurrent (SCLC) in conjugated polymers is proposed. Based on this numerical methodand the extended Gaussian disorder model (EGDM), we calculate the current-voltage(J V) characteristics of MEH-PPV-based and P3HT-based hole-only devices, anddemonstrate that the numerical results are in good agreement with experimentalmeasurements. Furthermore, we calculate the variation of J Vcharacteristics withthe boundary carrier density and the distribution of charge-carrier density and electricfield with the distance to the interface. It is shown that the numerically calculated carrierdensity is a decreasing function of the distance and numerically calculated electric fieldis an increasing function of the distance. The maximum of carrier density and theminimum of electric field appear near the interface.
     2. Based on the extended Gaussian disorder model (EGDM) introduced by Pasveeret al, we propose an improved unified description of the dependence of the chargecarrier mobility on temperature, carrier density and electric field by considering theArrhenius temperature dependence ln()1/Tand non-Arrhenius temperaturedependenceln()1/T2together, and demonstrate the improved model can better describe the charge transport in organic electronic materials and devices, especially athigh carrier density and high electric field. In addition, we calculate the current-voltage(J V) characteristics of NRS-PPV-based, OC1C10-PPV-based and MEH-PPV-basedhole-only devices and demonstrate that the numerical results are in good agreement withexperimental measurements. These results indicate the improved model captures thephysical essence of the charge transport in organic electronic materials and devices, andis more applicable for organic electronic materials and devices than the original model.
     3. The devices based on the organic small molecule material NPB were fabricated,and the measured J Vcharacteristics were presented. It is demonstrated that theJ Vcharacteristics of various thickness at room temperature can be excellentlydescribed by the improved model only using a set of parameters. Furthermore, we studythe charge transport of PFO-based hole-only devices by using the improved model, anddemonstrate the temperature dependent and thickness dependent J Vcharacteristicscan be excellently described with a set of same parameters. Moreover, we further studythe charge transport of P3HT-based hole-only devices by using the improved model, anddemonstrate that the J Vcharacteristics can be better described by the improvedmodel than the original model. All the results indicate that the improved model isapplicable for various organic semiconductors.
引文
[1] K. C. Kao, W. Hwang. Electrical transport in solids, with particular reference to organicsemiconductors. Oxford: Pergamon Press,1981
    [2] M. Pope, C. E. Swenberg. Electronic processes in organic crystals. Oxford: Clarendon Press,1982
    [3] O. H. Le Blanc. Hole and electron drift mobilities in anthracene. J. Chem. Phys.,1960,33(2):626
    [4] K. G. Kepler. Charge carrier production and mobility in anthracene crystals. Phys. Rev.,1960,119(4):1226-1229
    [5] M. Pope, H. P. Kallmann, P. Magnante. Electroluminescence in organic crystals. J. Chem.Phys.,1963,38(8):2042-2043
    [6] C. K. Chiang, A. J. Heeger, H. Shirakawa, et al. Electrical conductivity in dopedpolyacetylene. Phys. Rev. Lett.,1977,39(17):1098-1101
    [7] C. W. Tang. Two-layer organic photovoltaic cell. Appl. Phys. Lett.,1986,48(2):183-185
    [8] C. W. Tang, S. A. VanSlyke. Organic electroluminescent diodes. Appl. Phys. Lett.,1987,51(12):913-915
    [9] A. Tsumura, H. Koezuka, T. Ando. Macromolecular electronic device: Field-effect transistorwith a polythiophene thin film. Appl. Phys. Lett.,1986,49(18):1210-1212
    [10] F. Garnier, G. Horowitz, X. Z. Peng, et al. An all-organic soft thin film transistor with veryhigh carrier mobility. Adv. Mater.,1990,2(12):592-597
    [11] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, et al. Light-emitting diodes based onconjugated polymers. Nature,1990,347:539-541
    [12] J. J. M. Halls, C. A. Walsh, N. C. Greenham, et al. Efficient photodiodes frominterpenetrating polymer networks. Nature,1995,376:498-500
    [13] G. Yu, J. Gao, J. C. Hummelen, et al. Polymer photovoltaic cells: enhanced efficiencies via anetwork of internal donor-acceptor heterojunctions. Science,1995,270:1789-1791
    [14] C. J. Brabec, N. S. Sariciftci, J. C. Hummelen. Plastic Solar Cells. Adv. Funct. Mater.,2001,11(1):15-26
    [15] R. U. A. Khan, C. Hunziker, P. Gunter. Perspectives on organic light-emitting diodes fordisplay applications. J Mater Sci: Mater Electron,2006,17:467–474
    [16]吴世康,汪鹏飞.有机电子学概论.北京:化学工业出版社,2010
    [17]黄维,密保秀,高志强.有机电子学.北京:科学出版社,2011
    [18] S. A. Jenekhe, J. A. Osaheni. Excimers and exciplexes of conjugated polymers. Science,1994,265:765-768
    [19] D. O'Brien, A. Bleyer, D. G. Lidzey, et al. Efficient multilayer electroluminescence deviceswith poly(m-phenylenevinylene-co-2,5-dioctyloxy-p-phenylenevinylene) as the emissivelayer. J. App. Phys.,1997,82(5):2662-2670
    [20] W. Brutting. Physics of organic semiconductors. Weinheim: Wiley-VCH,2005
    [21] F. Ebisawa, T. Kurokawa, S. Nara. Electrical properties of polyacetylene/polysiloxaneinterface. J. App. Phys.,1983,54(6):3255-3259
    [22] A. Tsumura, H. Koezuka, T. Ando. Polythiophene field-effect transistor: its characteristicsand operation mechanism. Synth. Met.,1988,25(1):11-13
    [23] G. Horowitz, X. Peng, D. Fichou, et al. The oligothiophenebased fieldeffect transistor: How itworks and how to improve it. J. App. Phys.,1990,67(1):528-532
    [24] C. J. Drury, C. M. J. Mutsaers, D. M. de Leeuw, et al. Low-cost all-polymer integratedcircuits. Appl. Phys. Lett.,1998,73(1):108-110
    [25] J. Xue, S. Uchida, B. P. Rand, et al.4.2%efficient organic photovoltaic cells with low seriesresistances. Appl. Phys. Lett.,2004,84(16):3013-3015
    [26] P. Peumans, V. Bulovic, S. R. Forrest. Efficient photon harvesting at high optical intensitiesin ultrathin organic double-heterostructure photovoltaic diodes. Appl. Phys. Lett.,2000,76(9):2650-2652
    [27] M. Granstr m, K. Petritsch, A. C. Arias, et al. Laminated fabrication of polymericphotovoltaic diodes. Nature,1998,395:257-260
    [28] P. Schilinskya, C. Waldauf. Recombination and loss analysis in polythiophene based bulkheterojunction photodetectors. Appl. Phys. Lett.,2002,81(20):3885-3887
    [29] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci.2.5%efficient organic plastic solar cells. Appl.Phys. Lett.,2001,78(6):841-843
    [30] M. Svensson, F. Zhang, S. C. Veenstra, et al. High-performance polymer solar cells of analternating polyfluorene copolymer and a fullerene derivative. Adv. Mater.,2003,15(12):988-991
    [31] P. Peumans, S. Uchida, S. R. Forrest. Efficient bulk heterojunction photovoltaic cells usingsmall-molecular-weight organic thin films. Nature,2003,425:158-162
    [32] B. Maennig, J. Drechsel, D. Gebeyehu, et al. Organic pin solar cells. Appl. Phys. A,2004,79:1-12
    [33] J. Kruger, R. Plass, L. Cevey, et al. High efficiency solid-state photovoltaic device due toinhibition of interface charge recombination. Appl. Phys. Lett.,2001,79(13):2085-2087
    [34] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos. Hybrid nanorod-polymer solar cells. Science,2002,295:2425-2427
    [35] J. Y. Kim, S. H. Kim, H. H. Lee, et al. New architecture for high-efficiency polymerphotovoltaic cells using solution-based titanium oxide as an optical spacer. Adv. Mater.,2006,18(5):572-575
    [36] M. Reyes-Reyes, K. Kim, D. L. Carrolla. High-efficiency photovoltaic devices based onannealed P3HT and PCBM blends. Appl. Phys. Lett.,2005,87(8):083506
    [37] K. Kim, J. Liu, M. A. G. Namboothiry, et al. Roles of donor and acceptor nanodomains in6%efficient thermally annealed polymer photovoltaics. Appl. Phys. Lett.,2007,90(16):163511
    [38] Y. Liang, Z. Xu, J. Xia, et al. For the bright future–bulk heterojunction polymer solar cellswith power conversion efficiency of7.4%. Adv. Mater.,2010,22(20): E135
    [39] J. Godlewski, M. Obarowska. Application of organic materials in electronics. Eur. Phys. J.Special Topics,2007,144:51-66
    [40] M. Pope, C. E. Swenberg. Electronic processes in organic crystals and polymers. New York:Oxford University Press,1999
    [41] E. M. Conwell. Impurity band conduction in Germanium and Silicon. Phys. Rev.,1956,103(1):51-61
    [42] N. F. Mott. On the transition to metallic conduction in semiconductors. Can. J. Phys.,1956,34:1356–1368
    [43] A. Miller, E. Abrahams. Impurity conduction at low concentrations. Phys. Rev.,1960,120(3):745-755
    [44] R. A. Marcus. Nonadiabatic processes involving quantum-like and classical-like coordinateswith applications to nonadiabatic electron transfers. J. Chem. Phys.,1984,81(10):4494-4500
    [45] H. B ssler. Charge transport in disordered organic photoconductors. Phys. Status Solidi B,1993,175:15-57
    [46] P. M. Borsenberger, L. Pautmeier, R. Richert, et al. Hole transport in TAPC. J. Chem. Phys.,1991,94(12):8276-8281
    [47] R. Coehoorn, W. F. Pasveer, P. A. Bobbert, et al. Charge-carrier concentration dependence ofthe hopping mobility in organic materials with Gaussian disorder. Phys. Rev. B,2005,72(15):155206
    [48] M. C. J. M. Vissenberg, M. Matters. Theory of the field-effect mobility in amorphous organictransistors. Phys. Rev. B,1998,57(20):12964
    [49] E. J. Meijer, C. Tanase, P. W. M. Blom, et al. Switch-on voltage in disordered organicfield-effect transistors. Appl. Phys. Lett.,2002,80(20):3838-3840
    [50] W. D. Gill. Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone andpoly-n-vi nylca rbazole. J. App. Phys.,1972,43(12):5033-5040
    [51] Y. Roichman, N. Tessler. Charge transport in conjugated polymers: The influence of chargeconcentration. Synth. Met.,2003,443:135-136
    [52] C. Tanase, E. J. Meijer, P.W.M. Blom, et al. Unification of the Hole Transport in PolymericField-Effect Transistors and Light-Emitting Diodes. Phys. Rev. Lett.,2003,91(21):216601
    [53] C. Tanase, P. W. M. Blom, D. M. de Leeuw. Origin of the enhanced space-charge-limitedcurrent in poly(p-phenylene vinylene). Phys. Rev. B,2004,70(19):193202
    [54] G. E. Pike, C. H. Seager. Percolation and conductivity: A computer study. Phys. Rev. B,1974,10(4):1421-1434
    [55] P. M. Borsenberger, L. Pautmeier, H. B ssler. Charge transport in disordered molecular solids.J. Chem. Phys.,1991,94(8):5447-5454
    [56] S. V. Novikov, D. H. Dunlap, V. M. Kenkre, et al. Essential role of correlations in governingcharge transport in disordered organic materials. Phys. Rev. Lett.,1998,81(20):4472-4475
    [57] S. V. Novikov, A. V. Vannikov. Cluster structure in the distribution of the electrostaticpotential in a lattice of randomly oriented dipoles. J. Phys. Chem.,1995,99(40):14573-14576
    [58] D. H. Dunlap, P. E. Parris, V. M. Kenkre. Charge-dipole model for the universal fielddependence of mobilities in molecularly doped polymers. Phys. Rev. Lett.,1996,77(3):542-545
    [59] S. V. Novikov, A. V. Vannikov. Monte Carlo simulation of hopping transport in dipolardisordered organic matrices. Synth. Met.,1997,85:1167-1168
    [60] P. W. M. Blom, M. C. J. M. Vissenberg. Charge transport in poly(p-phenylene vinylene)light-emitting diodes. Mater. Sci. Eng. R,2000,27:53-94
    [61] W. F. Pasveer, J. Cottaar, C. Tanase, et al. Unified description of charge-carrier mobilities indisordered semiconducting polymers. Phys. Rev. Lett.,2005,94(20):206601
    [62] M. Bouhassoune, S. L. M. van Mensfoort, P. A. Bobbert, et al. Carrier-density andfield-dependent charge-carrier mobility in organic semiconductors with correlated Gaussiandisorder. Organic Electronics,2009,10:437–445
    [63] S. Kirkpatrick. Percolation and conduction. Rev. Mod. Phys.,1973,45(4):574-588
    [64] V. Ambegaokar, B. I. Halperin, J. S. Langer. Hopping conductivity in disordered systems.Phys. Rev. B,1971,4(8):2612-2620
    [65] S. M. Sze. Physics of semiconductor devices. New York: Wiley&Sons Inc.,1981
    [66] N. F. Mott, R. W. Gurney. Electronic processes in ionic crystals. New York: OxfordUniversity Press,1940
    [67] Y. N. Gartstein, E. M. Conwell. High-field hopping mobility in molecular systems withspatially correlated energetic disorder. Chem. Phys. Lett.1995,245:351-358
    [68] E. Hartenstein, H. B ssler, S. Heun, et al. Charge transport in molecularly doped polymers atlow dopant concentrations: simulation and experiment. Chem. Phys.,1995,191:321-332
    [69] H. Houili, E. Tuti, I. Batisti, et al. Investigation of the charge transport through disorderedorganic molecular heterojunctions. J. App. Phys.,2006,100(3):033702
    [70] J. Zhou, Y. C. Zhou, J. M. Zhao, et al. Carrier density dependence of mobility in organicsolids: A Monte Carlo simulation. Phys. Rev. B,2007,75(15):153201
    [71] J. Staudigel, F. Steuber, J. Simmerer, et al. A quantitative numerical model of multilayervapor-deposited organic light emitting diodes. J. App. Phys.,1999,86(7):3895-3910
    [72] B. Ruhstaller, S. A. Carter, J. C. Scott, et al. Transient and steady-state behavior of spacecharges in multilayer organic light-emitting diodes. J. App. Phys.,2001,89(8):4575-4586
    [73] B. Ruhstaller, T. Beierlein, H. Riel, et al. Simulating electronic and optical processes inmultilayer organic light-emitting devices. IEEE J. Sel. Top. Quantum Electron.,2003,9(3):723-731
    [74] J. C. deMello. Highly convergent simulations of transport dynamics in organic light-emittingdiodes. J. Comput. Phys.,2002,181(2):564-576
    [75] J. A. Barker, C. M. Ramsdale, N. C. Greenham, et al. Modeling the current-voltagecharacteristics of bilayer polymer photovoltaic devices. Phys. Rev. B,2003,67(7):075205
    [76] L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, et al. Device model for the operation ofpolymer/fullerene bulk heterojunction solar cells. Phys. Rev. B,2005,72(8):085205
    [77] J. Bisquert, J. M. Montero, H. J. Bolink, et al. Thickness scaling of space-charge-limitedcurrents in organic layers with field-or density-dependent mobility. Phys. Status Solidi A,2006,203:1-6
    [78] C. Pflumm, C. G rtner, U. Lemmer, et al. A numerical scheme to model current and voltageexcitation of organic light-emitting diodes. IEEE J. Quantum Electron.,2008,44(8):790-798
    [79] S. L. M. van Mensfoort, R. Coehoorn. Effect of Gaussian disorder on the voltage dependenceof the current density in sandwich-type devices based on organic semiconductors. Phys. Rev.B,2008,78(8):085207
    [80] J. C. Blakesley, H. S. Clubb, N. C. Greenham, et al. Temperature-dependent electron andhole transport in disordered semiconducting polymers: Analysis of energetic disorder. Phys.Rev. B,2010,81(4):045210
    [81] E. Knapp, R. H usermann, H. U. Schwarzenbach, et al. Numerical simulation of chargetransport in disordered organic semiconductor devices. J. App. Phys.,2010,108(5):054504
    [82] J. S. Bonham, D. H. Jarvis. A new approach to space-charge-limited conduction theory. Aust.J. Chem.,1977,30(4):705-720
    [83] J. S. Bonham, D. H. Jarvis. Theory of space-charge-limited current with one blockingelectrode. Aust. J. Chem.,1978,31(10):2103-2115
    [84] P. W. M. Blom, M. J. M. de Jong, J. J. M. Vleggaar. Electron and hole transport inpoly(p-phenylene vinylene) devices. Appl. Phys. Lett.,1996,68(23):3308-3310
    [85] P. W. M. Blom, M. J. M. de Jong. Electrical characterization of polymer light-emitting diodes.IEEE J. Sel. Top. Quantum Electron.,1998,4(1):105-112
    [86] P. W. M. Blom, M. J. M. de Jong, C. T. H. F. Liedenbaum. Device physics of polymerlight-emitting diodes. Polym. Adv. Technol.,1998,9:390-401
    [87] R. N. Marks, D. D. C. Bradley, R. W. Jackson, et al. Charge injection and transport inPoly(p-phenylene vinylene) light emitting diodes. Synth. Met.,1993,57:4128-4133
    [88] I. D. Parker. Carrier tunneling and device characteristics in polymer light-emitting diodes. J.App. Phys.,1994,75(3):1656-1666
    [89] H. Vestweber, J. Pommerehne, R. Sander, et al. Majority carrier injection from ITO anodesinto organic light-emitting diodes based upon polymer blends. Synth. Met.,1995,68:263-268
    [90] P. E. Burrows, S. R. Forrest. Electroluminescence from trap-limited current transport invacuum deposited organic light emitting devices. Appl. Phys. Lett.,1994,64(17):2285-2287
    [91] E. Ettedgui, H. Razafitrimo, Y. Gao, et al. Band bending modified tunneling atmetal/conjugated polymer interfaces. Appl. Phys. Lett.,1995,67(18):2705-2707
    [92] P. W. M. Blom, M. J. M. de Jong, M. G. van Munster. Electric-field and temperaturedependence of the hole mobility in poly.p-phenylene vinylene. Phys. Rev. B,1997,55(2):R656
    [93] M. A. Lampert, P. Mark. Current injection in solids. New York: Academic,1970
    [94] P. W. M. Blom, C. Tanase, D. M. de Leeuw, et al. Thickness scaling of the space chargelimited current in poly.p-phenylene vinylene. Appl. Phys. Lett.,2005,86(9):092105
    [95] Y. Zhang, B. de Boer, P. W. M. Blom. Controllable molecular doping and charge transport insolution-processed polymer semiconducting layers. Adv. Mater.,2009,19:1901-1905
    [96] D. M. Pai. Transient photoconductivity in poly(N-vinylcarbazole). J. Chem. Phys.,1970,52(5):2285-2291
    [97] H. Meyer, D. Haarer, H. Naarmann, et al. Trap distribution for charge carriers inpoly(paraphenylene vinylene)(PPV) and its substituted derivative DPOP-PPV. Phys. Rev. B,1995,52(4):2587-2598
    [98] W. F. Pasveer, J. Cottaar, P. A. Bobbert, et al. Temperature, charge carrier density, and electricfield dependence of mobilities in disordered conjugated polymers: simulation results. Synth.Met.,2005,152:157-160
    [99] K. D. Meisel, W. F. Pasveer, J. Cottaar, et al. Charge-carrier mobilities in disorderedsemiconducting polymers: Effects of carrier density and electric field. Phys. Status Solidi C,2006,3:267-270
    [100] J. Cottaar, P. A. Bobbert. Calculating charge-carrier mobilities in disordered semiconductingpolymers: Mean field and beyond. Phys. Rev. B,2006,74(11):115204
    [101] R. Coehoorn, S. Vulto, S.L.M. van Mensfoort, et al. Measurement and modelling of carriertransport and exciton formation in blue polymer light emitting diodes. Proc. SPIE,2006,6192:1-12
    [102] M. M. Mandoc, B. de Boer, G. Paasch, et al. Trap-limited electron transport in disorderedsemiconducting polymers. Phys. Rev. B,2007,75(19):193202
    [103] S. L. M. van Mensfoort, S. I. E. Vulto, R. A. J. Janssen, et al. Hole transport inpolyfluorene-based sandwich-type devices: Quantitative analysis of the role of energeticdisorder. Phys. Rev. B,2008,78(8):085208
    [104] N. I. Craciun, J. J. Brondijk, P. W. M. Blom. Diffusion-enhanced hole transport in thinpolymer light-emitting diodes. Phys. Rev. B,2008,77(3):035206
    [105] S. L. M. van Mensfoort, J. Billen, S. I. E. Vulto, et al. Electron transport in polyfluorenebased sandwich-type devices: Quantitative analysis of the effects of disorder and electrontraps. Phys. Rev. B,2009,80(3):033202
    [106] R. J. de Vries, S. L. M. van Mensfoort, V. Shabro, et al. Analysis of hole transport in apolyfluorene-based copolymer–evidence for the absence of correlated disorder. Appl. Phys.Lett.,2009,94(16):163307
    [107] S. L. M. van Mensfoort, R. J. de Vries, V. Shabro, et al. Electron transport in the organicsmall-molecule material BAlq–the role of correlated disorder and traps. Organic Electronics,2010,11:1408-1413
    [108] Y. Zhang, P. W. M. Blom. Field-assisted ionization of molecular doping in conjugatedpolymers. Organic Electronics,2010,11:1261-1267
    [109] Y. Zhang, P. W. M. Blom. Electron and hole transport in poly(fluorene-benzothiadiazole).Appl. Phys. Lett.,2011,98(14):143504
    [110] L. G. Wang, H. W. Zhang, X. L. Tang, et al. Calculation and analysis of electrical behavior indisordered semiconducting polymers based on extended Gaussian disorder model. Mod. Phys.Lett. B,2010,24(15):1647-1656
    [111] L. G. Wang, H. W. Zhang, X. L. Tang, et al. Detailed calculation and analysis of electricalproperties in solution-processed polymer semiconducting layers. Optoelectron. Adv. Mat.,2011,5(3):263-267
    [112] L. G. Wang, H. W. Zhang, X. L. Tang, et al. Charge transport and electrical properties inpoly(3-hexylthiophene) polymer layers. Chin. Phys. Lett.,2012,29(1):017201
    [113] L. Demeyu, S. Stafstr m, M. Bekele. Monte Carlo simulations of charge carrier mobility insemiconducting polymer field-effect transistors. Phys. Rev. B,2007,76(15):155202
    [114] M. Kiguchi, M. Nakayama, T. Shimada, et al. Electric-field-induced charge injection orexhaustion in organic thin film transistor. Phys. Rev. B,2005,71(3):035332
    [115] Z. Bao, A. Dodabalapur, A. J. Lovinger. Soluble and processable poly(3-hexylthiophene) forthin film field-effect transistor applications with high mobility. Appl. Phys. Lett.,1996,69(26):4108-4110
    [116] H. Sirringhaus, P. J. Brown, R. H. Friend, et al. Two-dimensional charge transport inself-organized, high-mobility conjugated polymers. Nature,1999,401:685-688
    [117] T. M. Clarke, A. M. Ballantyne, J. Nelson, et al. Free energy control of chargephotogeneration in polythiophene/fullerene solar cells: The influence of thermal annealing onP3HT/PCBM blends. Adv. Funct. Mater.,2008,18:4029–4035
    [118] L. Ma. Effect of dopant properties on the microstructures and electrical characteristics ofpoly(3-Hexylthiophene) thin films. Chin. Phys. Lett.,2010,27(11):117301
    [119] H. C. F. Martens, P. W. M. Blom, H. F. M. Schoo. Comparative study of hole transport inpoly(p-phenylene vinylene) derivatives. Phys. Rev. B,2000,61(11):7489-7493
    [120] Y. Preezant, N. Tessler. Carrier heating in disordered organic semiconductors. Phys. Rev. B,2006,74(23):235202
    [121] G. Gustafsson, Y. Cao, G. M. Treacy, et al. Flexible light-emitting diodes made from solubleconducting polymers. Nature,1992,357:477-479
    [122] R. H. Friend, R. W. Gymer, A. B. Holmes, et al. Electroluminescence in conjugated polymers.Nature,1999,397:121-128
    [123] M. Bernius, M. Inbasekaran, E. Woo, et al. Developmental progress of electroluminescentpolymeric materials and devices. Proc. SPIE,1999,3797:129-137
    [124] M. T. Bernius, M. Inbasekaran, J. O’Brien, et al. Progress with light-emitting polymers. Adv.Mater.,2000,12:1737–1750
    [125] J. K. Borchardt. Developments in organic displays. Mater. Today,2004,7(9):42-46
    [126] B. W. D’Andrade, S. R. Forrest. White organic light-emitting devices for solid-state lighting.Adv. Mater.,2004,16:1585–1589
    [127] K. Walzer, B. Maennig, M. Pfeiffer, et al. Highly efficient organic devices based onelectrically doped transport layers. Chem. Rev.,2007,107(4):1233-1271
    [128] S. Reineke, F. Lindner, G. Schwartz, et al. White organic light-emitting diodes withfluorescent tube efficiency. Nature,2009,459:234-238
    [129] A. R. Brown, C. P. Jarrett, D. M. de Leeuw, et al. Field-effect transistors made from solutionprocessed organic semiconductors. Synth. Met.,1997,88:37-55
    [130] Y. L. Loo, R. L. Willett, K. W. Baldwin, et al. Interfacial chemistries for nanoscale transferprinting. J. Am. Chem. Soc.,2002,124(26):7654-7655
    [131] G. H. Gelinck, E. Van Veenendaal, R. Coehoorn. Dual-gate organic thin-film transistors. Appl.Phys. Lett.,2005,87(7):073508
    [132] L. L. Chua, R. H. Friend, P. K. H. Hob, et al. Organic double-gate field-effect transistors:Logic-AND operation. Appl. Phys. Lett.,2005,87(25):253512
    [133] M. J. Spijkman, J. J. Brondijk, T. C. T. Geuns, et al. Dual-gate organic field-effect transistorsas potentiometric sensors in aqueous solution. Adv. Funct. Mater.,2010,20:898–905
    [134] C. J. Brabec, F. Padinger, J. C. Hummelen, et al. Realization of large area flexiblefullerene-conjugated polymer photocells: A route to plastic solar cells. Synth. Met.,1999,102:861-864
    [135] F. Zhang, M. Johansson, M. R. Andersson, et al. Polymer photovoltaic cells with conductingpolymer anodes. Adv. Mater.,2002,14:662–665
    [136] C. Melzer, E. Koop, V. D. Mihailetchi, et al. Hole transport in poly(phenylenevinylene)/methanofullerene bulk-heterojunction solar cells. Adv. Funct. Mater.,2004,14:866–870
    [137] C. McNeill, S. Westenhoff, C. Groves, et al. Influence of nanoscale phase separation on thecharge generation dynamics and photovoltaic performance of conjugated polymer blends:Balancing charge generation and separation. J. Phys. Chem. C,2007,111:19153-19160
    [138] J. D. Kotlarski, P. W. M. Blom. Ultimate performance of polymer:fullerene bulkheterojunction tandem solar cells. Appl. Phys. Lett.,2011,98(5):053301
    [139] V. Ambegaokar, B. I. Halperin, J. S. Langer. Hopping conductivity in disordered systems..Phys. Rev. B,1971,4(8):2612-2620
    [140] H. Scher, E. M. Montroll. Anomalous transit-time dispersion in amorphous solids. Phys. Rev.B,1975,12(6):2455-2477
    [141] B. Movaghar, W. Schirmacher. On the theory of hopping conductivity in disordered systems.J. Phys. C,1981,14(6):859-880
    [142] M. Van der Auweraer, F. C. De Schryver, P. M. Borsenberger, et al. Disorder in chargetransport in doped polymers. Adv. Mater.,1994,6:199–213
    [143] S. D. Baranovskii, T. Faber, F. Hensel, et al. The applicability of the transport-energy conceptto various disordered materials. J. Phys.: Condens. Matter,1997,9(13):2699-2706
    [144] S. D. Baranovskii, H. Cordes, F. Hensel, et al. Charge-carrier transport in disordered organicsolids. Phys. Rev. B,2000,62(12):7934-7938
    [145] V. I. Arkhipov, P. Heremans, E. V. Emelianova, et al. Weak-field carrier hopping indisordered organic semiconductors: the effects of deep traps and partly filled density of statesdistribution. J. Phys.: Condens. Matter,2002,14(42):9899-9911
    [146] H. C. F. Martens, I. N. Hulea, I. Romijn, et al. Understanding the doping dependence of theconductivity of conjugated polymers: Dominant role of the increasing density of states andgrowing delocalization. Phys. Rev. B,2003,67(12):121203(R)
    [147] O. Rubel, S. D. Baranovskii, P. Thomas, et al. Concentration dependence of the hoppingmobility in disordered organic solids. Phys. Rev. B,2004,69(1):014206
    [148] Y. Roichman, Y. Preezant, N. Tessler. Analysis and modeling of organic devices. Phys. StatusSolidi A,2004,201(6):1246-1262
    [149] K. D. Meisel, H. Vocks, P. A. Bobbert. Polarons in semiconducting polymers: Study withinan extended Holstein model. Phys. Rev. B,2005,71(20):205206
    [150] B. N. Limketkai, P. Jadhav, M. A. Baldo. Electric-field-dependent percolation model ofcharge-carrier mobility in amorphous organic semiconductors. Phys. Rev. B,2007,75(11):113203
    [151] I. I. Fishchuk, V. I. Arkhipov, A. Kadashchuk, et al. Analytic model of hopping mobility atlarge charge carrier concentrations in disordered organic semiconductors: Polarons versusbare charge carriers. Phys. Rev. B,2007,76(4):045210
    [152] J. J. M. van der Holst, F. W. A. van Oost, R. Coehoorn, et al. Monte Carlo study of chargetransport in organic sandwich-type single-carrier devices: Effects of Coulomb interactions.Phys. Rev. B,2011,83(8):085206
    [153] L. Pautmeier, R. Richert, H. B ssler. Poole-Frenkel behavior of charge transport in organicsolids with off-diagonal disorder studied by Monte Carlo simulation. Synth. Met.,1990,37:271-279
    [154] Z. G. Yu, D. L. Smith, A. Saxena, et al. Molecular geometry fluctuation model for themobility of conjugated polymers. Phys. Rev. Lett.,2000,84(4):721-724
    [155] Z. G. Yu, D. L. Smith, A. Saxena, et al. Molecular geometry fluctuations and field dependentmobility in conjugated polymers. Phys. Rev. B,2001,63(8):085202
    [156] N. I. Craciun, J. Wildeman, P. W. M. Blom. Universal Arrhenius temperature activated chargetransport in diodes from disordered organic semiconductors. Phys. Rev. Lett.,2008,100(5):056601
    [157] D. Poplavskyy, W. Su, F. So. Bipolar charge transport, injection, and trapping studies in amodel green-emitting polyfluorene copolymer. J. Appl. Phys.,2005,98(1):014501
    [158] J. Staudigel, M. St ssel, F. Steuber, et al. Comparison of mobility and hole current activationenergy in the space charge trap-limited regime in a starburst amine. Appl. Phys. Lett.,1999,75(2):217-219
    [159] L. G. Wang, H. W. Zhang, X. L. Tang, et al. Unified description of charge-carrier mobilitiesin disordered organic semiconductors based on both Arrhenius and non-Arrheniustemperature dependence. Eur. Phys. J. B,2010,74:1-7
    [160] L. G. Wang, H. W. Zhang, X. L. Tang, et al. Characterization of the charge transport andelectrical properties in solution-processed semiconducting polymers. SCIENCE CHINAPhysics, Mechanics&Astronomy,(In press)
    [161] D. E. Markov, C. Tanase, P. W. M. Blom, et al. Simultaneous enhancement of chargetransport and exciton diffusion in poly(p-phenylene vinylene) derivatives. Phys. Rev. B,2005,72(4):045217
    [162] A. W. Grice, D. D. C. Bradley, M. T. Bernius, et al. High brightness and efficiency bluelight-emitting polymer diodes. Appl. Phys. Lett.,1998,73(5):629-631
    [163] C. I. Wilkinson, D. G. Lidzey, L. C. Palilis, et al. Enhanced performance of pulse drivensmall area polyfluorene light emitting diodes. Appl. Phys. Lett.,2001,79(2):171-173
    [164] S. Janietz, D. D. C. Bradley, M. Grell, et al. Electrochemical determination of the ionizationpotential and electron affinity of poly(9,9-dioctylfluorene). Appl. Phys. Lett.,1998,73(17):2453-2455
    [165] N. Koch, A. Vollmer, A. Elschner, et al. Influence of water on the work function ofconducting poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate). Appl. Phys. Lett.,2007,90(4):043512
    [166] H. T. Nicolai, G. A. H. Wetzelaer, M. Kuik, et al. Space-charge-limited hole current inpoly(9,9-dioctylfluorene) diodes. Appl. Phys. Lett.,2010,96(17):172107
    [167] L. G. Wang, H. W. Zhang, X. L. Tang, et al. Characterization of the hole transport andelectrical properties in poly(9,9-dioctylfluorene). Physica B,2011,406:68-72
    [168] C. Tanase, E. J. Meijer, P. W. M. Blom, et al. Local charge carrier mobility in disorderedorganic field-effect transistors. Org. Electron.,2003,4:33-37
    [169] L. G. Wang, H. W. Zhang, X. L. Tang, et al. Characterization of charge transport andelectrical properties in disordered organic semiconductors. Physica Scripta,2011,84:045701
    [170] S. L. M. van Mensfoort, V. Shabro, R. J. de Vries, et al. Hole transport in the organic smallmolecule material α-NPD: evidence for the presence of correlated disorder. J. App. Phys.,2010,107(11):113710

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700