用户名: 密码: 验证码:
禽波氏杆菌的定植规律、基因分型以及与REV共感染的协同致病作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禽波氏杆菌(Bordetella avium,B. avium)最早于1967年分离自火鸡,主要引起禽类的鼻炎、眼炎等呼吸道症状。近年来不断从出现孵化率降低和弱雏率增高的种鸡孵化场鸡胚中分离到该菌,为探明其致病性的变化,本研究对2001-2011年间出现疫情的规模化种鸡孵化场的致病病原进行了分析,然后对分离到的B. avium菌株进行了强毒株的筛选以及基因分型,对筛选到的强毒株进行了定植规律检测,并研究了其在免疫抑制状态下致病性的变化。
     本研究共分为五个部分:
     1.规模化种鸡孵化场胚胎性疫病病原分析
     本试验对2001~2011年间全国8省市共计72个种鸡孵化场送检或采集的将出壳死亡鸡胚或死亡的刚出壳雏鸡进行了病原的检测和分析。经多重PCR和RT-PCR扩增以及细菌、支原体的分离培养,在33个孵化场检测到了鸡传染性贫血病毒(CIAV)、禽网状内皮增殖症病毒(REV)和鸡白血病病毒(ALV)三种病毒的单纯感染和多重感染,占45.8%;有6个孵化场存在有支原体感染,占检测孵化场总数的8.33%;在52个孵化场检测到了细菌的单纯感染或多重感染,占到了72.2%。共分离到禽波氏杆菌、葡萄球菌、大肠杆菌、沙门氏菌和绿脓杆菌5种细菌,共计105株。在检测的47种药物中5类细菌耐受药物的数量在15-32种,耐药性总体呈上升趋势,其中以葡萄球菌的耐药最为严重。孵化率下降、弱雏率增加等状况主要由细菌的多重感染(47.22%)和病毒与细菌的共感染(19.44%)引起,单纯的病毒、细菌和支原体的感染仅占了极少的比例,分别为6.94%、9.72%和4.71%。
     2. B.avium鸡胚分离株的生物学特性及致病性研究
     1991-2010年间分离到的22株B. avium菌株的培养特性及生化特征基本一致,且均具有不同程度的耐药性。在所检测的47种药物中,不同分离株耐受药物数量为8-30种。对近年来的12株鸡胚分离株进行11日龄鸡胚ELD50和1日龄雏鸡LD50的测定,结果发现ELD50在6.75-27.95CFU之间,LD50在9.2×105-3.4×108CFU之间,从中筛选出3株毒力较强的菌株Ba15、Ba17和Ba21。3株B.avium经鼻腔感染1日龄雏鸡后发现Ba15对雏鸡的生长抑制和ND油苗免疫后的抗体水平增长的抑制作用最强,在肺脏和气管中的感染率为100%,在各内脏中引起感染的鸡只比例在30%-40%。对Ba15以不同方式感染雏鸡发现腹腔感染的危害最严重,生长抑制和免疫抑制作用最强,内脏的感染比例最高(100%),比较接近胚胎期感染,经鼻腔和经眼两种方式感染的比较发现鼻腔感染的危害略强于经眼感染,B.avium入侵内脏的鸡只比例分别为30-40%和30%。
     3.禽波氏杆菌鼻腔攻毒雏鸡的定植规律研究
     用筛选到的强毒株Ba15经鼻腔感染1d雏鸡,采用组织匀浆涂布细菌计数法、接种环划线法、抹片染色法以及建立的细胞内抗原原位检测的间接免疫酶和间接免疫荧光组化法进行细菌感染后在组织中的实时和定位检测,在感染后1h即可在气管和肺脏中检测到少量的B.avium,攻毒后12h内肺脏中细菌的数量急剧上升,5d时入侵肝脏、心脏和脾脏,7d时发现其在肾脏的感染。内脏感染后的荷菌数量高峰期出现在14-28日龄,35日龄后在内脏中的感染比例逐渐下降,和B.avium感染后抗体水平的增长以及抗病能力的增强直接相关。经过间接免疫酶和间接免疫荧光组化检测B.avium感染后在组织细胞中的定植部位主要是位于胞浆和细胞间质中,且呈弥散性分布。
     4.禽波氏杆菌RAPD基因分型研究
     用细菌基因组抽提试剂盒对22株禽波氏杆菌的DNA进行提取,获得了高纯度和高浓度的细菌基因组DNA,并建立了稳定性和重复性好的RAPD扩增程序。经过对一系列随机引物的筛选,有6条引物能够产生清晰且多态性好的条带。运用筛选的6条随机引物对22株B.avium进行扩增,获得了RAPD指纹图谱。运用分析软件对指纹图谱进行统计分析,计算出各菌株间的遗传距离并进行聚类分析,绘制亲缘关系树状图,最终以遗传距离0.402为界将22株B.avium分成了3个聚类群,其中第一聚类群又可以分为3个亚群,第三聚类群可以分为两个亚群。其中第一聚类群包括了2000年之前的10个分离株(Ba1-Ba10)和2001年之后分离到的Ba12、Ba13、Ba14、Ba20,第二聚类群和第三聚类群中均为2001年之后的分离株,其中Ba15、Ba17、Ba18、Ba22属于第二聚类群,Ba11、Ba16、Ba19和Ba21属于第三聚类群。
     5. REV与禽波氏杆菌共感染的致病作用研究
     B. avium单纯感染鸡胚致病力较弱,鸡胚死亡时间较晚,主要危害是产生大量弱雏,且孵出的雏鸡长期带菌,生长缓慢,产蛋日龄延后。REV与B. avium共感染鸡胚比B.avium单纯感染时的鸡胚死亡时间提前,孵化率仅为30%,死胚率、弱雏率增高,且弱雏的最终成活率为0。B. avium单纯感染和与REV的共感染对不同日龄雏鸡的LD50的检测表明,雏鸡的感染日龄至关重要,不管是单纯感染组还是共感染组,高日龄的LD50值明显高于低日龄感染组。胚胎期及1日龄REV感染均显著降低了B. avium对不同日龄雏鸡LD50,尤其是胚胎期REV后B. avium对1日龄雏鸡的LD50值最低。REV作为一种免疫抑制性病毒,感染越早对B. avium的LD50影响越大。
     B. avium单纯鼻腔感染对雏鸡的生长抑制和免疫抑制作用均较弱,但胚胎期REV感染的雏鸡再经鼻腔感染B. avium后,对生长抑制和免疫抑制均具有协同作用,尤其是免疫抑制方面,尽管是以REV引起为主,但与B. avium共感染后加快了免疫器官细胞的凋亡、坏死,并且使抗体水平的持续时间缩短。另外共感染还提高了鸡群中“僵鸡”的比例,使B. avium在内脏中的检出时间提前、感染比例增大,并且在内脏中的持续感染时间延长,同时还发现在共感染组中继发其他细菌感染的病例数增多。
     B. avium单纯于1、7、14、和21日龄经鼻腔感染雏鸡时发现,感染日龄至关重要,1日龄和7日龄的雏鸡比较敏感,21日龄感染组症状上仅表现为一过性感染。不同日龄感染组之间相比,感染日龄越低对雏鸡的生长抑制和免疫抑制越严重,B. avium入侵内脏的病例数也越多。1日龄雏鸡感染REV后再分别于1、7、14、和21日龄经鼻腔感染B. avium发现,在对雏鸡的生长抑制和免疫抑制上具有一定的协同作用,并且各日龄共感染组与单纯感染组相比内脏的感染比例均有不同程度的增加。在共感染组中低日龄时雏鸡对B. avium的易感性仍强于高日龄,但感染日龄之间的差异在显著缩小。
     总之,本研究结果表明我国种鸡孵化场的胚胎性疫病多病原共感染的现象非常普遍,用RAPD方法将十年来的B. avium流行株分成了三个聚类群,并从分离到的B. avium鸡胚分离株中筛选出一株强毒株,对其进行了定植规律和与REV共感染的致病研究,发现在免疫抑制状态下,B. avium入侵内脏的时间提前,感染比例增大,病理损伤更严重,且对生长抑制和免疫抑制具有明显的协同作用,继发细菌感染的病例增多,大大增加了B. avium在鸡群中的危害。
Bordetella avium (B. avium) was first isolated from young turkeys in1967. It mainlycauses respiratory diseases, including ophthalmia and rhinitis, in poultries. However, in recentyears our research group constantly isolated B. avium strains from dead embryos in somebreeder hatcheries with reduced hatchability rate and increased hatched-weak chicken rate. Toanalyze the pathogenicity of B. avium isolates from chick embryos, the study conducted ananalysis of the causatives in scale hatcheries of2001-2011. B. avium strains isolated fromembryos were gene typed by RAPD and screened for virulen strain whose colonizationpattern would be detected and pathogenicity changes under immune inhibition would bestudied.
     This study is divided into five parts:
     1Pathogen analysis of embryonal diseases in scale hatcheries
     In this experiment, pathogen detection and analysis were conducted on dead chickembryos or newly hatched chicks from72chicken hatcheries in8provinces of China from2001to2011. Multiplex PCR and RT-PCR amplification, as well as bacterial andmycoplasma isolation were done about the samples. Single infection and multiple infectionsof CIAV, REV and ALV were detected from33hatcheries, accounting for45.8%.Mycoplasma infection lied in6hatcheries, with a rate of8.33%. Single infection and multipleinfections of bacteria were detected from52hatcheries, accounting for72.2%. Five kinds ofbacteria were isolated with a total number of105, including Staphylococcus aureus,Escherichia coli, Bordetella avium, Salmonella and Pseudomonas aeruginosa. Number oftolerated drugs of5kinds of bacteria was15-32from47tested drugs. General antibioticresistance is on the rise, with the most serious drug-resistance of Staphylococcus. The declinein hatchability and increase of weak chick rate are primarily caused by multiple bacterialinfection (47.22%) and viral and bacterial co-infection (19.44%). Single virus, bacteria andmycoplasma infections accounted for only a very small proportion, with infection rates of6.94%,9.72%and4.71%respectively.
     2Biological characteristic and pathogenicity of B.avium isolates from chickembryos
     Culture characteristics and biochemical characteristics of22B. avium isolates in1991-2010are basically the same, and all of them have resistance to drugs. Tolerated drugnumbers of different isolates vary from8to30in47detected drugs. ELD50to11-day-oldchick embryo and LD50to1-day-old chicks were detected about12isolates from chickembryo in recent years. Results showed that their ELD50were between6.75-27.95CFU andLD50between9.2×105-3.4×108CFU. Accordingly three virulent strains Ba15, Ba17, andBa21were screened from them. Ba15had strongest inhibition of growth and immuneresponse to NDV among the3isolates after nasal infection in1-day-old chicks, with a rate of100%infection in the lungs and trachea, and30%-40%infection in various internal organs. Itwas discovered by challenging chicks with Ba15in different ways that intra-abdominalinfection with highest proportion of visceral infections (100%), close to fetal infections, hadstrongest growth inhibition and immune suppression. Nasal infection with a infection rate of30-40%in viscera organs was more serious than ocular infection (30%).
     3Colonization pattern of B. avium in nasal challenged SPF chickens
     Bacterial counting of the homogenate, inoculating loop line method, smear stainingmethod, indirect immunoenzyme histochemistry, as well as indirect immunofluorescencehistochemistry were used to detect B. avium infection in different tissues after intranasalinfection of Ba15. Results showed that the bacteria were isolated from tracheas and lungs at1h post-infection. As time prolonged, B. avium continually increased in lungs within12hpost-infection. Afterwards, they colonized livers, hearts and spleens at5d and then infectedkidneys at7d. The peak of bacteria count appeared between14-28days of age. After35daysof age, the proportion of infections in the viscera organs gradually decreased. It was directlyrelated with antibody levels of B. avium and enhanced disease resistance. Visceral organswere colonized extensively by B. avium which were distributed densely in intercellular spaceand cytoplasm by detecting with indirect immunoenzyme histochemistry and indirectimmunofluorescence histochemistry.
     4Gene typing of B. avium isolates by RAPD analysis
     Bacterial genomic DNAs of high purity and high concentration were obtained by using acommercially available kit. RAPD amplification procedure which had good stability andreproducibility were established. Accordingly, a set of20commercially available primers wasscreened out to identify suitable primers for RAPD analysis of B. avium isolates. At last6primers R1, R2, R4, R6, R8and R10resulted in clear fingerprints of well polymorphism andwere used to evaluate the B. avium isolates. Based on their RAPD patterns, a dendrogram allowed the separation of the B. avium isolates into3genetic similarity clusters. The firstcluster could be divided into3subsets, and the third cluster could be divided into2subsets.The first cluster included10isolates before2000and isolate Ba12, Ba13, Ba14and Ba20after2001. The isolates in the second cluster and the third cluster were all after2001. Ba15,Ba17, Ba18and Ba22were in the second cluster and Ba11, Ba16, Ba19and Ba21were in thethird cluster.
     5Synergistic effects of co-infection of REV and B. avium
     B. avium of single infection in chick embryo had weak virulence with late death time ofchick embryos. The main harm is to generate a large number of weak chicks, and the chickswould be carriers for a long time, grow slowly and egg laying days delay. The death of chickembryos in co-infection of REV and B. avium were ahead of time with a hatching rate of only30%. Dead embryo rate and weak young chick rate increased, and the ultimate survival rate ofweak young chicks was0. Results of LD50detection of single B. avium infection andco-infection of REV and B. avium at different ages showed that infection age is very essential.Whether in single infection or co-infection, LD50value of high age was significantly higherthan that of low age. REV infection both at the embryonic period and1day old significantlyreduced the LD50values of B. avium, especially REV infection at the embryonic period. REV,as an immunosuppressive virus, earlier infects in chicks, greater effect to pathogenicity of B.avium.
     Effects of B. avium single nasal infection on growth inhibition and immune inhibition areweak. REV infection to embryos then nasal infection of B. avium to chicks had synergy ongrowth inhibition and immunosuppressive. Immunosuppression, although mainly caused byREV, B. avium infection accelerated the immune organ cell apoptosis, necrosis, and shortenedthe duration of antibody levels. In addition, co-infection improved the proportion of stiffchicken number. The detection time of B. avium in the visceral organs were ahead of time, theinfection rate increased, infection time extended in the viscera, and secondary infectionnumber also increased.
     It was discovered that infection age is crucial in single infection of B. avium at1,7,14,and21ages. At the age of1and7, chicks are more sensitive. Symptoms showed onlytransient infection when challenged at21ages. Compared between infections at different ages,the lower infection age was, the more serious effect on growth inhibition and immunesuppression, as well as the more numbers of cases of B. avium invaded into visceral organs.When B. avium was challenged at1,7,14, and21ages after REV infection at1age, it was showed that a certain degree of synergy appeared on growth inhibition and immunesuppression. Compared to single infection of B. avium, the proportion of viscera invaded by B.avium in co-infection increased. The chicks of low ages were still more susceptible than thoseof high ages, however, the difference between the infections at different ages reduced.
     In short, the study results show that multi-pathogen infection was widespread in chickenhatcheries of our country. B. avium isolates in nearly ten years were divided into3clusters.One virulent strain was screened and its colonization pattern in chickens and synergisticpathogenicity with REV were studied. Under state of immune suppression B. avium invadedthe visceral ahead of time, the infection ratio increased and pathological changes were moreserious. At the same time co-infection of REV and B. avium had synergistic effect on growthsuppression and immune suppression. Immunosuppressive virus infection significantlyincreased the hazard of B. avium in the chickens.
引文
BW卡尔尼克.禽病学(第十版).北京:中国农业出版社,1999:347-365.
    崔治中.免疫抑制性病毒多重感染在鸡群疫病发生和流行中的作用[J].畜牧兽医学报,2003,34(5):417-421.
    崔治中,孟珊珊,姜世金,魏建萍.我国白羽肉用型鸡群中CAV、REV和REOV感染状态的血清学调查[J].畜牧兽医学报,2006,37(2):152-157
    高崧,刘秀梵,张如宽.一种快速提取禽源性大肠埃希氏菌外膜蛋白的方法[J].微生物学通报,1996,23(2):122-123.
    高崧,赵坤,徐大生,张如宽,刘秀梵.间接ELISA测定禽源性大肠杆菌膜蛋白抗体方法的建立[J].中国兽医学报,1997,19(4):326-328.
    黄昊洋,李逄慧,罗超,唐帅,李彬.一例禽波氏杆菌病的治疗[J].中国畜禽种业,2008,49-50.
    金文杰,崔治中,刘岳龙,秦爱建.传染性法氏囊病病料中MDV、CAV、REV的共感染检测[J],中国兽医学报,2001,21(1):6-9.
    赖平安,杜春辉.鸡大肠杆菌致病力与某些生物特性的相关性探讨[J].中国兽医科技,1992,22(8):26-29.
    李福胜,赵风兰,胡军.鼠伤寒杆菌外膜蛋白免疫原性及免疫保护性研究[J].中华微生物和免疫学杂志,1993,13(3):156-158.
    李桂杰,刘思当,朱瑞良,张绍学.禽波氏杆菌内毒素致病性的研究[J].畜牧兽医学报,2000,31(4):349-352.
    李康然,韦平,梁梅芳.用气管环培养中和试验对鸡传染性支气管炎病毒进行血清定型[J].广西农学院学报,1991,10(3):1-6.
    李新苍,朱瑞良,路建彪,刘红芹,王伟,胡晓娜. AA肉鸡群中免疫抑制性病毒分子流行病学调查及对疫苗免疫效果影响分析[J],中国兽医学报,2008,28(10):1141-1144.
    廖立新,曹郁生,李国辉,陈燕,熊勇华.一种快速粗提绿脓杆菌外膜蛋白的方法[J].江西医学院学报,2003,42:60-61.
    廖立新,赵英,李国辉,余於荣,廖晚珍.革兰氏阴性杆菌的敏感性分析[J].江西医学院学报,2001,41:117-118.
    刘红芹.规模化种鸡场胚胎疾病病原学研究及禽波氏杆菌16SrRNA基因序列分析[D].山东农业大学硕士论文,2006.
    陆承平.兽医微生物学[M].北京:中国农业出版社,第三版,2002:275-277.
    陆德源.医学微生物学[M].第3版.北京,人民卫生出版社,1989:7-26.
    孟珊珊,崔治中,孙淑红. REV和ALV-J共感染鸡病毒血症及抗体反应的相互影响[J],中国兽医学报,2006,26:363-366.
    王汉雷.用核酸探针和分子斑点杂交技术检测病毒的核酸[D],硕士学位论文,山东农业大学,2007.
    王晶钰,李健强,张国祥,黄金海,舒黛莲.鸡波德特氏菌病的研究[J].西北农业大学学报,1997,25(4):70-71.
    王雪敏,崔岩.禽波氏杆菌病研究进展[J].动物医学,2004,21(1):56-57.
    王玉燕,朱瑞良.禽波氏杆菌病原性研究及防治初探[J].中国预防兽医学报,2001,23:117-120.
    翁立雪.鸡主要胚胎性疫病病原人工共感染的试验研究[D].山东农业大学硕士论文,2009.
    夏文浪,马宝骊,黄冬生,张汉明.空肠弯曲菌67KD外膜蛋白的提取及其淋巴细胞的多克隆激活作用[J].中国免疫学杂志,1992,8(1):14-17.
    严杰,方平楚.幽门螺杆菌脂多糖生物学活性的研究[J].中华微生物和免疫学杂志,1994,14(3):196.
    杨本升,刘玉斌,苟仕金.动物微生物学[M].长春:吉林科学技术出社,1995,550.
    杨金耀,陆广富,王建业,庄国宏,朱国强.32株禽波氏杆菌分离株特性的初步研究[J].中国家禽,2008,30(6):18-19.
    庄国宏,朱国强,周继红,严维巍,王永坤,田惠芳,马翔.禽波氏杆菌病病原性的研究[J].中国畜禽传染病,1998,(2):71-75.
    朱瑞良.雏鸡禽波氏杆菌病的诊断[J].畜牧与兽医,1993,(3):124-125.
    朱瑞良,牛钟相,张绍学.病鸡眼中禽波氏杆菌的分离鉴定[J].中国兽医科技,1994,24(4):25-26.
    朱瑞良,万连英,李洁珍.广东省鸡波氏杆菌病血清学调查[J].吉林畜牧兽医,1994,(5):39-40.
    朱瑞良,张绍学,唐珂心.山鸡波氏杆菌病的诊断[J].中国兽医杂志,1994,1(13):13-14.
    朱瑞良,张绍学,唐珂心.鸡波氏杆菌病的研究初报[J].山东农业大学学报,1991,22(1):92-94.
    朱中武,陈可毅,张晓梅.产蛋鸡大肠杆菌性生殖道病感染途径探讨[J].中国兽医科技,1995,25(2):20-21.
    张绍学,朱瑞良,唐珂心.鸡波氏杆菌病的流行病学调查[J].中国畜禽传染病,1992,(2):25-26.
    张晓华,Robertson P, Austin B.弧菌标准菌株外膜蛋白的比较研究[J].微生物学报,1997,37:449-454.
    张志,崔治中,姜世金,周蛟.鸡肿瘤病料中马立克氏病病毒和禽网状内皮增生病病毒混合感染的研究[J].中国预防兽医学报,2003,4:274~278.
    赵香汝,杨汉春.细菌外膜蛋白的研究现状[J].中国兽医杂志,1997,12(23):41-42.
    庄国庆,孙淑红,崔治中,曲立新.鸡马立克氏病毒和网状内皮增生病病毒共感染商品代肉鸡时的相互作用[J],中国病毒学,2006,21(2):157-162.
    Alkhalaf AN, Ward LA, Dearth RN, Saif YM. Pathogenicity, transmissibility, and tissuedistribution of avian pneumovirus in turkey poults[J]. Avian Dis2002,46(3):650-659.
    Arp LH, Cheville NF. Tracheal lesions in young turkeys infected with Bordetella avium [J].Am J Vet Res1984,(45):2196-2200.
    Arp LH, Brooks EE. An in vivo model for the study of Bordetella avium Adherence totracheal mucosa in turkeys[J]. Am J Vet Res1986,Dec,47(12):2614-2617.
    Arp LH, Mcdonald SM. Influence of temperature on the growth of Bordetella avium inturkeys and in vitro[J]. Avian Dis1985,29:1066-1077.
    Arp LH, Cheville NF. Tracheal lesions in young turkeys infected with Bordetella avium [J].AmJVetRes1984,(45):2196-2200.
    Barnes HJ, Hofstad MS. Susceptibility of turkey poults from vaccinated andunvaccinatedhens to Alcaligenes rhinotracheitis(tuekey coryza)[J]. Avian Dis1983,27:378-39.
    Blackall PJ, Farrah JG. Isolition of Bordetella avium from poultry[J]. Aus Vet J1985,62:370-372.
    Bolin CA, Jensen AE. Passive immunization with antibodies again stiron regulated outermenberane protein protects turkeys from Escherichia colisepticemia[J]. Infect Immun1987,55(2):1239-1242.
    Bradford MM. A rapid and sensitive method of the quantitation of microgran quantities ofprotein utilizing the principle of protein-dye binding[J]. Anal Biochem1976,72:248-254.
    Braun V, Gaisser S, Hermann C, Kampfenkel K, Killmann H, Traub I. Energy-coupledtransport across the outer membrane of Escherichia coli: ExbB binds ExbD and TonB invitro, and leucine132in the periplasmic region and aspartate25in the transmembraneregion are important for ExbD activity [J]. J Bacteriol1996,178(10):2836-2845.Escherichiacoli small deletions in the gating loop convert the Fhu Atransport protein intoa diffusion[J]. FEBSLett1994,346(1):59-64.
    Gentry-Weeks CR, Cookson BT, Goldman WE, Rimler RB, Porter SB, Curtiss R3rd.Dermonecrotic toxin and tracheal cytotoxin, putative virulence factors of Bordetellaavium[J]. Infect Immun1988,56:1698-1707.
    Cimiotti W, Glunder G, Hinz KH. Survival of the bacterial turkey coryza agent[J]. Vet Rec110:304-306.
    Blore PJ, Slavik MF, Neighbor NK. Detection of antibody to Bordetella avium using aparticle concentration fluorescence immunoassay (PCFIA)[J]. Avian Dis.1991,35(4):756-60.
    Collier AM, Peterson LP, Baseman JB. Pathogenesis of infection with Bordetella pertussisin hamster tracheal organ culture[J]. J.Infect.Dis1977,36:196-203.
    Colwell WM, Lukert PO. Effects of avian infectious bronchitis virus(IBV)on tracheal organcultures[J]. Avian Dis1969,13:888-894.
    Connell TD, Dickenson A, Martone AJ, et.al. Iron starvation of Bordetella avium stimulatesexpression of five outer membrane proteins and regulates a gene involved in acquiringiron from serum[J]. Infect Immun1998,66(8):3597-3605.
    Cook JKA, Darbyshire JH, Peters RW. The use of chicken tracheal organ cultures forisolation and assay of avian infectious bronchitis virus[J]. Archives of Virology1976,50:109-118.
    Cookson BT, Goldman WE. Tracheal cytotoxin:a conserved virulence determinant of allBordetella species[J]. J.Cell.Biochem1987,11:124.
    Cui Z, Sun S, Wang J. Reduced serologic response to Newcastle disease virus in broilerchickens exposed to a Chinese field strain of subgroup J avian leukosis virus[J]. AvianDiseases2006,50:191-195.
    Cutter DL, Luginbuhl GH. Characterization of sulfonamide Resistance determinants andrelatedness of Bordetella avium Rplasmids[J]. Plasmid1991,26:136-140.
    Darbyshire JH, Cook JKA, Peters RW. Comparative growth kinetic studies on avianinfectious bronchitis virus in different systems[J]. J Comp Pathol1975,85:623-630.
    Darbyshire JH, Cook JK A, Peters RW. Organ culture studies on the efficiency of infectionof chicken tissuses with avian infectious bronchitis virus[J]. Brit J Exp Pathol,1976,57:443-454.
    Edens FW, McCorkle FW, Simmons DG, et.al. Effects of Bordetella avium on lymphoidtissue monoamine concentrations in turkey poults[J]. Avian Dis1987,31:746-751.
    Edens FW, Yersin AG, Simmons DG. TryptopHan methylester modulationof poultre sponsesto Bordetella avium[J]. Poult Sci1999,78(3):327-335.
    Eisen D, Russell ED, Tymms M, et al. Random amplified polymorphic DNA and plasmidanalyses used in investigation of an outbreak of multiresistant Klebsicalla pneumoniae[J].J Clin Microbiol1995,33:713-717.
    Elaichorni A. Pseudomonas aeruginosasero type O12outbreak studied by arbitrary primerPCR[J]. J Clin Microbiol1994, March;32(3):666-671.
    El-Sukhon SN, Musa A, Al-Attar M. Studies on the bacterial etiology of airsacculitis ofbroilers in northern and middle Jordan with special reference to Escherichia coli,Ornithobacterium rhinotracheale,and Bordetella avium[J]. Avian Dis2002,46(3):605-612.
    Endoh M, Amitan M, Nakase Y. Effect of purified heat-labile toxin of Bordetellabronchiseptica on the peripHeral blood vessels in guinea pigs or suckling mice.Microbiol[J]. Immunol1986,30:1327-1330.
    Endoh M, Nagai M, Nakase Y. Effect of Bordetella heat-labile toxin on perfused lungpreparations of guinea pigs[J]. Jpn.J.Med.Sci.Biol1986,39:249.
    Murphy ER, Sacco RE, Dickenson A, Metzger DJ, Hu Y, Orndorff PE, Connell TD.BhuR, a virulence-associated outer membrane protein of Bordetella avium, is requiredfor the acquisition of iron from heme and hemoproteins[J]. Infect Immun2002,70(10):5390-5403.
    Evans DG, Evans, DJ, Tjoa W. Hemagglutinationof human group A erythrocytes byenterotoxigenic Escherichia coli isolated from adults with diarrhea:correlation withcolonization factor[J]. Infect Immun1977,18:330-337.
    Fantinatti F, Silveira WD, Castro AFP. Characteristics associated with pathogenicity ofavian aemic Es2cherichiacoli strains[J].Vet Microbiol1994,41:75-86.
    Ficken MD, Edwards JF, Lay JC. Clearance of bacteria in turkeys with Bordetella aviuminduced trachetitis[J]. Vet Rec1986,30:352-357.
    Ficken MD. Antibiotic aerosolization for treatment of alcaligenesrhintracheit[J]. Avian Dis1983,27:545-548.
    Galan J, Timoney JF. Molecular analysis of the Mprotein of Streptococcus equi and cloningand expression of the M protein gene in Escherichia coli[J]. Infect Immun.1987,55:3181-3187.
    Ganett JK, Davis RB, Ragland WL. An enzyme-linked immunosorbent assay for detectionof antibody to avian encepHalo myelitis virus in chickens[J]. AvianDis,1984,28(1):117-30.
    Gentry-Weeks CR, Hultsch AL, Kelly SM, Keith JM, Curtiss R. Cloning and sequencingof a gene encoding a21-kilodalton outer membrane protein from Bordetella avium andexpression of the gene in Salmonella typhimurium[J]. J Bacteriol,1992.174:7729-7742.
    Glunder G, van der Ven H, Foulman A. Links Studies on the efficacy of different adjuvantsin live stock specific bacterial vaccines for turkeys against Bordetella infection and onsetof antibody titers in respect to the age of the turkey poults[J]. Pol J Vet Sci.2004;7(2):77-81.
    Goldman WE, Klapper DG, Baseman JB. Detection, isolation, and analysis of a releasedBordetellapertussis product toxic to cultured tracheal cells[J]. Infect Immun.1982,36:782-794.
    González CR, Isibasi A, Ortiz-Navarrete V, Paniagua J, García JA, Blanco F, Kumate J.Lymphocytic proliferative response to outer-membrane proteins isolated fromSalmonella[J]. Microbiol Immunol,1993,37(10):793-799.
    Gueirard P, Weber C, Coustumier AL, Guiso N. Human Bordetella bronchisepticaInfection Related to Contact with Infected Animals:Persistence of Bacteria in Host[J]. JClin Microbiol1995,33(8):2002-2006.
    Guo DQ, Tang C, Hai Q, Shao GQ, Yue H. Development of a universal plate-agglutinationtest for detecting Haemophilus parasuis[J]. J Vet Sci,2010.11:355-357.
    Guo XL, Zheng HQ, Li XL, Li Y, Gu ZL, Zheng CS, Wei ZH, Wang JS, Zhou RY, LiLH. Genetic variation of major histocompatibility complex BLB2gene exon2in Hebeidomestic chicken[J]. Res Vet Sci2012.92:76-79.
    Hancock REW. Role of porins in outer membrane perme ability[J]. J Bacteriol1987,169(3):929-933.
    Harrington AT, Castellanos JA, Ziedalski TM, Clarridge III JE, Cookson BT. Isolation ofBordetella avium and novel Bordetella strain from patients with respiratory disease[J].Emerg Infect Dis2009,15:72-74.
    Hatfield RM, Morris BA, Henry RR. Development of an Enzyme-linked ImmunosorbentAssay for the detection of humoral antibody to pasteurella anatiestifer[J]. Avianpathology1987,16:123-140.
    Hellwig DH, Arp LH, Fagerland JA, A cOMPArison of outer membrane proteins andsurface characteristics of adhesive and non-adhesive phenotypes of Bordetella avium[J].Avian Dis1988,32:787-792.
    He Y, Keen JE, Westerman RB, Littledike ET, Kwang J. Monoclonal antibodies fordetection of the H7antigen of Escherichiacoli[J]. Appl Environ Microbiol,1996,62(9):3325-3332.
    Hinz KH, Glunder G, Romer KJ. A cOMPArative study of avian Bordetella-likestrains,Bordetella bronchiseptica,Alcaligenes faecalis and other related nonfermentablebacteria[J]. Avian Pathol.1983,12:263-276.
    Hryncewicz-Gwó d A, Jagielski T, Dobrowolska A, Szepietowski JC, Baran E.2011.Identification and differentiation of Trichophyton rubrum clinical isolates usingPCR-RFLP and RAPD methods[J]. Eur J Clin Microbiol Infect Dis,30:727-731.
    Hsueh PR, Teng LJ, Yang PC, Chen YC, Ho SW, Luh KT. Persistence of amultidrug-resistant Pseu-domon as aeruginosa clone in an intensive care burn unit[J]. JClin Micro1998,36:1347-1351.
    Jackwood MW, Hilt DA, Dunn PA. Observations on colonial phenotypic variation inBordetella avium[J]. Avian Dis1991,31:782-786.
    Jackwood MW, Saif YM. Efficacy of acommercial turky coryza vaccine in turkey poults[J].Avian Dis,1985,29:1130-1139.
    Jackwood MW, Hilt DA, Dunn PA. Observations on colonial pheno typic variation inBordetella avium[J]. Avian Dis.1991,31:782-786.
    Jackwood MW, Saif YM, Coplin DL. Isolation and characterization of Bordetella avium[J].Avian Dis1987,31:782-786.
    Kann RKC, MT Kyaw-Tanner, JM Seddon, PR Lehrbach, RJG Zwijnenberg and JMeers, Molecular subtyping of feline immunodeficiency virus from domestic cats inAustralia[J]. Aust Vet J,2006.84:112-116.
    KapurVetal. Outer memberane protein pattern smark clones of Escherichiacoli O2and O78strains that cause avian septicemia[J]. Infect Immun1992,60(4):1687-1691.
    Kattar MM, Chavez JF, Limaye AP, Rassoulian-Barrett SL, Yarfitz SL, Carlson LC,Houze Y, Swanzy S, Wood BL, Cookson BT. Application of16SrRNA gene sequencingto identify Bordetella hinzii as the causative agent of fatal septicemia[J]. J ClinMicrobiol.2000,38(2):789-794
    Kersters K, Hinz KH, Hertle A, Segers P, Lievens A, Siegmann O, De Ley J. Bordetellaavium sp.nov isolated from the respiratory tracts of turkeys and other birds[J]. Int J SystBacteriol1984,34:56-70.
    Korn A, Rajabi Z, Wassum B, Ruiner W, Nixdorff K. Enhancement of uptake of lipopolysaccharide inmacrop Hages by the major outer membrane protein OMPA of Gramnegative bacteria[J]. Infect Immun,1995,2697-2705.
    Kirby AE, King ND, Connell TD. RhuR, an extracytoplasmic function sigma factor activator,is essential for heme-dependent expression of the outer membrane heme andhemoprotein receptor of Bordetella avium[J]. Infect Immun2004,72:896-907.
    Kume K, Nakai T, Samejima Y, Sugimoto C. Properties of dermonecrotic toxin preparedfrom sonic extracts of Bordetella bronchiseptica[J]. Infect Immun1986,52:370-377.
    Lathrop JT, Wei BY, Touchie GA, Kadner RJ. Sequences of the Escherichiacoli BtuB
    protein essential for its insertion and function in outer membrane[J]. J bacteriol1995,
    77(23):6810-6815.
    Leclair D, Pagotto F, Farber JM, Cadieux B, Austin JW. Comparison of DNAfingerprinting methods for use in investigation of type E Botulism outbreaks in theCanadian arctic[J]. J Clin Microbiol,2006.44:1635-1644.
    Loker SB, Temple LM, Preston A, The Bordetella avium BAV1965-1962fimbrial locus isregulated by temperature and produces fimbriae involved in adherence to turkey trachealtissue[J]. Infect Immun,2011.79:2423-2429.
    Luginbuhl GH, Cutter D, Campodonico G, Peace J, Simmons DG. Plasmid DNA ofvirulent Alcaligenes faecalis[J]. Am J Vet Res,1986,47:619-621.
    Manoil C. A genetic approach to defining the sites of interaction of a membrane protein withdifferent external agents[J]. Mol Biol1983,169(2):507-515.
    Marques MB, Waites KB, Mangino JE, Hines BB, Moser SA. Genotypic investigation ofmultidrug-resistant Acinetobacter baumannii infections in a medical intensive careunit[J]. J Hosp infect,1997,37(2):125~135.
    Moll A, Manning PA, Timis KN. Plasmid determined rsistance to serum bactericidalactivity:a major outer membrane protein the traT product,is responsible for plasmispecified serum resistance in E.coli[J]. Infect Immun1980,28:359-367.
    Morandi S, Brasca M, Lodi R, Brusetti L, Andrighetto C, Lombardi A. Biochemicalprofiles, restriction fragment length polymorphism (RFLP), random amplifiedpolymorphic DNA (RAPD) and multilocus variable number tandem repeat analysis(MLVA) for typing Staphylococcus aureus isolated from dairy products[J]. Res Vet Sci2010,88:427-435.
    Moser SA, Heiss LN, Unance ER. Inter leukinl is linked to the respiratory epithelialcytopathology of pertussis[J]. Infect Immun,1993,61(8):3123-3128.
    Najiah M, Lee KL, Noorasikin H, Nadirah M, Lee SW. Phenotypic and genotypiccharacteristics of Mycobacterium isolates from fighting fish Betta spp. in Malaysia[J].Res Vet Sci2011.91:342-345.
    Ngeleka M, Kwaga JKP, White DG, Whittam TS, Riddell C, Goodhope R, Potter AA,Allan B. Escherichcoli cell ulitisin broiler chickens: clonal relation shipsamon strainsand analysis of virulence associated factors of isolate from diseased birds[J]. InfectImmun1996,64(8),3118-3126.
    Nikaido H, Rosenbery EY. Porin channels in Escherichiacoli:studies with liposomesreconstituted from purified proteins[J].J Bacteriol,1983,153:241-252.
    Nolan LK, Wooley RE, Giddings CW, et.al. Characteization of an avirulent mutant ofavirulent avian Escherichcoli isolate[J]. Avian Dis1994,38(1):146-150.
    Obayashi Y, Fujita J, Ichiyama S, et al. Genomic fingerprinting of Staphylococcus aureusby random amplified polymorphic DNA[J]. Diagn Microbiol Infect Dis1997,28(2):53~56.
    Odugbo MO, Musa U, Ekundayo SO, Okewole PA, Esilonu J. Bordetella avium infectionin chickens and quail in Nigeria: preliminary investigations[J]. Vet Res Commun2006,30:1-5.
    Ongor H, Kalin R, Acik MN. Detection of Mycoplasma ovipneumoniae from goats withnasal discharge by culture and polymerase chain reaction[J]. Pak Vet J2011,31:244-248.
    Onovian O, Robison T. Detection of antibody against M.mycoides subspmycoides in cattleby an enzyme-linked immunosorbent assay[J]. Veterinary Record1979,105:165-167.
    Parasadarao NV, Wass CA, Weiser JN, Stins MF, Huang SH, Kim KS. Outer membraneproteinA of Escherichiacoli contributes toinvasion of brain microvas cular endothelialcells[J]. Infect Immun1996,64(1):146-153.
    Pettersson A, Ley PVD, Poolman JT, Tommassen J. Molecular characterization of the98.2kilodalton Iron regulated outer membrane protein of neisseria meningitides[J]. InfectImmun1993,61(1):4724-4733.
    Poorbaghi SL, Mohammadi A, Asasi K, Molecular detection of avian infectious bronchitisvirus serotypes from clinically suspected broiler chicken flocks in Fars province ofIran[J]. Pak Vet J2012.32:93-96.
    Raffel TR, Register KB, Marks SA, Temple L. Prevalence of Bordetella avium infection inselected wild and domesticated birds in the eastern USA[J]. J Wildlife Dis2002.38:40-46.
    Riain UN, Cormican MG. PCR based fingerprinting of Enterobacter cloacae[J]. J HospInfect1994,27:237~240.
    RimLer RB,Kunkle RA. Bacterin-induced protection of turkeys against fowl cholerafollowing infection with Bordetella avium[J]. Avian Dis1998,42(4):752-756.
    RimLer RB, Simmons DG, Gray JG. Transmission of acute respiratory disease(rhinotrachetitis)of turkeys[J]. Avian Dis1979,23:132-138.
    Rosqvist R, Bolin I, Wolfwatz H. Inhibitions of pHagocytsis in Yersini apseu do Tuberculosis: a virulent plasmid encoded ability involving the Yopzb protein[J]. Infect Immun1988,56(8):2139-2143.
    Roy S, Das AB, Ghosh AN, Biswas T. Purification,poreforming ability and antigenicrelatedness of the major outer membrane protein of shigelladys enteriae type[J]. InfectImmun1994,62(10):4333-4338.
    Sacco RE, Register KB, Nordholm GE, Restriction enzyme analysis and ribotypingdistinguish Bordetella avium and Bordetella hinzii isolates[J]. Epidemiol Infect2000.124:83-90.
    Saif YM, Moorhead PD, Dearth RN, Jackwood DJ. Observations on Alcaligenes faecalisinfection in turkeys[J]. Avian Dis1980,(24):665-684.
    Sherman P, Cockerill F, Soni R, Brunton J. Outer membrane are competitive inhibitor ofEscherichiacoli O157BH7adherence to epithelial cell[J]. Infect Immun1991,59(3):890-899.
    Sebaihia M, Preston A, Maskell DJ, Kuzmiak H, Connell TD, King ND, Orndorff PE,Miyamoto DM, Thomson NR, Harris D, Goble A, Lord A, Murphy L, Quail MA,Rutter S, Squares R, Squares S, Woodward J, Parkhill J, Temple LM. Comparisonof the genome sequence of the poultry pathogen Bordetella avium with those of B.bronchiseptica, B. pertussis, and B. parapertussis reveals extensive diversity in surfacestructures associated with host interaction[J]. J Bacteriol2006.188:6002-6015.
    Mattoo S, Cherry JD. Molecular Pathogenesis,Epidemiology,and Clinical Manifestations ofRespiratory Infections Due to Bordetella pertussis and Other Bordetella Subspecies[J].Clinical Microbiology Reviews2005,18(2):326-382.
    Shelton CB, Temple LM, Orndorff PE. Use of bacterio-phage Ba1to identify propertiesassociated with Bordetella avium virulence[J]. Infect Immun2002,70(3):1219-1224.
    Shin EK, Seo YS, Han JH, Hahn TW, Diversity of swine Bordetella bronchiseptica isolatesevaluated by RAPD analysis and PFGE[J]. J Vet Sci2007,8:65-73.
    Simmons DG, Gray JG. Transmission of acute respiratory disease (rhinotrarhetitis) ofturkeys[J]. Avian Dis1979,23:132-138.
    Simmons DJ, Dee JC, Rose LP. A heat-stable toxin isolated from the turkeycoryza agentBordetella avium[J]. Avian Dis1986,30:761-765.
    Skeeles, JK, Swafford WS, Wages DP, Hellwig HM, Slavik MF, Beasley JN, HoughtenGE, Blore PJ, Crawford D. Studies on the use of a long-acting oxytetracycl;ine inturkeys: Efficacy against experimental infections with Alcaligenesfaecalis andPasteurella multocida[J]. Avian Dis1983.27:1126-1130.
    Sonntang I, Schwarz H, Hirota Y, Henning U. Cell envelope and shape ofEscherichiacoli:multiple mutants missing the outer membrane lipoprotein andother majorouter membrane proteins [J]. J Bacteriol1978,136(1):280-285.
    Spears PA, Temple LM, Miyamoto DM, Maskell DJ, Orndorff PE. Unexpectedsimilarities between Bordetella avium and other pathogenic bordetellae[J]. Infect Immun2003.71:2591-2597.
    Spilker T, Liwienski AA, Lipuma JJ. Identification of Bordetella spp. in respiratoryspecimens from individuals with cystic fibrosis[J]. Clin Microbiol Infect2008.14:504-506.
    Sun S, Sun A, Cui Z. Epidemiological and pathological studies of subgroup J avian leukosisvirus infections in Chinese local yellow chickens[J]. Avian Pathol2007,36(3):221-226
    Suresh P, Arp LH. A monoclonal antibody-based latex bead agglutination test for thedetection of Bordetella avium[J]. AvianDis1993Jul-Sep;37(3):767-72.
    Tazumi A, Petry S, Hayashi K, Moore JE, Millar BC, Matsuda M. Molecularidentification and characterization of the intervening sequences (IVSs) within23Sribosomal RNA (rRNA) genes of Taylorella asinigenitalis isolated in France[J]. Res VetSci2012,92,45-52
    Temple LM, Miyamoto DM, Mehta M, Capitini CM, Stetina VS, Barnes HJ,Christensen VL, Horton JH, Spears PA, Orndorff PE. Identification andcharacterization of two Bordetella avium gene products required for hemagglutination[J].Infect Immun2010.78:2370-2376.
    Thanassi DG, Suh GSB, Nikaido H. Role of outer membrane barrier inefflux mediatedtetracycline resistance of Escherichiacoli[J]. J Bacteriol1995,177(4):998-1007.
    Truscott WM, Hirsh DC. Demonstration of an outer membrane proteins withanti-pHagocytic from Pateurel lamultocida of avian origin[J]. Infect Immun1988,56(6):1538-1544.
    Van Couwenberghe CJ, Cohen SH, Tang YJ, Gumerlock PH, Silva J Jr. Genomicfingerprinting of epidemic and endemic trains of Stenotrophomonsamaltophilia(formerly Xanthomnsa mallophilia)by arbitrarily primed PCR[J]. J ClinMicrobiol1995,33:1289~1294.
    Vidotto MC, Muller EE, de Freitas JC, Alfieri AA, Guimar es IG, Santos DS. Virulencefactors of avian Escherichia coli[J]. Avian Dis1990,34:531-538.
    Vordermeier HM, Hoffmann P, Gombert FO, Jung G, Bessler WG. Synthetic peptidesegment from the Escherichiacoli porin OmpF constitute eukocyte activators[J]. InfectImmun1990,(8):2719-2724.
    Weiser JN, Gotschlich EC. Outer membrane proteinA(OMPA) contributes to serumresistance and pathogenicity of Escherichiacolik21[J]. Infect Immun1991,59(7):2252-2258.
    Wikler MA. Methods for dilution antimicrobial susceptibility tests for bacteria that growaerobically: approved standard[J], Clinical and Laboratory Standards Institute2006.26(2).
    Wulff G, Gram L, Ahrens P, Vogel BF. One group of genetically similar Listeriamonocytogenes strains frequently dominates and persists in several fish slaughter-andsmokehouses[J]. Appl Environ Microbiol,2006.72:4313-4322.
    Yamamoto T, Wakisaka N, Nakae T, Kamano T, Serichantalergs O, Echeverria P.Characterization of a novel hemagglutinin of diarrhea-associated Escherichia coli thathas characteristics of diffusely adhering E. coli and enteroaggregative E. coli [J]. InfectImmun1996,64(9):3694-3702.
    Yang X, Hou L, Ye J, He Q, Cao S. Detection of porcine circovirus type2(PCV2) inmosquitoes from pig farms by PCR[J]. Pak Vet J,2012.32:134-135.
    Yersin, AG, Edens FW, Simmons DG. TryptopHan2,3-dioxyge-nase activity in turkey poultsinfected with Bordetella avium[J]. Comp Biochem PHysio1990,197B:755-760.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700