用户名: 密码: 验证码:
结直肠癌相关抗原MC3-Ag的鉴定和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【背景】
     结直肠癌是世界范围内发病率和死亡率均高的恶性肿瘤,在我国位于消化系统肿瘤发病率的第三位。传统的肿瘤标志物CEA、CA199等敏感性较差,在早期患者中阳性率低,不利于结直肠癌的早期筛查。近年来随着基因组和蛋白质组研究技术的发展,一些有价值的分子标志物被陆续鉴定,但经大样本量临床验证并成功用于临床实践者仍然较少。因此,寻找和鉴定新的分子标志物并经临床研究得到验证和转化,将有助于结直肠癌的早期诊断、预后判断和治疗监测,对结直肠癌的诊疗意义重大。
     本实验室樊代明院士等在上世纪80年代采用结肠癌转移淋巴结分离的癌细胞匀浆免疫BALB/c小鼠,利用淋巴细胞杂交瘤技术制备了一组抗结直肠癌单克隆抗体,命名为MC(colorectal monoclonal antibody)系列。其中,MC3Ab识别的抗原MC3-Ag在结直肠癌组织中的表达阳性率达90%以上,且其表达与TNM分期、有否转移密切相关,是结直肠癌灵敏度高、特异性强的候选生物标志物。本实验室前期对MC3-Ag在结直肠癌中的表达、临床诊断中的价值和作为靶标分子在治疗中的应用等方面进行了有意义的研究和探索,发表了多篇有影响的国际国内论文。但是MC3-Ag作为结直肠癌相关新抗原,一直未能得到鉴定,其编码基因尚不清楚。
     本研究应用蛋白质组学研究方法和技术成功分离和鉴定MC3-Ag,随后研究了其在结直肠癌中的表达和作为预后判断标志物的价值。功能学实验研究了MC3-Ag对于结直肠癌多种恶性生物学行为如限增殖、凋亡抵抗和侵袭转移的影响,并对MC3-Ag的相互作用蛋白、下游分子事件和信号通路进行深入研究。
     【目的】
     1、分离和鉴定结直肠癌单克隆抗体MC3Ab所识别的抗原MC3-Ag
     2、明确MC3-Ag/Txl-2对于结直肠癌多种恶性生物学行为的调控
     3、研究MC3-Ag/Txl-2不同选择性剪接体在结直肠癌中的功能差异
     4、探讨MC3-Ag/Txl-2调控结直肠癌恶性生物学行为的分子机制
     【方法】
     1.采用蛋白质组学技术包括免疫沉淀、双向凝胶电泳(two-dimensional gelelectrophoresis,2-DE)和基质辅助激光解吸电离飞行时间质谱(matrix-assistedlaser desorption/ionization time of flight mass spectrometry, MALDI-TOF-MS)分离和鉴定MC3-Ag,配对免疫组织化学、免疫细胞化学、免疫荧光/激光共聚焦和Western blot验证鉴定结果;组织芯片检测了MC3-Ag在正常组织和多种肿瘤组织中的表达谱。
     2.免疫组织化学研究MC3-Ag/Txl-2在243例结肠癌组织中的表达及其与临床病理参数间的关系,并获取随访资料进行单因素和多因素生存分析。构建Txl-2siRNA载体,稳定转染入高侵袭性结肠癌细胞SW620中并筛选获得Txl-2表达下调的细胞株。MTT实验、平板集落形成实验和流式细胞术检测细胞周期观察Txl-2对结肠癌细胞增殖能力的影响;Annexin V/PI凋亡染色研究Txl-2对细胞凋亡的影响;损伤刮擦实验、黏附实验、Transwell侵袭实验和软琼脂集落形成实验研究Txl-2对于结肠癌细胞迁移、黏附、侵袭和转移能力的影响。体内裸鼠成瘤和尾静脉转移实验验证体外实验结果。
     3.提取结肠癌组织、癌旁组织及正常组织mRNA,半定量RT-PCR检测Txl-2各选择性剪接体mRNA和总mRNA的表达情况。构建Txl-2各选择性剪接体Txl-2a、b和c的正义表达载体,稳定转染入内源性Txl-2表达的结肠癌细胞系LoVo中,体外和体内功能实验分别观察Txl-2各亚型蛋白对限增殖、凋亡抵抗和侵袭转移等恶性生物学行为的影响,研究它们的功能差异;对Txl-2b结构域关键催化位点进行位点特异性突变,研究介导恶性表型的关键结构域和特异性位点。
     4.利用酵母双杂交系统,通过AD载体和BD载体的共转染明确Txl-2各选择性剪接体与小G蛋白家族成员Ran的相互作用情况;免疫共沉淀实验进一步验证;间接免疫荧光/激光共聚焦观察Txl-2与Ran在结肠癌细胞和组织中的共定位情况。应用siRNAOligos、抗体和相关信号通路抑制剂等干预,Western blot检测相关分子和信号通路的改变。
     【结果】
     1.蛋白质组学研究鉴定并验证MC3Ab识别的抗原MC3-Ag是Txl-2蛋白应用结肠癌细胞裂解液和组织匀浆进行免疫沉淀,富集MC3-Ag,发现MC3Ab抗体识别30kDa左右的2个条带。免疫沉淀产物经2-DE后分别进行银染和Western blot鉴定,发现MC3抗体恒定识别分子量32kDa和28kDa、等电点pI~5的两个蛋白质点。将两个蛋白质点进行胶内酶解和MALDI-TOF-MS分析,得到相应的肽质量指纹图谱(peptide massfingerprinting, PMF),经ProFound搜索引擎生物信息学分析,确认2个点是Thioredoxin like-2(Txl-2)蛋白的2个选择性剪接体(Swiss-Prot: Q86XW9-2和Q86XW9-3)。应用MC3Ab和anti-Txl-2Ab进行比对验证,配对免疫组织化学、免疫细胞化学发现两者染色模式一致;免疫荧光/激光共聚焦证实两个抗体染色的共定位;Western blot发现两个抗体能够在免疫沉淀产物和细胞裂解液中识别同样的条带,从而进一步证实MC3Ab识别的抗原MC3-Ag为Txl-2蛋白。组织芯片明确了MC3-Ag/Txl-2在多种肿瘤组织和正常组织中的表达谱。
     2.下调Txl-2的表达能够显著抑制结肠癌细胞的限增殖、凋亡抵抗和侵袭转移等恶性表型
     MC3-Ag/Txl-2在243例结直肠癌组织中的免疫组化研究发现,MC3-Ag/Txl-2的表达与肿瘤分化程度呈显著负相关,随着TNM分期增高而表达水平逐渐增高,在转移性结直肠癌组织中高表达。单因素和多因素生存分析表明MC3-Ag/Txl-2是结直肠癌患者预后判断的独立指标,其表达量越高则预后越差。成功构建Txl-2siRNA载体,稳定转染入SW620细胞,获得表达抑制50%和70%以上的细胞株。功能学研究发现,下调Txl-2的表达能够显著抑制结肠癌细胞生长,平板集落形成能力减弱,细胞周期G0/G1期阻滞;抑制Txl-2的表达能够显著增加去血清或药物诱导的细胞凋亡比例;在高侵袭性细胞SW620中下调Txl-2的表达能够显著抑制结肠癌细胞的黏附、迁移和侵袭能力。体内裸鼠成瘤实验和尾静脉转移实验进一步验证了体外实验结果。
     3. Txl-2的3个选择性剪接体差异调控结肠癌细胞恶性生物学行为
     在18例结肠癌组织、癌旁组织和正常组织中检测了Txl-2总mRNA和各选择性剪接体mRNA的表达情况,发现Txl-2总mRNA的表达水平在肿瘤组织中表达增高;在3个选择性剪接体中,Txl-2b和Txl-2c的mRNA在肿瘤中表达增高,而Txl-2a表达率较低(2/18例)。成功构建Txl-2各选择性剪接体的特异性正义表达载体,稳定转染入LoVo细胞中,获得稳定表达的细胞株。体内和体外功能实验表明,Txl-2的3种选择性剪接体差异调控结肠癌细胞恶性生物学行为:Txl-2b是发挥主要促癌作用的亚型,Txl-2a
Background
     Colorectal cancer (CRC) is a leading cause of cancer related morbidity andmortality worldwide. Traditional CRC biomarkers such as carcinoembryonicantigen (CEA) and CA199are not suitable for screening and early diagnosis dueto low sensitivities. Genomic and proteomic researches have been advancingrapidly in recent years, facilitating the discovery of a range of promising CRCbiomarkers. However, few has been further validated and applied to the clinicalpractice after translational study. Hence, identification of novel biomarkers forCRC and translation the study data into patient care may open the door to a moreaccurate and target specific personalized medicine with improved patientsurvival.
     Using a homogenate preparation of colon cancer tissues from metastaticlymph nodes, Fan et al. developed a series of CRC-specific monoclonalantibodies through hybridoma technique in1980s. Among those antibodies, MC3is a specific and sensitive antibody that reacts with an unknown antigenpresent in up to90%cancer tissues. MC3-Ag is an ideal candidate biomarker forCRC for its expression is correlated to TNM (tumor-node-metastasis) stagingand its overexpression is observed in metastatic CRC. Tremendous works hasbeen done in our laboratory concerning MC3-Ag on its expression profile inCRC, its diagnostic and predictive value as a novel biomarker and also thetargeted therapy, with a lot of papers published. However, MC3has not yetgained recognition and acceptance, primarily because the target antigen of theMC3antibody had never been identified.
     In the present study, proteomics approaches were applied to successfullyisolate and identify the MC3Ab immunoreactive protein MC3-Ag. Thefollowing study went on to validate its diagnostic and prognostic value.Functional studies revealed its specific regulation of multiple malignantbehaviors of CRC including proliferation, anti-apoptosis and metastasis. Finally,the interaction protein with MC3-Ag was identified and the downstreammolecular events and pathways were further explored.
     Objectives
     1. To isolate and identify MC3-Ag specific to CRC
     2. To study the impact of MC3-Ag/Txl-2on multiple malignant behaviors ofCRC
     3. To examine the differential functions of MC3-Ag/Txl-2alternative splicedvariants in CRC
     4. To explore the underlying mechanisms mediated the function ofMC3-Ag/Txl-2in CRC
     Methods
     1Proteomics approaches including immunoprecipitation, two-dimensional gelelectrophoresis (2-DE) and matrix-assisted laser desorption/ionization time offlight mass spectrometry (MALDI-TOF-MS) were applied to isolate and identifyMC3-Ag. Paired immunohistochemical study, immunofluorescence andconfocal microscopy and Western blot analysis were done for further validation.Tissue arrays were applied to examine the MC3-Ag expression profiles innormal tissues and multiple tumor tissues.
     2Immunohistochemical study was done in243cases of clinical samples tostudy the association of MC3-Ag/Txl-2expression with clinicopathologicalparameters and further validate its prognostic value. Txl-2siRNA vector wasconstructed and stably transfected into the highly invasive colon cancer cell lineSW620. MTT assay, colony formation assay, cell cycle analysis by flowcytometry (FCM) were done to examine the impact of Txl-2on cell proliferation;Annexin V/PI double staining and FCM were done to examine the serumdeprivation-induced and chemodrug-induced apoptosis. Wound healing assay,adhesion assay, Transwell invasion assay and soft agar assay were done toexamine the function of Txl-2on tumor cell invasive and metastatic potential.Further in vivo assays including nude mice tumorigenesis assay and tail veinassay of metastasis were carried out to verify the results from in vitro studies.
     3RT-PCR was done to examine the mRNA of three Txl-2alternative splicedvariants and total mRNA level from18cases of colon cancer tissues, adjacenttissues and normal tissues. Isoform-specific cDNA expression vectors wereconstructed and stably transfected into colon cancer cells. The differentialfunctions of each individual Txl-2isoform in CRC were investigated.Site-directed mutation of catalytic active sites was manipulated to determine the functional domain and critical sequences.
     4Yeast two-hybrid system and coimmunoprecipitation were utilized toidentify the Txl-2interaction protein. Immunofluorescence and confocalmicroscopy were done to observe the colocalization of Txl-2and Ran.Interventions by siRNA oligos, antibody and pathway inhibitors were done toinvestigate the therapeutic effect and determine the downstream events andspecific signal pathway.
     Results
     1. MC3-Ag was identified as Thioredoxin like-2(Txl-2) by proteomic study
     Immunoprecipitation of MC3-Ag using SW480cell lysates or fresh CRCtissue homogenates showed that MC3Ab consistently identified two proteinbands around30kDa. Then the immunoprecipitates were subjected to2-DEfollowed by silver staining or Western blot respectively. The results showed thatMC3antibody consistently detected two immunoreactive spots at the basic pHrange near pH5with Mr of32and28kDa, respectively. Then the two spotswere subjected to in-gel trypsin digestion and MALDI-TOF-MS analysis. ThePMFs were subjected to database searches by ProFound and the two MC3immunoreactive spots were identified as two isoforms of Txl-2(Swiss-Prot:Q86XW9-2and Q86XW9-3). The following paired immunohistochemical study,immunofluorescence and confocal microscopy and Western blot analysis usingboth MC3Ab and anti Txl-2Ab further validated the that Txl-2is the antigenfor MC3Ab. Additionally, expression profiles of MC3-Ag in normal tissues andmultiple tumor tissues were examined by tissue arrays.
     2. Knockdown of Txl-2significantly suppressed colon cell proliferation,invasion and metastasis, and sensitized tumor cells to apoptosis.
     Immunohistochemical study in243cases of CRC tissues revealed thatMC3-Ag/Txl-2expression was correlated with TNM staging and its expressionwas significantly upregulated in metastatic CRC. The following survivalanalysis indicated that MC3-Ag/Txl-2could serve as an independent prognosisbiomarker for CRC patients. Txl-2expression was significantly suppressed bystable transfection of siRNA vectors in highly invasive SW620cells.Knockdown of Txl-2expression significantly suppressed cell proliferation withreduced ability of colony formation and cell cycle G0/G1arrest. Inhibition ofTxl-2expression significantly increased the cell apoptotic ratio induced byserum-deprivation or chemodrugs. Knockdown of Txl-2also significantlyinhibited cell migration, adhesion, invasion and anchorage-independent growth.In vivo assay including nude mice tumor formation assay and tail veinmetastasis assay further validated the in vitro results.
     3. Three isoforms of Txl-2exerted divergent impacts on multiple malignantbehaviors of colon cancer cells.
     mRNA level of each Txl-2isoform and total Txl-2mRNA level wereexamined in18cases of clinical samples. Total Txl-2mRNA was elevated incolon cancer tissues compared to adjacent tissues and normal mucosa. Among3isoforms, mRNA of Txl-2b and Txl-2c were significantly upregulated in coloncancer tissues while Txl-2a was rarely expressed in all samples (2/18cases).EGFP recombinant expression vectors of each Txl-2isoform were constructedand stably transfected into LoVo cells. Both in vitro and in vivo studiesindicated that3isoforms of Txl-2exerted divergent impacts on multiplemalignant behaviors of colon cancer cells. Txl-2b contributes to thephysiopathology of colon cancer progression and tumorigenesis with its role onfavoring different aspects of colon cancer progression; Txl-2a overexpression produced a less significant modulation of function whereas Txl-2c exhibited arelatively inhibitive effect. Site-directed mutation in catalytic active sitesrevealed that Trx domain is critical for Txl-2mediated invasion and metastasis.
     4. Txl-2b interacted with the small GTPase Ran and promoted tumor cellmetastasis through PI3K pathway
     Yeast two-hybrid system verification and co-immunoprecipitation wereutilized to identify the small GTPase family member Ran as a Txl-2b interactingprotein, but not for Txl-2a and Txl-2c. Immunofluorescence and confocalmicroscopy revealed that Txl-2was colocalized with Ran. Transfection ofsiRNA-Ran oligos could partially reverse the Txl-2b mediated tumor metastasis.Further study revealed that PI3K activation participated in Txl-2-Ran-MMPmediated tumor cell invasion and metastasis. Besides, Txl-2was also found tointeract with microtubules and influence colon cancer cell metastasis throughcell shape remodeling.
     【Conclusion】
     In the present study, we successfully identified Txl-2as the antigen of themonoclonal antibody MC3associated with CRC. Txl-2exerts multiple impactson tumor cell malignant phenotypes with isoform-specific modulation. Txl-2bdirectly interacts with Ran and PI3K pathway participates in Txl-2b-Ran-MMPmediated tumor invasion and metastasis. The current study provides a novelbiomarker and target molecule for diagnosis and treatment of CRC and opensthe door to a novel understanding of cancer specific alternative splicing and itsfunctioning mechanisms.
引文
1. Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectalcancer. CA Cancer J Clin.2009;59(6):366-78.
    2. Li S, Wang J, Lu Y, Fan D. Screening and early diagnosis of colorectalcancer in China: a12year retrospect (1994-2006). Cancer Res Clin Oncol.2007;133(10):679-86.
    3. O'Connell JB, Maggard MA, Ko CY. Colon cancer survival rates with thenew American Joint Committee on Cancer sixth edition staging. J NatlCancer Inst.2004;96(19):1420-5.
    4. Deschoolmeester V, Baay M, Specenier P, Lardon F, Vermorken JB. A reviewof the most promising biomarkers in colorectal cancer: one step closer totargeted therapy. Oncologist.2010;15(7):699-731.
    5. Newton KF, Newman W, Hill J. Review of Biomarkers in Colorectal Cancer.Colorectal Dis.2010Oct6.
    6. Lagarde A, Rouleau E, Ferrari A, Noguchi T, Qiu J, Briaux A, Bourdon V,Rémy V, Gaildrat P, Adéla de J, Birnbaum D, Lidereau R, Sobol H,Olschwang S. Germline APC mutation spectrum derived from863genomicvariations identified through a15-year medical genetics service to Frenchpatients with FAP. Med Genet.2010;47(10):721-2.
    7. Hirai Y, Banno K, Suzuki M, Ichikawa Y, Udagawa Y, Sugano K, Miki Y.Molecular epidemiological and mutational analysis of DNA mismatch repair(MMR) genes in endometrial cancer patients with HNPCC-associatedfamilial predisposition to cancer. Cancer Sci.2008;99(9):1715-9.
    8. Papp J, Kovacs ME, Solyom S, Kasler M, B rresen-Dale AL, Olah E. Highprevalence of germline STK11mutations in Hungarian Peutz-JeghersSyndrome patients. BMC Med Genet.2010;11:169.
    9. Andrabi S, Bekheirnia MR, Robbins-Furman P, Lewis RA, Prior TW,Potocki L. SMAD4mutation segregating in a family with juvenile polyposis,aortopathy, and mitral valve dysfunction. Am J Med Genet A.2011Apr4[Epub ahead of print].
    10. Aaltonen L, Johns L, Jarvinen H, Mecklin JP, Houlston R. Explaining thefamilial colorectal cancer risk associated with mismatch repair(MMR)-deficient and MMR-stable tumors. Clin Cancer Res2007;13(1):356-361.
    11. van Rossum LG, van Rijn AF, Verbeek AL, van Oijen MG, Laheij RJ,Fockens P, Jansen JB, Adang EM, Dekker E. Colorectal cancer screeningcomparing no screening, immunochemical and guaiac fecal occult bloodtests: a cost-effectiveness analysis. Int J Cancer.2011;128(8):1908-17.
    12. Ahlquist DA, Skoletsky JE, Boynton KA, Harrington JJ, Mahoney DW,Pierceall WE, Thibodeau SN, Shuber AP. Colorectal cancer screening bydetection of altered human DNA in stool: feasibility of a multitarget assaypanel. Gastroenterology2000;119(5):1219-1227.
    13. Imperiale TF, Ransohoff DF, Itzkowitz SH, Turnbull BA, Ross ME. FecalDNA versus fecal occult blood for colorectal-cancer screening in anaverage-risk population. N Engl J Med2004;351(26):2704-2714.
    14. Tagore KS, Lawson MJ, Yucaitis JA, Gage R, Orr T, Shuber AP, Ross ME.Sensitivity and specificity of a stool DNA multitarget assay panel for thedetection of advanced colorectal neoplasia. Clin Colorectal Cancer2003;3(1):47-53.
    15. Jimenez CR, Knol JC, Meijer GA, Fijneman RJ. Proteomics of colorectalcancer: overview of discovery studies and identification of commonlyidentified cancer-associated proteins and candidate CRC serum markers. JProteomics.2010;73(10):1873-95.
    16. Brennan DJ, O'Connor DP, Rexhepaj E, Ponten F, Gallagher WM.Antibody-based proteomics: fast-tracking molecular diagnostics in oncology.Nat Rev Cancer.2010;10(9):605-17.
    17. Narimatsu H, Sawaki H, Kuno A, Kaji H, Ito H, Ikehara Y. A strategy fordiscovery of cancer glyco-biomarkers in serum using newly developedtechnologies for glycoproteomics. FEBS J.2010;277(1):95-105.
    18. Kim JC, Han MS, Lee HK, Kim WS, Park SK, Park KC, Bodmer WF,Rowan AJ, Kim OJ. Distribution of carcinoembryonic antigen and biologicbehavior in colorectal carcinoma. Dis Colon Rectum.1999;42(5):640-8.
    19. Tan E, Gouvas N, Nicholls RJ, Ziprin P, Xynos E, Tekkis PP. Diagnosticprecision of carcinoembryonic antigen in the detection of recurrence ofcolorectal cancer. Surg Oncol.2009;18(1):15-24.
    20. Goldstein MJ, Mitchell EP. Carcinoembryonic antigen in the staging andfollow-up of patients with colorectal cancer. Cancer Invest.2005;23(4):338-51.
    21. Jantscheff P, Terracciano L, Lowy A, Glatz-Krieger K, Grunert F, Micheel B,Brümmer J, Laffer U, Metzger U, Herrmann R, Rochlitz C. Expression ofCEACAM6in resectable colorectal cancer: a factor of independentprognostic significance. J Clin Oncol.2003;21(19):3638-46.
    22. Blumenthal RD, Hansen HJ, Goldenberg DM. Inhibition of adhesion,invasion, and metastasis by antibodies targeting CEACAM6(NCA-90) andCEACAM5(Carcinoembryonic Antigen). Cancer Res.2005Oct1;65(19):8809-17.
    23. Messick CA, Sanchez J, Dejulius KL, Hammel J, Ishwaran H, Kalady MF.CEACAM-7: a predictive marker for rectal cancer recurrence. Surgery.2010;147(5):713-9.
    24. Fernandes LC, Kim SB, Saad SS, Matos D. Value of carcinoembryonicantigen and cytokeratins for the detection of recurrent disease followingcurative resection of colorectal cancer. World J Gastroenterol2006;12(24):3891-3894.
    25. Innocenti F, Ratain MJ. Correspondence re: Raida, M. et al., prevalence of acommon point mutation in the dihydropyrimidine dehydrogenase (DPD)gene within the5'-splice donor site of intron14in patients with severe5-fluorouracil (5-FU)-related toxicity compared with controls. Clin CancerRes2002;8(5):1314; author reply1315-1316.
    26. Ezzeldin HH, Lee AM, Mattison LK, Diasio RB. Methylation of the DPYDpromoter: an alternative mechanism for dihydropyrimidine dehydrogenasedeficiency in cancer patients. Clin Cancer Res2005;11(24Pt1):8699-8705.
    27. Gupta E, Lestingi TM, Mick R, Ramirez J, Vokes EE, Ratain MJ. Metabolicfate of irinotecan in humans: correlation of glucuronidation with diarrhea.Cancer Res1994;54(14):3723-3725.
    28. Rouits E, Boisdron-Celle M, Dumont A, Guerin O, Morel A, Gamelin E.Relevance of different UGT1A1polymorphisms in irinotecan-inducedtoxicity: a molecular and clinical study of75patients. Clin Cancer Res2004;10(15):5151-5159.
    29. Iyer L, Das S, Janisch L, Wen M, Ramirez J, Karrison T, Fleming GF, VokesEE, Schilsky RL,Ratain MJ. UGT1A1*28polymorphism as a determinant ofirinotecan disposition and toxicity. Pharmacogenomics J2002;2(1):43-47.
    30. Palomaki GE, Bradley LA, Douglas MP, Kolor K, Dotson WD. CanUGT1A1genotyping reduce morbidity and mortality in patients withmetastatic colorectal cancer treated with irinotecan? An evidence-basedreview. Genet Med2009;11(1):21-34.
    31. Siena S, Sartore-Bianchi A, Di Nicolantonio F, Balfour J, Bardelli A.Biomarkers predicting clinical outcome of epidermal growth factorreceptor-targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst2009;101(19):1308-1324.
    32. Bokemeyer C, Bondarenko I, Makhson A, Hartmann JT, Aparicio J, deBraud F, Donea S, Ludwig H, Schuch G, Stroh C, Loos AH, Zubel A,Koralewski P. Fluorouracil, leucovorin, and oxaliplatin with and withoutcetuximab in the first-line treatment of metastatic colorectal cancer. J ClinOncol2009;27(5):663-671.
    33. Van Cutsem E, Kohne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A,D'Haens G, Pinter T, Lim R, Bodoky G, Roh JK, Folprecht G, Ruff P, Stroh C,Tejpar S, Schlichting M, Nippgen J, Rougier P. Cetuximab andchemotherapy as initial treatment for metastatic colorectal cancer. N Engl JMed2009;360(14):1408-1417.
    34. Van Cutsem E, Peeters M, Siena S, Humblet Y, Hendlisz A, Neyns B, CanonJL, Van Laethem JL, Maurel J, Richardson G, Wolf M, Amado RG.Open-label phase III trial of panitumumab plus best supportive carecompared with best supportive care alone in patients withchemotherapy-refractory metastatic colorectal cancer. J Clin Oncol2007;25(13):1658-1664.
    35. Van Cutsem E, Kohne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A,D'Haens G, Pinter T, Lim R, Bodoky G, Roh JK, Folprecht G, Ruff P, Stroh C,Tejpar S, Schlichting M, Nippgen J, Rougier P. Cetuximab andchemotherapy as initial treatment for metastatic colorectal cancer. N Engl JMed2009;360(14):1408-1417.
    36. Tol J, Nagtegaal ID, Punt CJ. BRAF mutation in metastatic colorectal cancer.N Engl J Med2009;361(1):98-99.
    37. Nosho K, Kure S, Irahara N, Shima K, Baba Y, Spiegelman D, MeyerhardtJA, Giovannucci EL, Fuchs CS, Ogino S. A prospective cohort study showsunique epigenetic, genetic, and prognostic features of synchronous colorectalcancers. Gastroenterology2009;137(5):1609-1620.
    38. Sanchez JA, Krumroy L, Plummer S, Aung P, Merkulova A, Skacel M,DeJulius KL, Manilich E, Church JM, Casey G, Kalady MF. Genetic andepigenetic classifications define clinical phenotypes and determine patientoutcomes in colorectal cancer. Br J Surg2009;96(10):1196-1204.
    39. Zlobec I, Bihl MP, Schwarb H, Terracciano L, Lugli A. Clinicopathologicaland protein characterization of BRAF-and K-RAS-mutated colorectalcancer and implications for prognosis. Int J Cancer.2010;127(2):367-80.
    40. Yamasaki M, Takemasa I, Komori T, Watanabe S, Sekimoto M, Doki Y,Matsubara K, Monden M. The gene expression profile represents themolecular nature of liver metastasis in colorectal cancer. Int J Oncol.2007;30(1):129-38.
    41. Eschrich S, Yang I, Bloom G, Kwong KY, Boulware D, Cantor A, Coppola D,Kruh ffer M, Aaltonen L, Orntoft TF, Quackenbush J, Yeatman TJ.Molecular staging for survival prediction of colorectal cancer patients. J ClinOncol.2005May20;23(15):3526-35.
    42. Belov L, Mulligan SP, Barber N, Woolfson A, Scott M, Stoner K, Chrisp JS,Sewell WA, Bradstock KF, Bendall L, Pascovici DS, Thomas M, Erber W,Huang P, Sartor M, Young GA, Wiley JS, Juneja S, Wierda WG, Green AR,Keating MJ, Christopherson RI. Analysis of human leukaemias andlymphomas using extensive immunophenotypes from an antibody microarray.Br J Haematol.2006;135(2):184-97.
    43. Zhou J, Belov L, Huang PY, Shin JS, Solomon MJ, Chapuis PH, Bokey L,Chan C, Clarke C, Clarke SJ, Christopherson RI. Surface antigen profiling ofcolorectal cancer using antibody microarrays with fluorescence multiplexing.J Immunol Methods.2010;355(1-2):40-51.
    44. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N,Stratton MR. A census of human cancer genes. Nat Rev Cancer.2004;4(3):177-83.
    45. Sj blom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D,Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P,Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, WuL, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, VogelsteinB, Kinzler KW, Velculescu VE. The consensus coding sequences of humanbreast and colorectal cancers. Science.2006;314(5797):268-74.
    46. Wood LD, Parsons DW, Jones S, Lin J, Sj blom T, Leary RJ, Shen D, BocaSM, Barber T, Ptak J, Silliman N, Szabo S, Dezso Z, Ustyanksky V,Nikolskaya T, Nikolsky Y, Karchin R, Wilson PA, Kaminker JS, Zhang Z,Croshaw R, Willis J, Dawson D, Shipitsin M, Willson JK, Sukumar S,Polyak K, Park BH, Pethiyagoda CL, Pant PV, Ballinger DG, Sparks AB,Hartigan J, Smith DR, Suh E, Papadopoulos N, Buckhaults P, Markowitz SD,Parmigiani G, Kinzler KW, Velculescu VE, Vogelstein B. The genomiclandscapes of human breast and colorectal cancers. Science.2007;318(5853):1108-13.
    47. Wang P, Bouwman FG, Mariman EC. Generally detected proteins incomparative proteomics--a matter of cellular stress response? Proteomics2009;9(11):2955–2566.
    48. Evolving molecular classification by genomic and proteomic biomarkers incolorectal cancer: potential implications for the surgical oncologist. SurgOncol.2009;18(1):31-50.
    49.樊代明,张学庸,陈希陶,胡家露,牟震先,陈宝军,乔太东,朱明华,杨鸿浜,杨振东.结肠癌单克隆抗体MC3、5、7、10的制备及其相应抗原免疫组化定位的研究.细胞与分子免疫学杂志,1986(3):11-17.
    50.樊代明,张学庸,陈希陶,胡家露,牟震先,陈宝军,乔太东,朱明华,杨鸿兵,杨振东.抗结肠癌细胞单克隆抗体的制备及相应抗原免疫组化鉴定.第四军医大学学报,1988(9):74-77。
    51.乔泰东,陈宝军,樊代明,张学庸,陈希陶,牟震先,胡家露,赵建业,车乃增,刘斌,张泰山.结肠癌MC抗原在肺癌、食管癌、胃癌、皮肤癌及结肠癌中表达状况的分析.癌症,1988(7):24-26。
    52.黄卓垣,张亚历,张素娟,邱红明.结肠肿瘤性病变单克隆抗体MC3的表达及其与异型黏液分泌的关系.癌症,1991,10(4):302-304.
    53.许沈华,牟瀚舟,钱永金,冯文华,周丽娟,曹江,李筠.单克隆抗体MC3用于大肠癌和腺瘤的免疫组织化学研究及其预后意义.科技通报,l992,8(4):244-248.
    54.粱喜林,汪成,刘向清,彭亚丁.大肠腺瘤MC3单克隆抗体的表达与其癌变关系的追踪观察.武警医学,1995,6(5):281.
    55.郭山春,柳风轩,陈意生,贺光友,于冬梅.结肠癌单克隆抗体MC3在大肠癌及癌旁病变的表达.实用癌症杂志,1992,7(1):4-7.
    56.许沈华,牟瀚舟,钱丽娟,孙永正,戴珊星,束赤红,张宗显.131I标记抗人结肠癌单克隆抗体MC3对裸鼠载人肠癌模型的治疗作用.中华核医学杂志,1995,15(1):56-57.
    57.许沈华,牟瀚舟,钱丽娟,朱赤红,张奕荫,黄晓曙,张宗颊,孙永正,戴珊星.131I标记抗人结肠癌单克隆抗体MC3在荷瘤裸鼠体内分布及肿瘤放射免疫显像.中国病理生理杂志,1993,9(6):745-749.
    58.何凤田;乔太东;陈宝军;韩者艺;聂勇战;宋保华;樊代明。噬菌体抗体库技术筛选结肠癌单抗MC3的抗独特型抗体.中国免疫学杂志,2001(7):358-362.
    59. He FT, Nie YZ, Chen BJ, Qiao TD, Fan DM, Li RF, Kang YS, Zhang Y.Expression and identification of recombinant soluble single-chain variablefragment of monoclonal antibody MC3.World J Gastroenterol.2002;8(2):258-62.
    60.陈兵,周绍娟,樊代明,李耕,张宏博,张学庸.新的结肠癌相关抗原MC3-Ag的纯化及鉴定.细胞与分子免疫学杂志,1994(1):8-12.
    61. Sadek CM, Jiménez A, Damdimopoulos AE, Kieselbach T, Nord M,Gustafsson JA, Spyrou G, Davis EC, Oko R, van der Hoorn FA,Miranda-Vizuete A. Characterization of human thioredoxin-like2. A novelmicrotubule-binding thioredoxin expressed predominantly in the cilia of lungairway epithelium and spermatid manchette and axoneme. J Biol Chem.2003;278(15):13133-42.
    62. Lillig CH, Holmgren A. Thioredoxin and related molecules--from biology tohealth and disease. Antioxid Redox Signal.2007;9(1):25-47.
    63. Arnér ES, Holmgren A. The thioredoxin system in cancer. Semin CancerBiol.2006;16(6):420-6.
    64. Nakamura H. Thioredoxin as a key molecule in redox signaling. AntioxidRedox Signal.2004;6(1):15-7.
    65. Masutani H, Nishiyama A, Kwon YW, Kim YC, Nakamura H, and Yodoi J.Redox regulation of gene expression and transcription factors in response toenvironmental oxidants. In: Environmental Stressors in Health and Disease,edited by Fuchs J and Packer L. New York, NY: Marcel Dekker, Inc.,2001,pp.115–134.
    66. Powis G, Kirkpatrick DL. Thioredoxin signaling as a target for cancertherapy. Curr Opin Pharmacol.2007;7(4):392-7.
    67. Turanov AA, Kehr S, Marino SM, Yoo MH, Carlson BA, Hatfield DL,Gladyshev VN. Mammalian thioredoxin reductase1: roles in redoxhomoeostasis and characterization of cellular targets. Biochem J.2010;430(2):285-93.
    68. Nguyen-Nhu, N. T., Berck, J., Clippe, A., Duconseille, E. et al., Humanperoxiredoxin5gene organization, initial characterization of its promoterand identification of alternative forms of mRNA. Biochim. Biophys. Acta.2007;1769:472–483.
    69. Duriez, B., Duquesnoy, P., Escudier, E., Bridoux, A. M. et al., A commonvariant in combination with a nonsense mutation in a member of thethioredoxin family causes primary ciliary dyskinesia. Proc. Natl. Acad. Sci.USA2007,104,3336–3341.
    70. Rundl f AK, Fernandes AP, Selenius M, Babic M, Shariatgorji M, NilsonneG, Ilag LL, Dobra K, Bj rnstedt M. Quantification of alternative mRNAspecies and identification of thioredoxin reductase1isoforms in humantumor cells. Differentiation.2007;75(2):123-32.
    71. Soini Y, Kahlos K, N p nkangas U, Kaarteenaho-Wiik R, S ily M, KoistinenP, P akk P, Holmgren A, Kinnula VL. Widespread expression ofthioredoxin and thioredoxin reductase in non-small cell lung carcinoma. ClinCancer Res.2001;7(6):1750-7.
    72. Lincoln DT, Ali Emadi EM, Tonissen KF, Clarke FM. Thethioredoxin-thioredoxin reductase system: over-expression in human cancer.Anticancer Res.2003;23(3B):2425-33.
    73. Raffel J, Bhattacharyya AK, Gallegos A, Cui H, Einspahr JG, Alberts DS,Powis G. Increased expression of thioredoxin-1in human colorectal cancer isassociated with decreased patient survival. J Lab Clin Med.2003;142(1):46-51.
    74. Das KC, White CW. Detection of thioredoxin in human serum and biologicalsamples using a sensitive sandwich ELISA with digoxigenin-labeledantibody. J Immunol Methods.1998;211(1-2):9-20.
    75. Miyazaki K, Noda N, Okada S, Hagiwara Y, Miyata M, Sakurabayashi I,Yamaguchi N, Sugimura T, Terada M, Wakasugi H. Elevated serum level ofthioredoxin in patients with hepatocellular carcinoma. Biotherapy.1998;11(4):277-88.
    76. Hirota K, Murata M, Sachi Y, Nakamura H, Takeuchi J, Mori K, et al.Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-stepmechanism of redox regulation of transcription factor NF-kappa B. J BiolChem1999;274(39):27891–7.
    77. Schenk H, Klein M, Erdbrugger W, Droge W, Schulze-Osthoff K. Distincteffects of thioredoxin and antioxidants on the activation of transcriptionfactors NF-kappa B and AP-1. Proc Natl Acad Sci U S A1994;91(5):1672–6.
    78. Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J. AP-1transcriptional activity is regulated by a direct association betweenthioredoxin and Ref-1. Proc Natl Acad Sci U S A1997;94(8):3633–8.
    79. Ueno M, Masutani H, Arai RJ, Yamauchi A, Hirota K, Sakai T, et al.Thioredoxin-dependent redox regulation of p53-mediated p21activation. JBiol Chem1999;274(50):35809–15.
    80. Hayashi S, Hajiro-Nakanishi K, Makino Y, Eguchi H, Yodoi J, Tanaka H.Functional modulation of estrogen receptor by redox state with reference tothioredoxin as a mediator. Nucleic Acids Res1997;25(20):4035–40.
    81. Moon MS, Kim JS, Kim TL, Yum JJ, Cho EW, Kim IG. Polyamine depletionpartially reduces the radiation induced cell death via cell cycle delaymediated by thioredoxin. Cell Biol Toxicol2006;22:137–47.
    82. Schenk H, Vogt M, Dr ge W, Schulze-Osthoff K. Thioredoxin as a potentcostimulus of cytokine expression. J Immunol.1996;156(2):765-71.
    83. Yamawaki H, Pan S, Lee RT, Berk BC. Fluid shear stress inhibits vascularinflammation by decreasing thioredoxin-interacting protein in endothelialcells. J Clin Invest2005;115(3):733–8.
    84. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, KawabataM, Miyazono K, Ichijo H: Mammalian thioredoxin is a direct inhibitor ofapoptosis signal-regulating kinase (ASK)1. EMBO J1998;17(9):2596-606.
    85. Meuillet EJ, Mahadevan D, Berggren M, Coon A, Powis G. Thioredoxin-1binds to the C2domain of PTEN inhibiting PTEN’s lipid phosphataseactivity and membrane binding: a mechanism for the functional loss ofPTEN’s tumor suppressor activity. Arch Biochem Biophys2004;429(2):123-133.
    86. Kim WJ, Cho H, Lee SW, Kim YJ, Kim KW. Antisense-thioredoxin inhibitsangiogenesis via pVHL-mediated hypoxia-inducible factor-1alphadegradation. Int J Oncol2005;26(4):1049-52.
    87. Mukherjee A, Martin SG. The thioredoxin system: a key target in tumour andendothelial cells. Br J Radiol.2008;81Spec No1:S57-68.
    88. Farina AR, Tacconelli A, Cappabianca L, Masciulli MP, Holmgren A,Beckett GJ, Gulino A, Mackay AR. Thioredoxin alters the matrixmetalloproteinase/tissue inhibitors of metalloproteinase balance andstimulates human SK-N-SH neuroblastoma cell invasion. Eur J Biochem2001;268(2):405–13.
    89. Noike T, Miwa S, Soeda J, Kobayashi A, Miyagawa S. Increased expressionof thioredoxin-1, vascular endothelial growth factor, and redox factor-1isassociated with poor prognosis in patients with liver metastasis fromcolorectal cancer.Hum Pathol.2008;39(2):201-8.
    90. Powis G, Kirkpatrick DL. Thioredoxin signaling as a target for cancertherapy. Curr Opin Pharmacol.2007;7(4):392-7.
    91. Iwao-Koizumi K, Matoba R, Ueno N, Kim SJ, Ando A, Miyoshi Y, Maeda E,Noguchi S, Kato K. Prediction of docetaxel response in human breast cancerby gene expression profiling. J Clin Oncol.2005;23(3):422-31.
    92. Welsh SJ, Williams RR, Birmingham A, Newman DJ, Kirkpatrick DL, PowisG. The thioredoxin redox inhibitors1-methylpropyl2-imidazolyl disulfideand pleurotin inhibit hypoxia-induced factor1a and vascular endothelialgrowth factor formation. Mol Cancer Ther2003,2(3):235-243.
    93. Baker AF, Dragovich T, Tate WR, Ramanathan RK, Roe D, Hsu CH,Kirkpatrick DL, Powis G. The antitumor thioredoxin-1inhibitor PX-12(1-methylpropyl2-imidazolyl disulfide) decreases thioredoxin-1and VEGFlevels in cancer patient plasma. J Lab Clin Med2006,147(2):83-90.
    94. Bair WI, Gard JM, Powis G: Decreased IGF1-R and EGFR expression by thethioredoxin inhibitor PX-12is mediated by SP-1inhibition. Proc Am AssocCancer Res2005;46(2):539-42.
    95. Ramanathan RK, Kirkpatrick DL, Belani CP, Friedland D, Green SB, ChowHH, Cordova CA, Stratton SP, Sharlow ER, Baker A, Dragovich T. A Phase Ipharmacokinetic and pharmacodynamic study of PX-12, a novel inhibitor ofthioredoxin-1, in patients with advanced solid tumors. Clin Cancer Res2007;13(7):2109-2114.
    96. Ramanathan RK, Abbruzzese J, Dragovich T, Kirkpatrick L, Guillen JM,Baker AF, Pestano LA, Green S, Von Hoff DD. A randomized phase II studyof PX-12, an inhibitor of thioredoxin in patients with advanced cancer of thepancreas following progression after a gemcitabine-containing combination.Cancer Chemother Pharmacol.2011;67(3):503-9.
    97. Boissan M, Dabernat S, Peuchant E, Schlattner U, Lascu I, Lacombe ML.The mammalian Nm23/NDPK family: from metastasis control to ciliamovement. Mol Cell Biochem.2009;329(1-2):51-62.
    98. Desvignes T, Pontarotti P, Fauvel C, Bobe J. Nme protein familyevolutionary history, a vertebrate perspective. BMC Evol Biol.2009;9:256.
    99. Bilitou A, Watson J, Gartner A, Ohnuma S. The NM23family indevelopment. Mol Cell Biochem.2009;329(1-2):17-33.
    100. Steeg PS, Bevilacqua G, Kopper L, Thorgeirsson UP, Talmadge JE,Liotta LA, Sobel ME. Evidence for a novel gene associated with low tumormetastatic potential. J Natl Cancer Inst.1988;80(3):200–204.
    101. Leone A, Flatow U, VanHoutte K, Steeg PS. Transfection of humannm23-H1into the human MDA-MB-435breast carcinoma cell line: effectson tumor metastatic potential, colonization and enzymatic activity. Oncogene1993;8(9):2325–2333.
    102. Roymans D, Willems R, Van Blockstaele DR, Slegers H. Nucleosidediphosphate kinase (NDPK/NM23) and the waltz with multiple partners:possible consequences in tumor metastasis. Clin Exp Metastasis.2002;19(6):465-76.
    103. Leone A, Flatow U, King CR, Sandeen MA, Margulies IM, Liotta LA,Steeg PS. Reduced tumor incidence, metastatic potential, and cytokineresponsiveness of nm23-transfected melanoma cells. Cell.1991;65(1):25-35.
    104. Hailat N, Keim DR, Melhem RF, Zhu XX, Eckerskorn C, Brodeur GM,Reynolds CP, Seeger RC, Lottspeich F, Strahler JR, et al. High levels ofp19/nm23protein in neuroblastoma are associated with advanced stagedisease and with N-myc gene amplification. J Clin Invest.1991;88(1):341-5.
    105. Nakamori S, Ishikawa O, Ohhigashi H, Kameyama M, Furukawa H,Sasaki Y, Inaji H, Higashiyama M, Imaoka S, Iwanaga T, et al. Expression ofnucleoside diphosphate kinase/nm23gene product in human pancreaticcancer: an association with lymph node metastasis and tumor invasion. ClinExp Metastasis.1993;11(2):151-8.
    106. Martinez JA, Prevot S, Nordlinger B, Nguyen TM, Lacarriere Y, MunierA, Lascu I, Vaillant JC, Capeau J, Lacombe ML. Overexpression ofnm23-H1and nm23-H2genes in colorectal carcinomas and loss of nm23-H1expression in advanced tumour stages. Gut.1995;37(5):712-20.
    107. Chang CL, Strahler JR, Thoraval DH, Qian MG, Hinderer R, HanashSM. A nucleoside diphosphate kinase A (nm23-H1) serine120-->glycinesubstitution in advanced stage neuroblastoma affects enzyme stability andalters protein-protein interaction. Oncogene.1996;12(3):659-67.
    108. Caligo MA, Cipollini G, Fiore L, Calvo S, Basolo F, Collecchi P,Ciardiello F, Pepe S, Petrini M, Bevilacqua G. NM23gene expressioncorrelates with cell growth rate and S-phase. Int J Cancer.1995;60(6):837-42.
    109. Gervasi F, D'Agnano I, Vossio S, Zupi G, Sacchi A, Lombardi D. nm23influences proliferation and differentiation of PC12cells in response to nervegrowth factor. Cell Growth Differ.1996;7(12):1689-95.
    110. Negroni A, Venturelli D, Tanno B, Amendola R, Ransac S, Cesi V,Calabretta B, RaschellàG. Neuroblastoma specific effects of DR-nm23andits mutant forms on differentiation and apoptosis. Cell Death Differ.2000;7(9):843-50.
    111. Seifert M, Welter C, Mehraein Y, Seitz G. Expression of the nm23homologues nm23-H4, nm23-H6, and nm23-H7in human gastric and coloncancer. J Pathol.2005;205(5):623-32.
    112. Hsu S, Huang F, Wang L, Banerjee S, Winawer S, Friedman E. The roleof nm23in transforming growth factor beta1-mediated adherence andgrowth arrest. Cell Growth Differ.1994;5(9):909-17.
    113. Miyazaki H, Fukuda M, Ishijima Y, Takagi Y, Iimura T, Negishi A,Hirayama R, Ishikawa N, Amagasa T, Kimura N. Overexpression ofnm23-H2/NDP kinase B in a human oral squamous cell carcinoma cell lineresults in reduced metastasis, differentiated phenotype in the metastatic site,and growth factor-independent proliferative activity in culture. Clin CancerRes.1999;5(12):4301-7.
    114. Lee HY, Lee H. Inhibitory activity of nm23-H1on invasion andcolonization of human prostate carcinoma cells is not mediated by its NDPkinase activity. Cancer Lett1999;145(1-2):93–9.
    115. Siderovski DP, Willard FS. The GAPs, GEFs, and GDIs ofheterotrimeric G-protein alpha subunits. Int J Biol Sci.2005;1(2):51-66.
    116. Pai SY, Kim C, Williams DA. Rac GTPases in human diseases. DisMarkers.2010;29(3-4):177-87.
    117. Chopade BA, Shankar S, Sundin GW, Mukhopadhyay S, ChakrabartyAM. Characterization of membrane-associated Pseudomonas aeruginosaRas-like protein Pra, a GTP-binding protein that forms complexes withtruncated nucleoside diphosphate kinase and pyruvate kinase to modulateGTP synthesis. J Bacteriol.1997;179(7):2181-8..
    118. Hartsough MT, Morrison DK, Salerno M, Palmieri D, Ouatas T, MairM, Patrick J, Steeg PS. Nm23-H1metastasis suppressor phosphorylation ofkinase suppressor of Ras via a histidine protein kinase pathway. J Biol Chem.2002;277(35):32389-99.
    119. Zhu J, Tseng YH, Kantor JD, Rhodes CJ, Zetter BR, Moyers JS, KahnCR. Interaction of the Ras-related protein associated with diabetes rad andthe putative tumor metastasis suppressor NM23provides a novel mechanismof GTPase regulation. Proc Natl Acad Sci U S A.1999;96(26):14911-8.
    120. Tseng YH, Vicent D, Zhu J, Niu Y, Adeyinka A, Moyers JS, Watson PH,Kahn CR. Regulation of growth and tumorigenicity of breast cancer cells bythe low molecular weight GTPase Rad and nm23. Cancer Res.2001;61(5):2071-9.
    121. Conery AR, Sever S, Harlow E. Nucleoside diphosphate kinaseNm23-H1regulates chromosomal stability by activating the GTPasedynamin during cytokinesis. Proc Natl Acad Sci U S A.2010;107(35):15461-6.
    122. Miyamoto M, Iwashita S, Yamaguchi S, Ono Y. Role of nm23in theregulation of cell shape and migration via Rho family GTPase signals. MolCell Biochem.2009;329(1-2):175-9.
    123. Jin L, Liu G, Zhang CH, Lu CH, Xiong S, Zhang MY, Liu QY, Ge F, HeQY, Kitazato K, Kobayashi N, Wang YF. Nm23-H1regulates theproliferation and differentiation of the human chronic myeloid leukemiaK562cell line: a functional proteomics study. Life Sci.2009;84(13-14):458-67.
    124. Nallamothu G, Dammai V, Hsu T. Developmental function ofNm23/awd: a mediator of endocytosis. Mol Cell Biochem.2009;329(1-2):35-44.
    125. Kim HD, Youn B, Kim TS, Kim SH, Shin HS, Kim J. Regulatorsaffecting the metastasis suppressor activity of Nm23-H1. Mol Cell Biochem.2009;329(1-2):167-73.
    126. Lombardi D, Sacchi A, D'Agostino G, Tibursi G. The association of theNm23-M1protein and beta-tubulin correlates with cell differentiation. ExpCell Res.1995;217(2):267-71.
    127. Roymans D, Vissenberg K, De Jonghe C, Willems R, Engler G, KimuraN, Grobben B, Claes P, Verbelen JP, Van Broeckhoven C, Slegers H.Identification of the tumor metastasis suppressor Nm23-H1/Nm23-R1as aconstituent of the centrosome. Exp Cell Res.2001;262(2):145-53.
    128. Roymans D, Willems R, Vissenberg K, De Jonghe C, Grobben B, ClaesP, Lascu I, Van Bockstaele D, Verbelen JP, Van Broeckhoven C, Slegers H.Nucleoside diphosphate kinase beta (Nm23-R1/NDPKbeta) is associatedwith intermediate filaments and becomes upregulated upon cAMP-induceddifferentiation of rat C6glioma. Exp Cell Res.2000;261(1):127-38.
    129. Boissan M, De Wever O, Lizarraga F, Wendum D, Poincloux R,Chignard N, Desbois-Mouthon C, Dufour S, Nawrocki-Raby B, Birembaut P,Bracke M, Chavrier P, Gespach C, Lacombe ML. Implication of metastasissuppressor NM23-H1in maintaining adherens junctions and limiting theinvasive potential of human cancer cells. Cancer Res.2010;70(19):7710-22.
    130. Mehta A, Orchard S. Nucleoside diphosphate kinase (NDPK, NM23,AWD): recent regulatory advances in endocytosis, metastasis, psoriasis,insulin release, fetal erythroid lineage and heart failure; translationalmedicine exemplified. Mol Cell Biochem.2009;329(1-2):3-15.
    131. Egistelli L, Chichiarelli S, Gaucci E, Eufemi M, SchininàME, Giorgi A,Lascu I, Turano C, Giartosio A, Cervoni L. IFI16and NM23bind to acommon DNA fragment both in the P53and the cMYC gene promoters. JCell Biochem.2009;106(4):666-72.
    132. Ma D, Xing Z, Liu B, Pedigo NG, Zimmer SG, Bai Z, Postel EH,Kaetzel DM. NM23-H1and NM23-H2repress transcriptional activities ofnuclease-hypersensitive elements in the platelet-derived growth factor-Apromoter. J Biol Chem.2002;277(2):1560-7.
    133. Zhang Q, McCorkle JR, Novak M, Yang M, Kaetzel DM. Metastasissuppressor function of NM23-H1requires its3'-5' exonuclease activity. Int JCancer.2011;128(1):40-50.
    134. Turanov AA, Su D, Gladyshev VN. Characterization of alternativecytosolic forms and cellular targets of mouse mitochondrial thioredoxinreductase. J Biol Chem.2006;281(32):22953-63.
    135. Berggren MM, Powis G. Alternative splicing is associated withdecreased expression of the redox proto-oncogene thioredoxin-1in humancancers. Arch Biochem Biophys.2001;389(1):144-9.
    136. Ward AJ, Cooper TA. The pathobiology of splicing. J Pathol.2010;220(2):152-63.
    137. Miura K, Fujibuchi W, Sasaki I. Alternative pre-mRNA splicing indigestive tract malignancy. Cancer Sci.2011;102(2):309-16.
    138. Gardner LB. Nonsense-mediated RNA decay regulation by cellularstress: implications for tumorigenesis. Mol Cancer Res.2010;8(3):295-308.
    139. Orengo JP, Cooper TA. Alternative splicing in disease. Adv Exp MedBiol.2007;623:212-23.
    140. Farajollahi S, Maas S. Molecular diversity through RNA editing: abalancing act. Trends Genet.2010;26(5):221-30.
    141. Black DL. Mechanisms of alternative pre-messenger RNA splicing.Annu Rev Biochem2003;72:291-336.
    142. Ars E, Serra E, García J, Kruyer H, Gaona A, Lázaro C, Estivill X.Mutations affecting mRNA splicing are the most common molecular defectsin patients with neurofibromatosis type1. Hum Mol Genet.2000;9(2):237-47.
    143. Liu HX, Cartegni L, Zhang MQ, Krainer AR. A mechanism for exonskipping caused by nonsense or missense mutations in BRCA1and othergenes. Nat Genet.2001;27(1):55-8.
    144. Skotheim RI, Nees M. Alternative splicing in cancer: noise, functional,or systematic? Int J Biochem Cell Biol.2007;39(7-8):1432-49.
    145. Wang Q, Silver PA. Genome-wide RNAi screen discovers functionalcoupling of alternative splicing and cell cycle control to apoptosis regulation.Cell Cycle.2010;9(22):4419-21.
    146. Sampath J, Pelus LM. Alternative splice variants of survivin as potentialtargets in cancer. Curr Drug Discov Technol.2007;4(3):174-91.
    147. Jeyaraj S, O'Brien DM, Chandler DS. MDM2and MDM4splicing: anintegral part of the cancer spliceome. Front Biosci.2009;14:2647-56.
    148. van Alphen RJ, Wiemer EA, Burger H, Eskens FA. The spliceosome astarget for anticancer treatment. Br J Cancer.2009;100(2):228-32.
    149. Rennel ES, Harper SJ, Bates DO. Therapeutic potential of manipulatingVEGF splice isoforms in oncology. Future Oncol.2009;5(5):703-12.
    150. Pajares MJ, Ezponda T, Catena R, Calvo A, Pio R, Montuenga LM.Alternative splicing: an emerging topic in molecular and clinical oncology.Lancet Oncol.2007;8(4):349-57.
    151. Du L, Gatti RA. Progress toward therapy with antisense-mediatedsplicing modulation.Curr Opin Mol Ther.2009;11(2):116-23.
    152. Wang Y, Cheong CG, Hall TM, Wang Z. Engineering splicing factorswith designed specificities. Nat Methods.2009;6(11):825-30.
    153. Lee SJ, Lee SW, Jeong JS, Kim IH. In vivo reprogramming of humantelomerase reverse transcriptase (hTERT) by trans-splicing ribozyme totarget tumor cells. Methods Mol Biol.2010;629:307-21.
    154. Gruber C, Gratz IK, Murauer EM, Mayr E, Koller U,Bruckner-Tuderman L, Meneguzzi G, Hintner H, Bauer JW.Spliceosome-mediated RNA trans-splicing facilitates targeted delivery ofsuicide genes to cancer cells. Mol Cancer Ther.2011;10(2):233-41.
    155. Riechelmann H, Sauter A, Golze W, Hanft G, Schroen C, Hoermann K,Erhardt T, Gronau S. Phase I trial with the CD44v6-targetingimmunoconjugate bivatuzumab mertansine in head and neck squamous cellcarcinoma. Oral Oncol.2008;44(9):823-9.
    156. Brack SS, Silacci M, Birchler M, Neri D. Tumor-targeting properties ofnovel antibodies specific to the large isoform of tenascin-C. Clin Cancer Res.2006;12(10):3200-8.
    157. Omenn GS, Yocum AK, Menon R. Alternative splice variants, a newclass of protein cancer biomarker candidates: findings in pancreatic cancerand breast cancer with systems biology implications. Dis Markers.2010;28(4):241-51.
    158. Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution:diversification, exon definition and function. Nat Rev Genet.2010;11(5):345-55.
    159. Boja E, Rivers R, Kinsinger C, Mesri M, Hiltke T, Rahbar A, RodriguezH. Restructuring proteomics through verification. Biomark Med.2010;4(6):799-803.
    160. Brennan DJ, O'Connor DP, Rexhepaj E, Ponten F, Gallagher WM.Antibody-based proteomics: fast-tracking molecular diagnostics in oncology.Nat Rev Cancer.2010;10(9):605-17.
    161. Lee CH, Lum JH, Cheung BP, Wong MS, Butt YK, Tam MF, Chan WY,Chow C, Hui PK, Kwok FS, Lo SC, Fan DM. Identification of theheterogeneous nuclear ribonucleoprotein A2/B1as the antigen for thegastrointestinal cancer specific monoclonal antibody MG7. Proteomics.2005;5(4):1160-6.
    162. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell.2000;100(1):57-70.
    163. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation.Cell.2011;144(5):646-74.
    164. Mougiakakos D, Johansson CC, Jitschin R, B ttcher M, Kiessling R.Increased thioredoxin-1production in human naturally occurring regulatoryT cells confers enhanced tolerance to oxidative stress. Blood.2011;117(3):857-61.
    165. Watanabe R, Nakamura H, Masutani H, Yodoi J. Anti-oxidative,anti-cancer and anti-inflammatory actions by thioredoxin1andthioredoxin-binding protein-2. Pharmacol Ther.2010;127(3):261-70.
    166. Lapuk A, Marr H, Jakkula L, Pedro H, Bhattacharya S, Purdom E, Hu Z,Simpson K, Pachter L, Durinck S, Wang N, Parvin B, Fontenay G, Speed T,Garbe J, Stampfer M, Bayandorian H, Dorton S, Clark TA, Schweitzer A,Wyrobek A, Feiler H, Spellman P, Conboy J, Gray JW. Exon-levelmicroarray analyses identify alternative splicing programs in breast cancer.Mol Cancer Res.2010;8(7):961-74.
    167. Langer W, Sohler F, Leder G, Beckmann G, Seidel H, Gr ne J, HummelM, Sommer A. Exon array analysis using re-defined probe sets results inreliable identification of alternatively spliced genes in non-small cell lungcancer. BMC Genomics.2010;11:676-83.
    168. Thorsen K, S rensen KD, Brems-Eskildsen AS, Modin C, GaustadnesM, Hein AM, Kruh ffer M, Laurberg S, Borre M, Wang K, et al. Alternativesplicing in colon, bladder, and prostate cancer identified by exon arrayanalysis. Mol Cell Proteomics.2008;7(7):1214-24.
    169. Misquitta-Ali CM, Cheng E, O'Hanlon D, Liu N, McGlade CJ, Tsao MS,Blencowe BJ. Global profiling and molecular characterization of alternativesplicing events misregulated in lung cancer. Mol Cell Biol.2011;31(1):138-50.
    170. Elagoz S, Egilmez R, Koyuncu A, Muslehiddinoglu A, Arici S. Theintratumoral microvessel density and expression of bFGF and nm23-H1incolorectal cancer. Pathol Oncol Res.2006;12(1):21-7.
    171. Moore MJ, Wang Q, Kennedy CJ, Silver PA. An alternative splicingnetwork links cell-cycle control to apoptosis. Cell.2010;142(4):625-36.
    172. Brown RL, Reinke LM, Damerow MS, Perez D, Chodosh LA, Yang J,Cheng C. CD44splice isoform switching in human and mouse epithelium isessential for epithelial-mesenchymal transition and breast cancer progression.J Clin Invest.2011;121(3):1064-74.
    173. Goparaju CM, Pass HI, Blasberg JD, Hirsch N, Donington JS.Functional heterogeneity of osteopontin isoforms in non-small cell lungcancer. J Thorac Oncol.2010;5(10):1516-23.
    174. Farina AR, Tacconelli A, Cappabianca L, Masciulli MP, Holmgren A,Beckett GJ, Gulino A, Mackay AR. Thioredoxin alters the matrixmetalloproteinase/tissue inhibitors of metalloproteinase balance andstimulates human SK-N-SH neuroblastoma cell invasion. Eur J Biochem.2001;268(2):405-13.
    175. Oh JH, Chung AS, Steinbrenner H, Sies H, Brenneisen P. Thioredoxinsecreted upon ultraviolet A irradiation modulates activities of matrixmetalloproteinase-2and tissue inhibitor of metalloproteinase-2in humandermal fibroblasts. Arch Biochem Biophys.2004;423(1):218-26.
    176. Site-directed mutagenesis of nm23-H1. Mutation of proline96or serine120abrogates its motility inhibitory activity upon transfection into humanbreast carcinoma cells. MacDonald NJ, Freije JM, Stracke ML, Manrow RE,Steeg PS. J Biol Chem.1996;271(41):25107-16.
    177. Hamby CV, Abbi R, Prasad N, Stauffer C, Thomson J, Mendola CE,Sidorov V, Backer JM. Expression of a catalytically inactive H118Y mutantof nm23-H2suppresses the metastatic potential of line IV Cl1humanmelanoma cells. Int J Cancer.2000;88(4):547-53.
    178. Rensen WM, Mangiacasale R, Ciciarello M, Lavia P. The GTPase Ran:regulation of cell life and potential roles in cell transformation. Front Biosci.2008;13:4097-121.
    179. Ly TK, Wang J, Pereira R, Rojas KS, Peng X, Feng Q, Cerione RA,Wilson KF. Activation of the Ran GTPase is subject to growth factorregulation and can give rise to cellular transformation. J Biol Chem.2010;285(8):5815-26.
    180. Abe H, Kamai T, Shirataki H, Oyama T, Arai K, Yoshida K. Highexpression of Ran GTPase is associated with local invasion and metastasis ofhuman clear cell renal cell carcinoma. Int J Cancer.2008;122(10):2391-7.
    181. Barrès V, Ouellet V, Lafontaine J, Tonin PN, Provencher DM,Mes-Masson AM. An essential role for Ran GTPase in epithelial ovariancancer cell survival. Mol Cancer.2010;9:272-283.
    182. Woo IS, Jang HS, Eun SY, Kim HJ, Ham SA, Kim HJ, Lee JH, ChangKC, Kim JH, Han CW, Seo HG. Ran suppresses paclitaxel-induced apoptosisin human glioblastoma cells. Apoptosis.2008;13(10):1223-31.
    183. Kurisetty VV, Johnston PG, Johnston N, Erwin P, Crowe P, Fernig DG,Campbell FC, Anderson IP, Rudland PS, El-Tanani MK. RAN GTPase is aneffector of the invasive/metastatic phenotype induced by osteopontin.Oncogene.2008;27(57):7139-49.
    184. Gialeli C, Theocharis AD, Karamanos NK. Roles of matrixmetalloproteinases in cancer progression and their pharmacological targeting.FEBS J.2011;278(1):16-27.
    185. Hall A. The cytoskeleton and cancer. Cancer Metastasis Rev.2009;28(1-2):5-14.
    186. Tapia T, Ottman R, Chakrabarti R. LIM kinase1modulates function ofmembrane type matrix metalloproteinase1: implication in invasion ofprostate cancer cells. Mol Cancer.2011;10:6.
    187. Zhang C, Zhu C, Chen H, Li L, Guo L, Jiang W, Lu SH. Kif18A isinvolved in human breast carcinogenesis. Carcinogenesis.2010;31(9):1676-84.
    188. Hung KE, Faca V, Song K, Sarracino DA, Richard LG, Krastins B,Forrester S, Porter A, Kunin A, Mahmood U, Haab BB, Hanash SM,Kucherlapati R. Comprehensive proteome analysis of an Apc mouse modeluncovers proteins associated with intestinal tumorigenesis. Cancer Prev Res(Phila).2009;2(3):224-33.
    189. Meriggi F, Di Biasi B, Abeni C, Zaniboni A. Anti-EGFR therapy incolorectal cancer: how to choose the right patient. Curr Drug Targets.2009;10(10):1033-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700