用户名: 密码: 验证码:
维生素D与炎症性肠病临床特征的相关性研究及其作用通路中炎性因子的遗传易感性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景及目的:
     炎症性肠病(IBD)主要包括溃疡性结肠炎(UC)和克罗恩病(CD)。目前公认IBD的病因是以遗传易感性为基础、环境因素参与,粘膜免疫系统对肠腔内抗原物质的异常免疫应答而造成的肠道损伤。此外,研究发现IBD患者易合并骨代谢异常。维生素D既往以调节钙磷代谢的作用而众所周知,近年来研究发现其还具有抗感染和免疫调节的作用。国外已有大量的基础研究证实维生素D参与了IBD的发病,并发现IBD患者存在维生素D的缺乏,血清25(OH)D水平与疾病活动程度相关,但国内目前尚无这方面的研究。另外,关于维生素D对IBD骨代谢异常的影响,国外研究结果并不一致,而国内仅有少数这方面的报道。维生素D通过与维生素D受体结合而发挥作用,目前研究发现VDR具有基因多态性,且其与IBD的易感性相关。另有研究发现维生素D可影响DEFB1、TLR4和IRF5的表达,且已有国外研究证实它们的基因多态性与IBD的易感性相关。国内目前尚无IRF5、DEFB1基因多态性与IBD易感性的报道,且无上述基因多态性关联作用的报道。由于IBD为多基因复杂疾病,单个基因多态性对疾病的影响可能较为微弱。因此,本研究旨在:
     1、探讨中国人血清25(OH)D水平与IBD疾病活动程度的关系,同时一并分析血清25(OH)D水平与IBD骨密度的关系及IBD患者发生骨密度异常的危险因素。
     2、探讨维生素D作用通路中VDR、DEFB1、TUR4、IRF5基因多态性与IBD易感性的关系,并拟对阳性位点之间的关联作用进行分析。
     第一部分维生素D与炎症性肠病临床特征的相关性研究
     方法:收集78例UC患者、57例CD患者及122例正常对照人群的临床资料和血清,所有样本均进行血清25(OH)D的检测(测量单位为ng/ml), IBD患者进行骨密度的检测。
     结果:1、UC组、CD组、正常对照组血清25(OH)D平均值分别为10.65±4.87,10.79±5.14,12.87±4.40。各组间25(OH)D比较结果:UC组VS对照组,P=0.017;CD组VS对照组,P=0.020. UC VS CD, P=0.874。2、UC组按疾病活动程度分类,血清25(OH)D平均值分别为:缓解期14.38±4.71,轻度10.81±4.70,中度10.05±4.17,重度6.91±3.76。分别进行两两比较,缓解期与各活动期、轻度与重度之间的差异均具有统计学意义(P<0.05)。3、CD组采用Harvey Bradshaw Score评分对疾病活动程度进行分类,血清25(OH)D平均值分别为:0-4分12.28±4.60,5-8分7.99±3.43,>8分17.9±14.00。因>8分组仅2人,故仅对0-4分和5-8分组进行比较,P<0.01。4、IBD并发低骨量/骨质疏松的危险因素分析:UC组:激素累积量(OR=2.821,95%CI1.365-5.831,P=0.005)和血清25(OH)D水平(OR=0.866,95%C10.757-0.992,P=0.038)是其危险因素。2、CD组:激素累积量(OR=3.362,95%CI1.218~9.821,P=0.019)和BMI(OR=0.651,95%CI0.457~0.929, P=0.018)是其危险因素。
     结论:1、UC和CD患者血清25(OH)D水平均较正常人群降低。2、UC患者血清25(OH)D水平与疾病活动程度呈负相关;CD患者中度活动期(简化CDAI评分4-8分)血清25(OH)D水平显著低于缓解期(简化CDAI评分0-4分)。3、多因素分析显示激素累积量是UC和CD患者发生骨量减少/骨质疏松共同的危险因素,此外,25(OH)D水平是UC患者发生骨量减少/骨质疏松的危险因素,BMI是CD患者发生骨量减少/骨质疏松的危险因素。
     第二部分维生素D作用通路中相关炎性因子(VDR, DEFB1, TLR4, IRF5)基因多态性与IBD遗传易感性的研究
     方法:收集300例UC患者,158例CD患者及302正常对照人群的临床资料和血清。采用质谱Sequenom法对VDR, DEFB1、IRF5、TLR4四个基因共14个位点的基因型进行检测。
     结果:1、IRF5基因rs3807306位点的A等位基因可增加UC的易感性(P=0.007)。2、IRF5基因rs3807306位点的AA纯合基因型(P=0.028)和rs4728142位点的AA纯合基因型(P=0.008)可增加UC的易感性。3、IRF5基因区域的GGATT单体型(P=0.0002)是UC的危险单体型。4、携带IRF5基因rs4728142位点(P=0.011)的A/A纯合基因型或TLR4基因rs7037117位点(P=0.038)的A/A纯合基因型、rs1927907位点(P=0.046)的A/A纯合基因型的UC患者肠道病变程度相对较轻。5、IRF5基因区域的GTACC单体型是CD的危险单体型(P=0.0223)。6、携带IRF5基因rs2004640(P=0.013)位点G/G纯合基因型的CD患者更易出现结肠的受累,携带DEFB1基因rs2978880位点(P=0.006)C/C纯合基因型的CD患者肠道手术的风险相对更高。
     结论:1、IRF5基因的rs3807306位点的多态性与UC的易感性相关,rs4728142位点的多态性可能有增加UC易感性的风险,但这两个位点与CD的易感性无关。2、VDR基因rs11574143、rs4760648、rs1544410位点、DEFB1基因rs1799946、rs2741136、rs2978880、rs2741108位点,TLR4基因rs7037117、rs1927907位点及IRF5基因rs2004640、rs1874328、rs7808907位点的多态性与UC和CD的易感性均无关。3、IRF5基因rs4728142位点、TLR4基因rs7037117、rs1927907位点的多态性与UC的临床表型相关。IRF5基因rs2004640位点、DEFB1基因rs2978880位点的多态性与CD的临床表型相关。
Inflammatory bowel disease (IBD) is a group of chronic intestinal diseases including of Crohn's disease (CD) and ulcerative colitis(UC). The pathogenesis of IBD is reported associated with genetic factors, environmental factors and abnormal immune factors. In addition, IBD patients are at higher risk of developing osteoporosis and osteopenia than the general population. The role of vitamin D in calcium, phosphorus, and bone metabolism has been recognized since many years ago. Recently, it has been discovered that vitamin D can play a role in autoimmune diseases, infectious diseases and tumor diseases. Many basic research have confirmed there is a link between vitamin D and pathogenesis of IBD. Some clinical study abroad found vitamin D insufficiency is common in IBD patients and serum25(OH) vitamin D level correlate with the activity of the disease. However, there is no similar study in China. Results from different researches about impact of vitamin D on bone metabolism in IBD were not consistent and there was only one single-center study of small samples about that in China. Vitamin D exert its effect by binding to vitamin D receptor. Vitamin D gene polymorphisms had been shown related to the susceptibility of many autoimmune diseases, including IBD. Vitamin D can directly and indirectly influence the expression of DEFB1, TLR4, and IRF5. All of these gene polymorphisms also had been proved associated with IBD in Caucasian population. There were only few reports studied whether the TLR4and VDR gene were associated with IBD in Chinese Han population and no reports about association study among these gene in IBD. Therefore, in our study we aim to:
     1. Comparing serum25(OH) vitamin D levels in patients with IBD and matched controls, to evaluate disease characteristics that correlate with low25(OH) vitamin D level and the consequence of low25(OH) vitamin D level on bone mineral density. Meanwhile, we analyzed risk factors for abnormal bone metabolism.
     2. Investigating the relationship between single nucleotide polymorphisms of vitamin D working pathway related genes VDR, DEFB1, TLR4and IRF5and IBD genetic susceptibility, as well as clinical phenotype.
     Part1. The Study of Correlation between Serum25(OH) Vitamin D Levels and Clinical Characteristics of IBD.
     Methods:135IBD patients (78UC and57CD) and122controls were collected. Serum25(OH) vitamin D levels were tested in all of participants (the unit of measurement was ng/ml). Spine and femoral neck bone mineral density were tested in IBD patients.
     Results:1. Serum25(OH) vitamin D level in IBD group were significantly lower than controls.(UC vs controls:10.65±4.87vs12.87±4.40, P=0.017; CD vs controls:10.79±5.14vs12.87±4.40, P=0.020).2. Serum25(OH) vitamin D level in UC group classified by disease activity:remission,14.38±4.71; mild activity,10.81±4.70; moderate activity,10.05±4.17; severe activity,6.91±3.76. The comparison of serum25(OH) vitamin D level between every two groups showed:the disparities between remission and each activity as well as between mild activity and severe activity were significantly, P<0.05.3. Serum25(OH) vitamin D level in CD group classified by Harvey Bradshaw Score:0-4score,12.28±4.60;5-8score,7.99±3.43;>8score,17.9±14.00. There were only two persons scored>8, so this group was not involved in comparison. The comparison of serum25(OH) vitamin D level between0-4score and5-8score group was significantly, P<0.01.4. Multivariate analysis for osteoporosis or osteopenia in IBD showed:The total doses of glucocorticoids (OR=2.821,95%CI1.365±5.831, P=0.005) and serum25(OH) vitamin D insufficiency (OR=0.866,95%CI0.757~0.992, P=0.038) were risk factors for osteoporosis or osteopenia in UC. The total doses of glucocorticoids (OR=3.362,95%CI1.218±9.821, P=0.019) and low BMI (OR=0.651,95%CI0.457±0.929, P=0.018) were risk factors for osteoporosis or osteopenia in CD.
     Conclusions:1. Serum25(OH) vitamin D level in both UC and CD group were significantly lower than controls.2. Serum25(OH) vitamin D level in UC correlated negatively with the severity of disease activity; Serum25(OH) vitamin D levels in CD were lower in those scored by5-8than0-4.3. Multivariate analysis for osteoporosis or osteopenia in IBD showed:The total doses of glucocorticoids were common risk factors for osteoporosis or osteopenia both in UC and in CD. However, serum25(OH) vitamin D insufficiency and low BMI were respectively risk factor for osteoporosis or osteopenia in UC and in CD.
     Part2. The Study of Vitamin D Working Pathway Related Genes:VDR, DEFB1, TLR4and IRF5with Genetic Susceptibility of IBD in Han Population of China.
     Methods:300UC patients,158CD patients,302healthy controls of Chinese Han population were included in our study. Fourteen tag SNPs of four genes were genotyped by Sequenom MassARRAY method.
     Results:
     1. The frequency of allele A in rs3807306site (P=0.007) of IRF5gene in UC patients was higher than in controls.2. The frequency of AA genotype both in rs3807306site (P=0.028) and rs4728142site (P=0.008) of IRF5gene were higher than in controls.3. Haplotypes GGATT (P=0.0002) in IRF5gene was related to disease susceptibility of UC.4. A significantly higher frequency of AA genotype in rs4728142site (P=0.011) of IRF5gene, AA genotype in rs7037117site (P=0.038) and in rs1927907site (P=0.046) of TLR4were observed among UC patients with mild activity.5. Haplotypes GTACC (P=0.0223) in IRF5gene is related to disease susceptibility of CD.6. A significantly higher frequency of GG genotype in rs2004640site (P=0.013) of IRF5and rs2978880site (P=0.006) of DEFB1were respectively observed among CD patients with colon involved and with surgery.
     Conclusions:1. rs3807306polymorphism of IRF5was associated with disease susceptibility of UC and rs4728142polymorphism of IRF5might be associated with the risk for UC. However, both these sites were not associated with CD.2. rs11574143、 rs4760648、rs1544410sites of VDR、rs1799946、rs2741136、rs2978880、rs2741108sites of DEFB1, rs7037117、rs1927907sites of TLR4and rs2004640、rsl874328、rs7808907sites of IRF5were not observed associated with genetic susceptibility of both UC and CD.3. rs4728142site of IRF5, rs7037117, rs1927907sites of TLR4and rs2978880site of DEFB1were observed associated with IBD phenotype.
引文
1. Rothfuss K. S., Stange E. F., Herrlinger K. R. Extraintestinal manifestations and complications in inflammatory bowel diseases. World J Gastroenterol 2006;12:4819-4831
    2. Genant H. K., Mall J. C., Wagonfeld J. B., et al. Skeletal demineralization and growth retardation in inflammatory bowel disease. Investigative radiology 1976;11:541-549
    3. Noble C. L., McCullough J., Ho W., et al. Low body mass not vitamin D receptor polymorphisms predict osteoporosis in patients with inflammatory bowel disease. Aliment Pharmacol Ther 2008;27:588-596
    4. Pollak R. D., Karmeli F., Eliakim R., et al. Femoral neck osteopenia in patients with inflammatory bowel disease. Am J Gastroenterol 1998;93:1483-1490
    5. Bjarnason I., Macpherson A., Mackintosh C., et al. Reduced bone density in patients with inflammatory bowel disease. Gut 1997;40:228-233
    6. Card T., West J., Hubbard R., et al. Hip fractures in patients with inflammatory bowel disease and their relationship to corticosteroid use:a population based cohort study. Gut 2004;53:251-255
    7. American Gastroenterological Association medical position statement: guidelines on osteoporosis in gastrointestinal diseases. Gastroenterology 2003;124:791-794
    8. Holick M. F. Vitamin D deficiency. N Engl J Med 2007;357:266-281
    9. Froicu M., Zhu Y., Cantorna M. T. Vitamin D receptor is required to control gastrointestinal immunity in IL-10 knockout mice. Immunology 2006;117:310-318
    10. Froicu M., Cantorna M. T. Vitamin D and the vitamin D receptor are critical for control of the innate immune response to colonic injury. BMC Immunol 2007;8:5
    11. Cantorna M. T., Munsick C., Bemiss C., et al.1,25-Dihydroxycholecalciferol prevents and ameliorates symptoms of experimental murine inflammatory bowel disease. J Nutr 2000; 130:2648-2652
    12. Daniel C., Sartory N. A., Zahn N., et al. Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile. J Pharmacol Exp Ther 2008;324:23-33
    13. Driscoll R. H., Jr., Meredith S. C., Sitrin M., et al. Vitamin D deficiency and bone disease in patients with Crohn's disease. Gastroenterology 1982;83:1252-1258
    14. Sentongo T. A., Semaeo E. J., Stettler N., et al. Vitamin D status in children, adolescents, and young adults with Crohn disease. Am J Clin Nutr 2002;76:1077-1081
    15. Silvennoinen J. Relationships between vitamin D, parathyroid hormone and bone mineral density in inflammatory bowel disease. J Intern Med 1996;239:131-137
    16. Harries A. D., Brown R., Heatley R. V, et al. Vitamin D status in Crohn's disease:association with nutrition and disease activity. Gut 1985;26:1197-1203
    17. Joseph A. J., George B., Pulimood A. B., et al.25 (OH) vitamin D level in Crohn's disease:association with sun exposure & disease activity. Indian J Med Res 2009;130:133-137
    18. 张文燕,袁耀宗.炎症性肠病患者骨代谢状况评估.中华消化杂志2009:29:437-441
    19. Simmons J. D., Mullighan C., Welsh K. I., et al. Vitamin D receptor gene polymorphism:association with Crohn's disease susceptibility. Gut 2000;47:211-214
    20. Naderi N., Farnood A., Habibi M., et al. Association of vitamin D receptor gene polymorphisms in Iranian patients with inflammatory bowel disease. J Gastroenterol Hepatol 2008;23:1816-1822
    21. Dresner-Pollak R., Ackerman Z., Eliakim R., et al. The BsmI vitamin D receptor gene polymorphism is associated with ulcerative colitis in Jewish Ashkenazi patients. Genet Test 2004;8:417-420
    22. Ramagopalan S. V, Heger A., Berlanga A. J., et al. A ChIP-seq defined genome-wide map of vitamin D receptor binding:associations with disease and evolution. Genome Res 2010;20:1352-1360
    23. Lin R., White J. H. The pleiotropic actions of vitamin D. Bioessays 2004;26:21-28
    24. Do J. E., Kwon S. Y, Park S., et al. Effects of vitamin D on expression of Toll-like receptors of monocytes from patients with Behcet's disease. Rheumatology (Oxford) 2008;47:840-848
    25. Sadeghi K., Wessner B., Laggner U., et al. Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur J Immunol 2006;36:361-370
    26. Duits L. A., Ravensbergen B., Rademaker M., et al. Expression of beta-defensin 1 and 2 mRNA by human monocytes, macrophages and dendritic cells. Immunology 2002; 106:517-525
    27. Anderson C. A., Boucher G., Lees C. W., et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 2011;43:246-252
    28. Dideberg V., Kristjansdottir G, Milani L., et al. An insertion-deletion polymorphism in the interferon regulatory Factor 5 (IRF5) gene confers risk of inflammatory bowel diseases. Hum Mol Genet 2007;16:3008-3016
    29. Browning B. L., Huebner C., Petermann I., et al. Has toll-like receptor 4 been prematurely dismissed as an inflammatory bowel disease gene? Association study combined with meta-analysis shows strong evidence for association. Am J Gastroenterol 2007; 102:2504-2512
    30. Kocsis A. K., Lakatos p. L., Somogyvari F., et al. Association of beta-defensin 1 single nucleotide polymorphisms with Crohn's disease. Scand J Gastroenterol 2008;43:299-307
    31. Enioutina E. Y., Bareyan D., Daynes R. A. Vitamin D3-mediated alterations to myeloid dendritic cell trafficking in vivo expand the scope of their antigen presenting properties. Vaccine 2007;25:1236-1249
    32. Adorini L., Penna G., Giarratana N., et al. Dendritic cells as key targets for immunomodulation by Vitamin D receptor ligands. J Steroid Biochem Mol Biol 2004;89-90:437-441
    33. Lyakh L. A., Sanford M., Chekol S., et al. TGF-beta and vitamin D3 utilize distinct pathways to suppress IL-12 production and modulate rapid differentiation of human monocytes into CD83+ dendritic cells. J Immunol 2005;174:2061-2070
    34. Malabanan A., Veronikis I. E., Holick M. F. Redefining vitamin D insufficiency. Lancet 1998;351:805-806
    35. Bischoff-Ferrari H. A., Giovannucci E., Willett W. C., et al. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr 2006;84:18-28
    36.中华医学会消化病学分会炎症性肠病协作组.对我国炎症性肠病诊断治疗规范的共识意见.胃肠病学2007;12:488-495
    37.中华医学会骨质疏松和骨矿盐疾病分会.原发性骨质疏松症诊疗指南(讨论稿).中华全科医师杂志2006;5:455-457
    38. Loftus E. V., Jr. Clinical epidemiology of inflammatory bowel disease:Incidence, prevalence, and environmental influences. Gastroenterology 2004;126:1504-1517
    39. Chowers Y., Odes S., Bujanover Y., et al. The month of birth is linked to the risk of Crohn's disease in the Israeli population. Am J Gastroenterol 2004;99:1974-1976
    40. Sonnenberg A. Occupational distribution of inflammatory bowel disease among German employees. Gut 1990;31:1037-1040
    41. Leslie W. D., Miller N., Rogala L., et al. Vitamin D status and bone density in recently diagnosed inflammatory bowel disease:the Manitoba IBD Cohort Study. Am J Gastroenterol 2008;103:1451-1459
    42.陈曼湖刘建彬胡品津等.炎症性肠病并发低骨量/骨质疏松的危险因素分析.中华内科杂志2009;48:833-836
    43. Souza H. N., Lora F. L., Kulak C. A., et al. [Low levels of 25-hydroxyvitamin D (25OHD) in patients with inflammatory bowel disease and its correlation with bone mineral density]. Arq Bras Endocrinol Metabol 2008;52:684-691
    44. Silvennoinen J. A., Karttunen T. J., Niemela S. E., et al. A controlled study of bone mineral density in patients with inflammatory bowel disease. Gut 1995;37:71-76
    45. Pigot F., Roux C., Chaussade S., et al. Low bone mineral density in patients with inflammatory bowel disease. Dig Dis Sci 1992;37:1396-1403
    46. Staun M., Tjellesen L., Thale M., et al. Bone mineral content in patients with Crohn's disease. A longitudinal study in patients with bowel resections. Scand J Gastroenterol 1997;32:226-232
    47. Jahnsen J., Falch J. A., Mowinckel P., et al. Body composition in patients with inflammatory bowel disease:a population-based study. Am J Gastroenterol 2003;98:1556-1562
    48. Ralston S. H. Genetic control of susceptibility to osteoporosis. J Clin Endocrinol Metab 2002;87:2460-2466
    49. Recker R. R., Deng H. W. Role of genetics in osteoporosis. Endocrine 2002;17:55-66
    50. Ali T., Lam D., Bronze M. S., et al. Osteoporosis in inflammatory bowel disease. Am J Med 2009; 122:599-604
    1. Loftus E. V., Jr. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology 2004;126:1504-1517
    2. Kappelman M. D., Rifas-Shiman S. L., Kleinman K., et al. The prevalence and geographic distribution of Crohn's disease and ulcerative colitis in the United States. Clin Gastroenterol Hepatol 2007;5:1424-1429
    3. Higashi A., Watanabe Y., Ozasa K., et al. Prevalence and mortality of ulcerative colitis and Crohn's disease in Japan. Gastroenterol Jpn 1988;23:521-526
    4. Morita N., Toki S., Hirohashi T., et al. Incidence and prevalence of inflammatory bowel disease in Japan:nationwide epidemiological survey during the year 1991. J Gastroenterol 1995;30 Suppl 8:1-4
    5. Asakura K., Nishiwaki Y., Inoue N., et al. Prevalence of ulcerative colitis and Crohn's disease in Japan. J Gastroenterol 2009;44:659-665
    6. Chow D. K., Leong R. W., Tsoi K. K., et al. Long-term follow-up of ulcerative colitis in the Chinese population. Am J Gastroenterol 2009; 104:647-654
    7. Zheng J. J., Zhu X. S., Huangfu Z., et al. Prevalence and incidence rates of Crohn's disease in mainland China:a meta-analysis of 55 years of research. J Dig Dis 2010;11:161-166
    8. Orholm M., Munkholm P., Langholz E., et al. Familial occurrence of inflammatory bowel disease. N Engl J Med 1991;324:84-88
    9. Binder V. Genetic epidemiology in inflammatory bowel disease. Dig Dis 1998;16:351-355
    10. Halfvarson J., Bodin L., Tysk C., et al. Inflammatory bowel disease in a Swedish twin cohort:a long-term follow-up of concordance and clinical characteristics. Gastroenterology 2003;124:1767-1773
    11. Yang H., McElree C., Roth M. P., et al. Familial empirical risks for inflammatory bowel disease:differences between Jews and non-Jews. Gut 1993;34:517-524
    12. Gaya D. R., Russell R. K., Nimmo E. R., et al. New genes in inflammatory bowel disease:lessons for complex diseases? Lancet 2006;367:1271-1284
    13. Holick M. F. Vitamin D deficiency. N Engl J Med 2007;357:266-281
    14. Simmons J. D., Mullighan C., Welsh K. I., et al. Vitamin D receptor gene polymorphism:association with Crohn's disease susceptibility. Gut 2000;47:211-214
    15. Naderi N., Farnood A., Habibi M., et al. Association of vitamin D receptor gene polymorphisms in Iranian patients with inflammatory bowel disease. J Gastroenterol Hepatol 2008;23:1816-1822
    16. Dresner-Pollak R., Ackerman Z., Eliakim R., et al. The BsmI vitamin D receptor gene polymorphism is associated with ulcerative colitis in Jewish Ashkenazi patients. Genet Test 2004;8:417-420
    17. Pei F. H., Wang Y. J., Gao S. L., et al. Vitamin D receptor gene polymorphism and ulcerative colitis susceptibility in Han Chinese. J Dig Dis 2011;12:90-98
    18. Dideberg V., Kristjansdottir G., Milani L., et al. An insertion-deletion polymorphism in the interferon regulatory Factor 5 (IRF5) gene confers risk of inflammatory bowel diseases. Hum Mol Genet 2007;16:3008-3016
    19. Tesse R., Cardinale F., Santostasi T., et al. Association of beta-defensin-1 gene polymorphisms with Pseudomonas aeruginosa airway colonization in cystic fibrosis. Genes Immun 2008;9:57-60
    20. Matsushita I., Hasegawa K., Nakata K., et al. Genetic variants of human beta-defensin-1 and chronic obstructive pulmonary disease. Biochem Biophys Res Commun 2002;291:17-22
    21. Hu R. C., Xu Y. J., Zhang Z. X., et al. Correlation of HDEFB1 polymorphism and susceptibility to chronic obstructive pulmonary disease in Chinese Han population. Chin Med J (Engl) 2004;117:1637-1641
    22. Kocsis A. K., Lakatos P. L., Somogyvari F., et al. Association of beta-defensin 1 single nucleotide polymorphisms with Crohn's disease. Scand J Gastroenterol 2008;43:299-307
    23. Cario E., Podolsky D. K. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 2000;68:7010-7017
    24. Franchimont D., Vermeire S., El Housni H., et al. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn's disease and ulcerative colitis. Gut 2004;53:987-992
    25. Arnott I. D., Nimmo E. R., Drummond H. E., et al. NOD2/CARD15, TLR4 and CD 14 mutations in Scottish and Irish Crohn's disease patients:evidence for genetic heterogeneity within Europe? Genes Immun 2004;5:417-425
    26. Braat H., Stokkers P., Hommes T., et al. Consequence of functional Nod2 and Tlr4 mutations on gene transcription in Crohn's disease patients. J Mol Med 2005;83:601-609
    27. Oostenbrug L. E., Drenth J. P., de Jong D. J., et al. Association between Toll-like receptor 4 and inflammatory bowel disease. Inflamm Bowel Dis 2005; 11:567-575
    28. Ouburg S., Mallant-Hent R., Crusius J. B., et al. The toll-like receptor 4 (TLR4) Asp299Gly polymorphism is associated with colonic localisation of Crohn's disease without a major role for the Saccharomyces cerevisiae mannan-LBP-CD14-TLR4 pathway. Gut 2005;54:439-440
    29. Gazouli M., Mantzaris G., Kotsinas A., et al. Association between polymorphisms in the Toll-like receptor 4, CD14, and CARD15/NOD2 and inflammatory bowel disease in the Greek population. World J Gastroenterol 2005;11:681-685
    30. Brand S., Staudinger T., Schnitzler F., et al. The role of Toll-like receptor 4 Asp299Gly and Thr399I1e polymorphisms and CARD15/NOD2 mutations in the susceptibility and phenotype of Crohn's disease. Inflamm Bowel Dis 2005;11:645-652
    31. Lakatos P. L., Lakatos L.. Szalay F., et al. Toll-like receptor 4 and NOD2/CARD15 mutations in Hungarian patients with Crohn's disease: phenotype-genotype correlations. World J Gastroenterol 2005;11:1489-1495
    32. Torok H. P., Glas J., Tonenchi L., et al. Polymorphisms of the lipopolysaccharide-signaling complex in inflammatory bowel disease: association of a mutation in the Toll-like receptor 4 gene with ulcerative colitis. Clin Immunol 2004;112:85-91
    33. Riis L., Vind I., Vermeire S., et al. The prevalence of genetic and serologic markers in an unselected European population-based cohort of IBD patients. Inflamm Bowel Dis 2007; 13:24-32
    34. Fries W., Renda M. C., Lo Presti M. A., et al. Intestinal permeability and genetic determinants in patients, first-degree relatives, and controls in a high-incidence area of Crohn's disease in Southern Italy. Am J Gastroenterol 2005;100:2730-2736
    35. Browning B. L., Huebner C., Petermann I., et al. Has toll-like receptor 4 been prematurely dismissed as an inflammatory bowel disease gene? Association study combined with meta-analysis shows strong evidence for association. Am J Gastroenterol 2007; 102:2504-2512
    36.熊利芬,夏冰,姜黎等.TLR4基因Asp299Gly及TLR2基因Arg753Glu、 Arg677Trp多态性与中国湖北汉族炎症性肠病无相关性.世界华人消化杂志2006;14:212-215
    37.薛惠平倪培华,吴洁敏,童菊芳.炎症性肠病Toll样受体的基因多态性及其在不同人群中的分布.上海交通大学学报(医学版)2007;27:1226-1231
    38. Honda K., Taniguchi T. IRFs:master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 2006;6:644-658
    39. Takaoka A., Yanai H., Kondo S., et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 2005;434:243-249
    40. Mells G. F., Floyd J. A., Morley K. I., et al. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat Genet;43:329-332
    41. Chung S. A., Taylor K. E., Graham R. R., et al. Differential genetic associations for systemic lupus erythematosus based on anti-dsDNA autoantibody production. PLoS Genet 2011;7:e1001323
    42. Liu X., Invernizzi P., Lu Y., et al. Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. Nat Genet 2010;42:658-660
    43. Radstake T. R., Gorlova O., Rueda B., et al. Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat Genet 2010;42:426-429
    44. Horn G., Graham R. R., Modrek B., et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med 2008;358:900-909
    45. Han J. W., Zheng H. F., Cui Y., et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 2009;41:1234-1237
    46. Anderson C. A., Boucher G, Lees C. W., et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 2011;43:246-252
    47. Graham R. R., Kyogoku C., Sigurdsson S., et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci U S A 2007; 104:6758-6763
    1. Genant H. K., Mall J. C., Wagonfeld J. B., et al. Skeletal demineralization and growth retardation in inflammatory bowel disease. Investigative radiology 1976;11:541-549
    2. Pollak R. D., Karmeli F., Eliakim R., et al. Femoral neck osteopenia in patients with inflammatory bowel disease. Am J Gastroenterol 1998;93:1483-1490
    3. Bjarnason I., Macpherson A., Mackintosh C, et al. Reduced bone density in patients with inflammatory bowel disease. Gut 1997;40:228-233
    4. Noble C. L., McCullough J., Ho W., et al. Low body mass not vitamin D receptor polymorphisms predict osteoporosis in patients with inflammatory bowel disease. Aliment Pharmacol Ther 2008;27:588-596
    5. Card T., West J., Hubbard R., et al. Hip fractures in patients with inflammatory bowel disease and their relationship to corticosteroid use:a population based cohort study. Gut 2004;53:251-255
    6. Holick M. F. Vitamin D deficiency. N Engl J Med 2007;357:266-281
    7. Malabanan A., Veronikis I. E., Holick M. F. Redefining vitamin D insufficiency. Lancet 1998;351:805-806
    8. Bischoff-Ferrari H. A., Giovannucci E., Willett W. C. et al. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr 2006;84:18-28
    9. Driscoll R. H., Jr., Meredith S. C., Sitrin M., et al. Vitamin D deficiency and bone disease in patients with Crohn's disease. Gastroenterology 1982;83:1252-1258
    10. Sentongo T. A., Semaeo E. J., Stettler N., et al. Vitamin D status in children, adolescents, and young adults with Crohn disease. Am J Clin Nutr 2002;76:1077-1081
    11. Silvennoinen J. Relationships between vitamin D, parathyroid hormone and bone mineral density in inflammatory bowel disease. J Intern Med 1996;239:131-137
    12. Liu P. T., Stenger S., Li H., et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006;311:1770-1773
    13. Schwab M., Reynders V., Shastri Y., et al. Role of nuclear hormone receptors in butyrate-mediated up-regulation of the antimicrobial peptide cathelicidin in epithelial colorectal cells. Mol Immunol 2007;44:2107-2114
    14. Martinesi M., Treves C, d'Albasio G, et al. Vitamin D derivatives induce apoptosis and downregulate ICAM-1 levels in peripheral blood mononuclear cells of inflammatory bowel disease patients. Inflamm Bowel Dis 2008;14:597-604
    15. Fujita H., Sugimoto K., Inatomi S., et al. Tight junction proteins claudin-2 and-12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Mol Biol Cell 2008;19:1912-1921
    16. Froicu M., Zhu Y., Cantorna M. T. Vitamin D receptor is required to control gastrointestinal immunity in IL-10 knockout mice. Immunology 2006;117:310-318
    17. Froicu M., Cantorna M. T. Vitamin D and the vitamin D receptor are critical for control of the innate immune response to colonic injury. BMC Immunol 2007;8:5
    18. Cantorna M. T., Munsick C., Bemiss C., et al.1,25-Dihydroxycholecalciferol prevents and ameliorates symptoms of experimental murine inflammatory bowel disease. J Nutr 2000; 130:2648-2652
    19. Daniel C., Sartory N. A., Zahn N.. et al. Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Thl7 to a Th2 and regulatory T cell profile. J Pharmacol Exp Ther 2008;324:23-33
    20. Jorgensen S. P., Agnholt J., Glerup H., et al. Clinical trial:vitamin D3 treatment in Crohn's disease-a randomized double-blind placebo-controlled study. Aliment Pharmacol Ther 2010;32:377-383
    21. Chapuy M. C., Arlot M. E., Duboeuf F., et al. Vitamin D3 and calcium to prevent hip fractures in the elderly women. N Engl J Med 1992;327:1637-1642
    22. Bischoff-Ferrari H. A., Willett W. C., Wong J. B., et al. Fracture prevention with vitamin D supplementation:a meta-analysis of randomized controlled trials. Jama 2005;293:2257-2264
    23. Leslie W. D., Miller N., Rogala L., et al. Vitamin D status and bone density in recently diagnosed inflammatory bowel disease:the Manitoba IBD Cohort Study. Am J Gastroenterol 2008;103:1451-1459
    24. Souza H. N., Lora F. L., Kulak C. A., et al. [Low levels of 25-hydroxyvitamin D (25OHD) in patients with inflammatory bowel disease and its correlation with bone mineral density]. Arq Bras Endocrinol Metabol 2008;52:684-691
    25. Vestergaard P., Krogh K., Rejnmark L., et al. Fracture risk is increased in Crohn's disease, but not in ulcerative colitis. Gut 2000;46:176-181
    26. Vestergaard P., Mosekilde L. Fracture risk in patients with celiac Disease, Crohn's disease, and ulcerative colitis:a nationwide follow-up study of 16,416 patients in Denmark. Am J Epidemiol 2002;156:1-10
    27. Siffledeen J. S., Fedorak R. N., Siminoski K., et al. Randomized trial of etidronate plus calcium and vitamin D for treatment of low bone mineral density in Crohn's disease. Clin Gastroenterol Hepatol 2005;3:122-132
    28. Klaus J., Reinshagen M., Herdt K., et al. Bones and Crohn's:no benefit of adding sodium fluoride or ibandronate to calcium and vitamin D. World J Gastroenterol 2011;17:334-342
    29. Bartram S. A., Peaston R. T., Rawlings D. J., et al. A randomized controlled trial of calcium with vitamin D, alone or in combination with intravenous pamidronate, for the treatment of low bone mineral density associated with Crohn's disease. Aliment Pharmacol Ther 2003; 18:1121-1127
    30. Ralston S. H. Genetic control of susceptibility to osteoporosis. J Clin Endocrinol Metab 2002;87:2460-2466
    31. Recker R. R., Deng H. W. Role of genetics in osteoporosis. Endocrine 2002;17:55-66
    32. Ali T., Lam D., Bronze M. S., et al. Osteoporosis in inflammatory bowel disease. Am J Med 2009; 122:599-604
    33. Hathcock J. N., Shao A., Vieth R., et al. Risk assessment for vitamin D. Am J Clin Nutr 2007;85:6-18
    34. Yin L., Grandi N., Raum E., et al. Meta-analysis:longitudinal studies of serum vitamin D and colorectal cancer risk. Aliment Pharmacol Ther 2009;30:113-125
    35. Lappe J. M., Travers-Gustafson D., Davies K. M., et al. Vitamin D and calcium supplementation reduces cancer risk:results of a randomized trial. Am J Clin Nutr 2007;85:1586-1591
    1. Zheng J. J., Zhu X. S., Huangfu Z., et al. Prevalence and incidence rates of Crohn's disease in mainland China:a meta-analysis of 55 years of research. J Dig Dis 2010;11:161-166
    2. Chow D. K., Leong R. W., Tsoi K. K., et al. Long-term follow-up of ulcerative colitis in the Chinese population. Am J Gastroenterol 2009; 104:647-654
    3. Asakura K., Nishiwaki Y., Inoue N., et al. Prevalence of ulcerative colitis and Crohn's disease in Japan. J Gastroenterol 2009;44:659-665
    4. Orholm M., Munkholm P., Langholz E., et al. Familial occurrence of inflammatory bowel disease. N Engl J Med 1991;324:84-88
    5. Yang H., McElree C., Roth M. P., et al. Familial empirical risks for inflammatory bowel disease:differences between Jews and non-Jews. Gut 1993;34:517-524
    6. Halfvarson J., Bodin L., Tysk C., et al. Inflammatory bowel disease in a Swedish twin cohort:a long-term follow-up of concordance and clinical characteristics. Gastroenterology 2003; 124:1767-1773
    7. Holick M. F. Vitamin D deficiency. N Engl J Med 2007;357:266-281
    8. Crofts L. A., Hancock M S., Morrison N. A., et al. Multiple promoters direct the tissue-specific expression of novel N-terminal variant human vitamin D receptor gene transcripts. Proc Natl Acad Sci U S A 1998;95:10529-10534
    9. Simmons J. D., Mullighan C., Welsh K. I., et al. Vitamin D receptor gene polymorphism:association with Crohn's disease susceptibility. Gut 2000;47:211-214
    10. Naderi N., Farnood A., Habibi M., et al. Association of vitamin D receptor gene polymorphisms in Iranian patients with inflammatory bowel disease. J Gastroenterol Hepatol 2008;23:1816-1822
    11. Dresner-Pollak R., Ackerman Z., Eliakim R., et al. The BsmI vitamin D receptor gene polymorphism is associated with ulcerative colitis in Jewish Ashkenazi patients. Genet Test 2004;8:417-420
    12. Arai H., Miyamoto K., Taketani Y., et al. A vitamin D receptor gene polymorphism in the translation initiation codon:effect on protein activity and relation to bone mineral density in Japanese women. J Bone Miner Res 1997;12:915-921
    13. Uitterlinden A. G, Fang Y, Van Meurs J. B., et al. Genetics and biology of vitamin D receptor polymorphisms. Gene 2004;338:143-156
    14. Wehkamp J., Harder J., Weichenthal M., et al. Inducible and constitutive beta-defensins are differentially expressed in Crohn's disease and ulcerative colitis. Inflamm Bowel Dis 2003;9:215-223
    15. Kocsis A. K., Lakatos P. L., Somogyvari F., et al. Association of beta-defensin 1 single nucleotide polymorphisms with Crohn's disease. Scand J Gastroenterol 2008;43:299-307
    16. Braida L., Boniotto M., Pontillo A., et al. A single-nucleotide polymorphism in the human beta-defensin 1 gene is associated with HIV-1 infection in Italian children. Aids 2004;18:1598-1600
    17. Milanese M., Segat L., Pontillo A., et al. DEFB1 gene polymorphisms and increased risk of HIV-1 infection in Brazilian children. Aids 2006;20:1673-1675
    18. Trinchieri G., Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 2007;7:179-190
    19. Cario E., Podolsky D. K. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 2000;68:7010-7017
    20. Arbour N. C., Lorenz E., Schutte B. C., et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 2000;25:187-191
    21. Franchimont D., Vermeire S., El Housni H., et al. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn's disease and ulcerative colitis. Gut 2004;53:987-992
    22. Baumgart D. C., Buning C., Geerdts L., et al. The c.1-260C>T promoter variant of CD14 but not the c.896A>G (p.D299G) variant of toll-like receptor 4 (TLR4) genes is associated with inflammatory bowel disease. Digestion 2007;76:196-202
    23. Hong J., Leung E., Fraser A. G, et al. TLR2, TLR4 and TLR9 polymorphisms and Crohn's disease in a New Zealand Caucasian cohort. J Gastroenterol Hepatol 2007;22:1760-1766
    24. Oostenbrug L. E., Drenth J. P., de Jong D. J., et al. Association between Toll-like receptor 4 and inflammatory bowel disease. Inflamm Bowel Dis 2005; 11:567-575
    25. Brand S., Staudinger T., Schnitzler F., et al. The role of Toll-like receptor 4 Asp299Gly and Thr399I1e polymorphisms and CARD15/NOD2 mutations in the susceptibility and phenotype of Crohn's disease. Inflamm Bowel Dis 2005;11:645-652
    26. Arnott I. D., Nimmo E. R., Drummond H. E., et al. NOD2/CARD15, TLR4 and CD 14 mutations in Scottish and Irish Crohn's disease patients:evidence for genetic heterogeneity within Europe? Genes Immun 2004;5:417-425
    27. Browning B. L., Huebner C., Petermann I., et al. Has toll-like receptor 4 been prematurely dismissed as an inflammatory bowel disease gene? Association study combined with meta-analysis shows strong evidence for association. Am J Gastroenterol 2007; 102:2504-2512
    28.熊利芬,夏冰,姜黎,郭秋莎,孙泽群.TLR4基因Asp299Gly及TLR2基因Arg753Glu. Arg677Trp多态性与中国湖北汉族炎症性肠病无相关性.世界华人消化杂志2006;14:212-215
    29. Honda K., Taniguchi T. IRFs:master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 2006;6:644-658
    30. Takaoka A., Yanai H., Kondo S., et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 2005;434:243-249
    31. Dideberg V., Kristjansdottir G, Milani L., et al. An insertion-deletion polymorphism in the interferon regulatory Factor 5 (IRF5) gene confers risk of inflammatory bowel diseases. Hum Mol Genet 2007;16:3008-3016
    32. Anderson C. A., Boucher G., Lees C. W., et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 2011;43:246-252
    33. Graham R. R., Kyogoku C., Sigurdsson S., et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci U S A 2007; 104:6758-6763

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700