用户名: 密码: 验证码:
苹果园土壤微生物多样性及酵母菌新种研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过盆栽试验,采用微生物稀释平板培养法对平邑甜茶、八棱海棠、楸子、新疆野苹果、东北山荆子5种苹果砧木土壤根际微生物数量、土壤酶活性及其相关性进行研究;以2年生红富士/平邑甜茶为试材,研究生草和覆盖对苹果根际土壤养分及微生物数量和群落代谢功能的影响;通过采集12个省(市)的81个苹果园土壤样品,采用微生物培养法研究了我国苹果主产区果园土壤微生物特征;利用26S rRNA的D1/D2区域序列分析并结合形态学特征对红富士苹果园的酵母菌多样性进行了研究,并基于形态、生理生化特征以及18S rRNA、ITS和26S rRNA基因D1/D2区基因序列对子囊菌酵母新种和担子菌酵母新种进行鉴定。主要结果如下:
     1.不同苹果砧木土壤根际微生物各生理类群数量差异显著,并且都以细菌占绝对优势,放线菌次之,真菌最少。不同苹果砧木土壤根际蔗糖酶、磷酸酶、脲酶和过氧化氢酶活性各异。皮尔逊相关分析表明,土壤微生物数量与土壤酶活性之间存在相关关系。苹果砧木根际土壤微生物多样性指数依次为新疆野苹果>平邑甜茶>八棱海棠>楸子>东北山荆子。
     2.与传统清耕栽培相比,生草和覆盖处理均能显著提高幼龄苹果根际土壤养分含量;各处理幼龄苹果根际土壤微生物以细菌占优势、放线菌次之、真菌最少,生草和覆盖处理的根际土壤细菌、真菌、放线菌、自生固氮菌、纤维素降解菌和微生物总数量均显著高于清耕。土壤微生物数量与土壤养分含量之间存在显著相关性。生草和覆盖均显著增强土壤微生物利用碳源的能力,提高土壤微生物群落的功能多样性,效果依次为白三叶草>黑麦草>秸秆覆盖>清耕。
     3.土壤微生物各生理类群在我国苹果主产区果园中的优势不同,细菌在各苹果园土壤微生物中的比例均最高。Pearson相关分析表明,土壤微生物多样性指数与土壤有机质含量显著正相关。不同省区苹果园土壤微生物多样性指数存在差异,依次为:黑龙江>云南>新疆>山东>北京>宁夏>山西>辽宁>河北>河南>甘肃>陕西。对各地苹果园土壤微生物数量进行聚类分析可将各省苹果园分为三类:黑龙江、辽宁;新疆、云南、陕西、甘肃、山西、宁夏;河北、山东、北京、河南,与我国根据气候和生态适宜标准划分的苹果主产区状况基本吻合。
     4.红富士果园中富含丰富的酵母资源,北京和山东两果园的酵母菌种构成明显差异,并分别具有不同的优势属。北京苹果园共分离酵母菌129株,鉴定为13属21种,优势属为Pichia(4个种),Cryptococcus(3个种),Pseudozyma(3个种),子囊菌占较大优势,分布于8属12种,占总种数的57.1%。山东苹果园共分离酵母291株,鉴定为13属26种,优势属为Candida(6个种),Pichia(4个种)和Cryptococcus(3个种),并且子囊菌占较大优势,分布于7属17种,占总种数的65.4%。
     5.从泰安苹果园的土壤中分离到三株子囊菌酵母(TA11TR-1T, TA11TR-4和TA11TR-6),根据表型特征及18S rRNA,ITS和26S rRNA基因D1/D2区基因序列分析表明,属于Kazachstania属。命名为Kazachstania taianensis sp. nov.(模式菌株TA11TR-1T=AS2.4160T=CBS11405T)。通过18S及D1/D2序列N-J比对得,K.taianensis sp. nov.与Kazachstania sinensis, Kazachstania naganishii和Kazachstaniatelluris在同一个分支上。ITS-5.8S rDNA区总长度为983bp,长于已分离到的其它子囊菌酵母。
     6.从泰安苹果园中分离到4株担子菌酵母(Y13-1T, Y2-1, Y6-3和Y8-2),基于ITS和26S rRNA基因D1/D2区基因序列进行系统聚类分析,在系统树上这四个菌株聚类在Tremellomycetes的Kwoniella分支上,明显区别于它们的最近缘种。与Cryptococcuscuniculi最接近,但远离于Kwoniella heveanensis。因此定为新种,命名为Kwoniellashandongensis sp. nov.(模式菌株Y13-1T=CGMCC2.04458T=CBS12478T)。MycoBank编号为MB564868。
Using microbial dilution plate counting cultivation method, the rhizosphere soilmicrobial quantity and enzyme activity and their relations of five kinds of apple rootstocks (M.hupehensis Rehd., M. micromalus Makino., M. prunifolia(Willd) Borkh., M. sievesii(Ledeb.)Roemer. and M. baccata Borkh.) were analyzed in a short-term pot experiment. One fieldexperiment was conducted to investigate the effects of grassing (Trifolium repens and Loliumperenne) and mulching (straw mulch) on rhizosphere soil microbial quantity and functionaldiversity in young ‘Fuji’apple orchard by using plate count method and Biolog micro-platetechnique. Soil samples were collected from81apple orchards in12different provinces andcities. The microbial characteristics of apple orchard in major production areas of China werestudied by microbial cultivation. Yeast diversity of the Fuji apple orchard was studied by26SrDNA Dl/D2domain sequence analysis and the combination of morphology. Based onphenotypic and physiological characteristics and sequence analyses of the18S rRNA gene,internal transcribed spacer (ITS) regions and26S rRNA gene D1/D2domain. The nameKazachstania taianensis sp. nov. and Kwoniella shandongensis sp. nov. are proposed. Themain results were followed:
     1. The number of microbial physiological groups in rhizosphere soil under differentvarieties of apple rootstocks were significantly differences, and bacteria was dominant,followed by actinomycetes, fungi at least. Different varieties of apple rootstocks rhizospheresoil invertase, phosphatase, urease and catalase activity varied. Pearson correlation analysisindicated that certain correlation existenced between soil microbial amount and soil enzymeactivities. The microbial biodiversity indices in rhizosphere soil were different among applerootstocks, were as follows: M. sievesii(Ledeb.) Roemer> M. hupehensis Rehd.> M.micromalus Makino.> M. prunifolia(Willd) Borkh.> M. baccata Borkh.
     2. Compared with traditional farming method, grassing and mulching measures couldsignificantly improve the soil nutrient content and soil microorganisms in rhizosphere of young apple, and bacteria was dominant, followed by actinomycetes, fungi at least, andbacteria, fungi, actinomycetes, nitrogen-fixing bacteria, cellulose-degrading bacteria and totalmicroorganisms quantity was significantly higher than the conventional farming control.Pearson correlation analysis showed that significant correlation were existenced between soilmicrobial quantity and soil nutrient content. Grassing and mulching measures can alsoincrease the capacity to utilize carbon substrate and the biodiversity and evenness of soilmicrobial community, were as follows: Trifolium repens> Lolium perenne> straw mulch>clean tillage.
     3. The advantages of soil microbial physiological groups were different in each appleorchard in different regions of China. Bacteria was in the highest proportion in the appleorchard. Pearson correlation analysis indicated that significantly positive correlationexistenced between soil microbial diversity index and soil organic matter content. Soilmicrobial diversity index was different in each apple orchard between different provinces wasas follows: Heilongjiang> Yunnan> Xinjiang> Shandong> Beijing> Ningxia> Shanxi>Liaoning> Hebei> Henan> Gansu> Shanxi. Cluster analysis the number of microorganismsof different apple orchards can be divided into three groups: Heilongjiang, Liaoning; Xinjiang,Yunnan, Shaanxi, Gansu, Shanxi, Ningxia; Hebei, Shandong, Beijing, Henan, consisted withthe status of the major apple producing areas divided by the climate and ecological suitabilitystandards.
     4. Yeast is abundant in the Fuji orchard. The difference of yeast species between the twoorchards is significant, which contain different dominant genera yeast, respectively. A total of129yeast strains belonging to21species in13genera were isolated from samples collectedfrom Fuji apple orchards in Beijing. The dominant genera identified were Pichia (4species),Cryptococcus (4species) and Pseudozyma (3species). Among the yeast species identified,57.1%were ascomycetous yeasts belonging to12species in8genera. A total of291yeaststrains belonging to26species in13genera were isolated from samples collected from Fujiapple orchards in Shandong province. The dominant genera identified were Candida (6species), Pichia (4species) and Cryptococcus (3species). Ascomycetous yeast species werealso dominant, accounting for65.4%(17species belonging to7genera) of the speciesidentified from the Shangdong strains.
     5. Three teleomorphic ascomycetous yeast strains (TA11TR-1T, TA11TR-4andTA11TR-6) isolated from the orchard soil from Tai'an, Shandong province, China, wererevealed to represent a novel species within the genus Kazachstania based on phenotypiccharacterization and sequence analyses of the18S rRNA gene, internal transcribed spacer(ITS) regions and26S rRNA gene D1/D2domain. The name Kazachstania taianensis sp. nov.(type strain TA11TR-1T=AS2.4160T=CBS11405T) is proposed. K. taianensis sp. nov. wasclustered in a branch together with Kazachstania sinensis, Kazachstania naganishii and theKazachstania telluris complex with moderate bootstrap support in the neighbor-joining treeconstructed from combined18S and D1/D2sequences. The new species possessed specialITS1(338bp) and ITS2(488bp) sequences. The total length of the ITS-5.8S rDNA regionof the species was983bp, being much longer than those of other ascomycetous yeast speciesdescribed so far.
     6. Four basidiomycetous yeast strains (Y13-1T, Y2-1, Y6-3and Y8-2) isolated from anapple orchard in Tai'an, Shandong province, China. Phylogenetic analysis based on26S rRNAgene D1/D2domains and ITS regions revealed that those strains were located in theKwoniella clade in the Tremellomycetes and were closely related to Cryptococcus cuniculiout Kwoniella heveanensis and clearly distinct from the latter species. Therefore, a newspecies, named as Kwoniella shandongensis sp. nov.(type strain Y13-1T=CGMCC2.04458T=CBS12478T) is proposed. The MycoBank number of the new species is MB564868.
引文
白逢彦,贾建华,梁慧燕.假丝酵母属疑难菌株大亚基rDNA D1/D2区域序列分析及其分类学意义.菌物系统,2002,21(1):27-32.
    鲍士旦.土壤农化分析(第三版).北京:中国农业出版社,2000.44-196.
    卜玉山,苗果园,周乃健,邵海林,王建程.地膜和秸秆覆盖土壤肥力效应分析与比较.中国农业科学,2006,39(5):1069-1075.
    曹慧,孙辉,杨浩,孙波,赵其国.土壤酶活性及其对土壤质量的指示研究进展.应用与环境生物学报,2003,9(1):105-109.
    董立国,袁汉民,李生宝,袁海燕,潘占兵.玉米免耕秸秆覆盖对土壤微生物群落功能多样性的影响.生态环境学报,2010,19(2):444-446.
    董淑富,何承顺,黄天栋,束怀瑞.苹果砧木苗根际微域环境的研究.土壤学报,1997,34(3):323-326.
    樊晓刚,金轲,李兆君,荣向农.不同施肥和耕作制度下土壤微生物多样性研究进展.植物营养与肥料学报,2010,16(3):744-751.
    高登涛,郭景南,魏志峰,杨朝选.果园地面覆盖对土壤质量和苹果生长发育的影响.果树学报,2010,27(5):770-777.
    高茂盛,廖允成,李侠,黄金辉.不同覆盖方式对渭北旱作苹果园土壤贮水的影响.中国农业科学,2010,43(10):2080-2087.
    高美英,冀常军,王中英,祁素萍.覆盖对果园土壤真菌数量年变化的影响.山西农业科学,2000a,28(1):46-48.
    高美英,刘和,冀常军,王中英,祁素萍.覆盖对果园土壤氨化细菌数量年变化的影响.土壤通报,2000b,31(6):273-274.
    高美英,刘和,秦国新,乔永胜,王中英.秸秆覆盖对苹果园土壤固氮菌数量年变化的影响.果树学报,2000c,17(3):185-187.
    高云超,朱文珊,陈文新.秸秆覆盖免耕土壤真菌群落结构与生态特征研究.生态学报,2001,21(10):1704-1710.
    关松荫.土壤酶及其研究方法.北京:农业出版社,1986:274-332.
    韩明玉,冯宝荣.国内外苹果产业技术发展报告.陕西:西北农林科技大学出版社,2011:6,29-30.
    和文祥,谭向平,王旭东,唐明,郝明德.土壤总体酶活性指标的初步研究.土壤学报,2010,7(6):211-215.
    胡江春,薛德林,马成新,王书锦.植物根际促生菌(PGPR)的研究与应用前景.应用生态学报,2004,15(10):1963-1966.
    黄继川,彭智平,于俊红,林志军,杨林香.施用玉米秸秆堆肥对盆栽芥菜土壤酶活性和微生物的影响.植物营养与肥料学报,2010,16(2):348-353.
    惠竹梅,李华,龙妍,张瑾,庞学良.葡萄园行间生草体系中土壤微生物数量的变化及其与土壤养分的关系.园艺学报,2010,37(9):1395–1402.
    惠竹梅,岳泰新,张瑾,程建梅,李华.西北半干旱区葡萄园生草体系中土壤生物学特性与土壤养分的关系.中国农业科学,2011,44(11):2310-2317.
    霍颖,张杰,王美超,姚允聪.梨园行间种草对土壤有机质和矿质元素变化及相互关系的影响.中国农业科学,2011,44(7):1415-1424.
    焦蕊,赵同生,贺丽敏,许长新,郝宝峰,于丽辰.自然生草和有机物覆盖对苹果园土壤微生物和有机质含量的影响.河北农业科学,2008,12(12):29-30,48.
    李会科,张广军,赵政阳,李凯荣.黄土高原旱地苹果园生草对土壤养分的影响.园艺学报,2007,34(2):477-480.
    李娟,赵秉强,李秀英Hwat B. S.长期有机无机肥料配施对土壤微生物学特性及土壤肥力的影响.中国农业科学,2008,41(1):144-152.
    李绍兰,陈有为,杨丽源,方霭祺,张玲琪,尹惠琼,王璇.云南酵母菌的研究I:西双版纳热带雨林中的酵母菌.云南大学学报(自然科学版),2002,24(5):378-380.
    李双石,苏宁,梁恒宇,陈晶瑜,韩北忠.蛇龙珠葡萄酵母菌种群多样性和生态分布特征.中国酿造,2011,230(5):27-32.
    李天忠,张志宏.现代果树生物学.北京:科学出版社,2008,130-133,157-159,290-295.
    李文英,彭智平,杨少海,于俊红,黄继川,吴雪娜,杨林香.植物根际促生菌对香蕉幼苗生长及抗枯萎病效应研究.园艺学报,2012,39(2):234-242.
    李艳,卢君,张利中.沙城龙眼葡萄园土壤中酵母菌多样性研究.食品科学,2010,31(19):313-316.
    李云,孙波,李忠佩,车玉萍.不同气候条件对旱地红壤微生物群落代谢特征的长期影响.土壤,2011,43(1):60-66.
    林先贵.土壤微生物研究原理与方法.北京:高等教育出版社,2010:52-62.
    刘剑君,王豹祥,张朝辉,席淑雅,刘天翔,曹育博,邱立友.一株具有固氮功能的烟草根际微生物的鉴定及其初步效应.植物营养与肥料学报,2011,17(5):1237-1242.
    刘灵芝,吕德国,秦嗣军,马怀宇,杜国栋,刘国成.生草覆盖‘寒富’苹果园土壤优势细菌的碳代谢特征研究.园艺学报,2011,38(10):1837-1846.
    刘素慧,刘世琦,张自坤,尉辉,齐建建,段吉锋.大蒜连作对其根际土壤微生物和酶活性的影响.中国农业科学,2010,43(5):1000-1006.
    陆惠中,王启明,贾建华,白逢彦.秦岭地区子囊菌酵母物种多样性研究.菌物学报,2004,23(2):183-187.
    吕德国,赵新阳,马怀宇,王万新.覆草对苹果园土壤养分和微生物的影响.贵州农业科学,2010,38(6):104-106.
    邵宝林,龚国淑,张世熔,余霞,杨丹玲,张洪,刘晓璐.横断山北部高山区不同生态条件下土壤微生物数量及其与生态因子的相关性.生态学杂志,2006,25(8):885-890.
    束怀瑞.提高果树产业发展质量,科学有序解决存在问题.中国果菜,2004,(1):5-6.
    谭向平,和文祥,杨静.渭北旱塬苹果园土壤酶特征研究.园艺学报,2011,38(4):621–630.
    唐玉姝,魏朝富,颜廷梅,杨林章,慈恩.土壤质量生物学指标研究进展.土壤,2007,39(2):157-163.
    唐玉姝,慈恩,颜廷梅,魏朝富,杨林章,沈明星.太湖地区长期定位试验稻麦两季土壤酶活性与土壤肥力关系.土壤学报,2008,45(5):1000-1006.
    王启明.中国担子菌酵母的分类与分子系统学研究.中国科学院微生物所博士论文.2004,76-84.
    王庆国.新疆野生酵母的物种多样性及利用研究.山东轻工业学院硕士论文.2007,23.
    夏雪,谷洁,车升国,高华,秦清军.施氮水平对塿土微生物群落和酶活性的影响.中国农业科学,2011,44(8):1618-1627.
    徐华勤,肖润林,宋同清,罗文,任全,黄瑶.稻草覆盖与间作三叶草对丘陵茶园土壤微生物群落功能的影响.生物多样性,2008,16(2): l66-l74.
    许超德,李绍兰,杨丽源,周斌,李治滢,陈有为.云南杜鹃花上的酵母菌物种多样性.菌物研究,2003,1(1):37-39.
    许衡,杨和生,徐英,毛志泉,束怀瑞.果树根际微域环境的研究进展.山东农业大学学报:自然科学版,2004,35(3):476-480.
    严君,韩晓增,王树起,李晓慧,朱巍巍.不同形态氮素对种植大豆土壤中微生物数量及酶活性的影响.植物营养与肥料学报,2010,16(2):341-347.
    殷瑞敬,温晓霞,廖允成,黄金辉,高茂盛.耕作和覆盖对苹果园土壤酶活性的影响.园艺学报,2009,36(5):717-722.
    于强波,李亚东,张志东,刘海广,吴林.地面覆盖对越橘园土壤微生物的影响.吉林农业大学学报,2009,31(5):592-594.
    张桂玲.秸秆和生草覆盖对桃园土壤养分含量、微生物数量及土壤酶活性的影响.植物生态学报,2011,35(12):1236-1244.
    张洪霞,谭周进,张祺玲,盛荣,肖和艾.土壤微生物多样性研究的DGGE-TGGE技术进展.核农学报,2009,23(4):721-727.
    张江红,张殿生,毛志泉,李中勇,赵明新.苹果砧木幼苗根系分泌物的分离与鉴定.河北农业大学学报:自然科学版,2009,32(4):29-32.
    张萍,郭辉军,刀志灵,龙碧云.高黎贡山土壤微生物的数量和多样性.生物多样性,1999,7(4):297-302.
    张强,魏钦平,齐鸿雁,王小伟,黄武仁,刘军.北京果园土壤营养状况和微生物种群调查分析.中国农学通报,2009,25(17):162-167.
    张翔,朱洪,孙春河,曹友节.长期施肥对土壤微生物和腐殖质组分的影响.华北农学报,1998,13(2):87-92.
    张义,谢永生,郝明德,摄晓燕.不同地表覆盖方式对苹果园土壤性状及果树生长和产量的影响.应用生态学报,2010,21(2):279-286.
    赵政阳,冯宝荣,王雷存,王章陵,周卫国.我国苹果产业向优势区域集中的战略思考.西北植物学报,2004,13(4):195-199.
    郑超,谭中文,刘可星,廖宗文,刘月廉,廖愉朗.不同覆盖条件下甘蔗土壤微生物区系研究.华南农业大学学报(自然科学版),2004,25(2):5-9.
    郑华,欧阳志云,方治国,赵同谦. BIOLOG在土壤微生物群落功能多样性研究中的应用.土壤学报,2004,41(3):456-461.
    周才平,欧阳华.温度和湿度对暖温带落叶阔叶林土壤氮矿化的影响.植物生态学报,2001,25(2):204-209.
    周桔,雷霆.土壤微生物多样性影响因素及研究方法的现状与展望.生物多样性,2007,15(3):306-311.
    朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述.生态环境,2003,12(1):102-105.
    Adesemoye A. O. and Kloepper J. W. Plant–microbes interactions in enhanced fertilizer-useefficiency. Appl. Microbiol. Biotechnol,2009.(85):1–12
    Adesemoye A. O., Torbert H. A. and Kloepper J. W. Plant growthpromoting rhizobacteriaallow reduced application rates of chemical fertilizers. Microb. Ecol,2009.(58):921–929.
    Albiach R., Canet R., Pomanes F. and Ingelmo F. Microbial biomass content and enzymaticactivities after the application of organic amendments to a horticultural soil. BioresourceTechnol,2000.(75):43–48.
    Al-Falih A. M. Nitrogen transformation in vitro by some soil yeasts. Saudi J. Biol. Sci,2006.(13):135-140.
    Al-Falih A. M. Phosphate solubilization in vitro by some soil yeasts. Qatar Univ. Sci. J.,2005.(25):119-125.
    Al-Falih A. M. and Wainwright M. Nitrification, S oxidation and P-solubilization by the soilyeast Williopsis californica and by Saccharomyces cerevisiae. Mycol. Res,1995.(99):200-204.
    Alvear M., Rosas A., Rouanet J. L., Borie F. Effects of three soil tillage systems on somebiological activities in an Ultisol from southern Chile. Soil Till. Res,2005.(82):195–202.
    Arshad M. and Frankenberger W. T. Plant growth regulating substances in the rhizosphere:Microbial production and functions. Adv. Agron,1998.(62):46–151.
    Aslantas R., Cakmakci R. and Sahin F. Effect of plant growth promoting rhizobacteria onyoung apple tree growth and fruit yield under orchard conditions. Sci. Hortic.2007.(111):371–377.
    Avrahami S., Liesack W. and Conrad R. Effects of temperature and fertilizer on activity andcommunity structure of soil ammonia oxidizers. Environ. Microbiol,2003.(5):691-705.
    Bai F. Y., Zhao J. H., Takashima M., Jia J. H., Boekhout T. and Nakase T. Reclassification ofthe Sporobolomyces roseus and the Sporidiobolus pararoseus complexes, with thedescription of Sporobolomyces phaffii sp. nov. Int. J. Syst. Evol. Micr,2002.(52):2309–2314.
    Baker J. M., Ochsner T. E., Venterea R. T. and Griffis T. J. Tillage and soil carbonsequestration-what do we really know? Agr. Ecosyst. Environ,2007.(118):1–5.
    Baldani J. I., Caruso L., Baldani V. L. D., Goi S. R. and Dobereiner J. Recent advances inBNF with non-legume plants. Soil Biol. Biochem.,1997.(29):911–922.
    Barea J. M., Pozo M. J., Azcon R. and Azcon-Aguilar C. Microbial co-operation in therhizosphere. J. Exp. Bot,2005.(56):1761–1778.
    Bar-Ness E., Chen Y., Hadar Y., Marschner H. and Romheld V. Siderophores ofPseudomonas putida as an iron source for dicot and monocot plants. Plant Soil,1991.(130):231–241.
    Baudoin E., Benizri, E. and Guckert, A. Impact of artificial root exudates on the bacterialcommunity structure in bulk soil and maize rhizosphere. Soil Biol. Biochem.,2003.(35)1183–1192.
    Bending G. D., Turner, M. K., Rayns, F., Marx, M. C. and Wood, M. Microbial andbiochemical soil quality indicators and their potential for differentiating areas undercontrasting agricultural management regimes. Soil Biol. Biochem.,2004.(36):1785–1792.
    Benitez E., Nogales R., Campos M. and Ruano F. Biochemical variability of olive orchardsoils under different management systems. Appl. Soil Ecol,2006.(32):221-231.
    Benizri E., Dedourge O., Di Battista-Leboeuf C., Nguyen C., Piutti S. and Guckert A. Effectof maize rhizodeposits on soil microbial community structure. Appl. Soil Ecol,2002.(21):261–265.
    Bent E., Breuil C., Enebak S. and Chanway C. P. Surface colonization of lodgepole pine(Pinus contorta var. latifolia [Dougl. Engelm.]) roots by Pseudomonas fluorescens andPaenibacillus polymyxa under gnotobiotic conditions. Plant Soil,2002.(241):187–196.
    Bent E., Tuzun S., Chanway C.P. and Enebak S. Alterations in plant growth and in roothormone levels of lodgepole pines inoculated with rhizobacteria. Can. J. Microbiol,2001.(47):793–800.
    Bissett A., Richardsona A. E., Bakerb G. and Thrall P. H. Long-term land use effects on soilmicrobial community structure and function. Appl. Soil Ecol,2011.(51):66-78.
    Biswas J. C., Ladha J. K., Dazzo F. B., Yanni Y. G. and Rolfe B. G. Rhizobial inoculationinfluences seedling vigour and yield of rice. Agronomy Journal,2000.(92)880–886.
    Boekhout T., Fonseca A., Sampaio J. P., Bandoni R. J., Fell J. W. and Kwon-Chung K. J.Discussion of Teleomorphic and Anamorphic Basidiomycetous Yeasts. In The Yeasts, ATaxonomic Study,5th edn,2011:1339-1372.
    Bonkowski M., Cheng W., Griffiths B.S., Alphei J. and Scheu S. Microbial-faunalinteractions in the rhizosphere and effects on plant growth. Eur. J. Soil Biol,2000.(36):135-147.
    Bossio D A, Fleck J A, Scow K M, Fujii R. Alteration of soil microbial communities andwater quality in restored wetlands. Soil Biol. Biochem.,2006,38:1223-1233.
    Botha A. The importance and ecology of yeasts in soil. Soil Biol. Biochem.,2011.(43):1-8.
    Botha A. Yeast in soil. In: Rosa, C.A., Peter, G. The Yeast Handbook; Biodiversity andEcophysiology of Yeasts. Springer-Verlag, Berlin,2006:221-240.
    Bottini R., Cassan F. and Piccoli P. Gibberellin production by bacteria and its involvement inplant growth promotion and yield increase. Appl. Microbiol. Biotechnol,2004.(65):497-503.
    Brockett R. D., Freeman C. and Ostle N. J. Microbial contributions to climate change throughcarbon cycle feedbacks. Multidisciplinary J. Microb. Ecol,2012.(2):805–814.
    Broekaert W. F., Delaure S. L., De Bolle M. F. C. and Cammue B. P. A. The role of ethylenein host-pathogen interactions. Annu. Rev. Phytopathol,2006.(44):393–416.
    Brussaard L., de Ruiter P. C. and Brown G. G. Soil biodiversity for agricultural sustainability.Agr. Ecosyst. Environ,2007.(121):233–244.
    Buckley D. H. and Schmidt T. M. The structure of microbial communities in soil and thelasting impact of cultivation. Microbiol. Ecol.,2001.(42):11–21.
    Buckley D. H. and Schmidt T. M. Diversity and dynamics of microbial communities in soilsfrom agroecosystems. Environ. Microbiol,2003.(5):441–452.
    Burke D. J. and Chan C. R. Effects of the invasive plant garlic mustard (Alliaria petiolata) onbacterial communities in a northern hardwood forest soil. Can. J. Microbiol,2010.(56):81-86.
    Cakmakci R., Kantar F. and Sahin F. Effect of N2-fixing bacterial inoculation on yield ofsugar beet and barley. J. Plant Nutr. Soil Sci,2001.(164):527–531.
    Camatti-Sartori V., da Silva-Ribeiro R. T., Valdebenito-Sanhueza R. M., Pagnocca F. C.,Echeverrigaray S. and Azevedo J.L. Endophytic yeasts and filamentous fungi associatedwith southern Brazilian apple (Malus domestica) orchards subjected to conventional,integrated or organic cultivation. J. Basic Microbiol,2005.(45):397-402.
    Carreiro M. M., Sinsabaugh R. L., Repert D. A. and Parkhurst, D. F. Microbial enzyme shiftsexplain litter decay responses to simulated nitrogen deposition. Ecology,2000.(81):2359–2365.
    Chan C. O., Casper P., Sha L. Q., Feng Z. L., Fu Y., Yang X. D., Ulrich A. and Zou X. M.Vegetation cover of forest, shrub and pasture strongly influences soil bacterialcommunity structure as revealed by16S rRNA gene T-RFLP analysis. FEMS Microbiol.Ecol.,2008.(64):449–458.
    Chanway C. P., Shishido M., Nairn J., Jungwirth S., Markham J., Xiao G. and Holl F. B.Endophytic colonization and field responses of hybrid spruce seedlings after inoculationwith plant growth-promoting rhizobacteria. Forest Ecol. Manag,2000.(133):81–88.
    Chen R., Wei S. C., Jiang Y. M., Wang Q. M. and Bai F. Y. Kazachstania taianensis sp. nov.,a novel ascomycetous yeast species from orchard soil. Int. J. Syst. Evol. Micr,2010.(60):1473-1476.
    Cheng Z., Park E. and Glick B. R.1-Aminocyclopropane-1-carboxylate deaminase fromPseudomonas putida UW4facilitates the growth of canola in the presence of salt. Can. J.Microbiol,2007.(53):912–918.
    Cho S. T., Tsai S. H., Ravindran A., Selvam A. and Yang S. S. Seasonal variation ofmicrobial populations and biomass in Tatachia grassland soils of Taiwan. Environ.Geochem. Hlth,2008.(30):255-272.
    Christine H. Stark Leo M. Condron Maureen O’Callaghan, Alison Stewart, Hong J. Di.Differences in soil enzyme activities, microbial community structure and short-termnitrogen mineralisation resulting from farm management history and organic matteramendments. Soil Biol. Biochem.,2008.(40):1352–1363.
    Cloete K. J., Valentine A. J., Stander M. A., Blomerus L. M. and Botha A. Evidence ofsymbiosis between the soil yeast Cryptococcus laurentii and a sclerophyllous medicinalshrub, Agathosma betulina (Berg.) Pillans. Microb. Ecol,2009.(57):624-632.
    Cocking E. C. Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil,2003.(252):169–175.
    Collignon C., Uroz S., Turpault M-P., Frey-Klett P. Seasons differently impact the structureof mineral weathering bacterial communities in beech and spruce stands. Soil Biol.Biochem.,2011.(43):2012-2022.
    Crecchio C., Curci M., Mininni R., Ricciuti P., Ruggiero P. Short-term effects of municipalsolid waste compost amendments on soil carbon and nitrogen content, some enzymeactivities and genetic diversity. Biol. Fertil. Soils,2001.(34):311–318.
    Creus C. M., Graziano M., Casanovas E. M., Pereyra M. A., Simontacchi M., Puntarulo S.,Barassi C. A. and Lamattina L. Nitric oxide is involved in the Azospirillumbrasilense-induced lateral root formation in tomato. Planta,2005.(221):297–303
    De Ruiter P. C., Neutela A. and Mooreb J. C. Biodiversity in soil ecosystems: the role ofenergy flow and community stability. Appl. Soil Ecol,1998.(10):217-228.
    Dey R., Pal K. K., Bhatt D. M. and Chauhan S. M. Growth promotion and yield enhancementof peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria.Res. Microbiol,2004.(159):371–394.
    Dieffenbach A. and Matzner E. In situ soil solution chemistry in the rhizosphere of matureNorway spruce (Picea abies [L.] Karst) trees. Plant Soil.2000.(222):149-161.
    Dolfing J., Vos A., Bloem J., Ehlert P. A. I., Naumova N. B., Kuikman P. J. Microbialdiversity in archived soils. Science,2004.(306):813–1813.
    Dong S., Neilsen D., Neilsen G. H. and Fuchigami L. H. Foliar N application reduces soilNO3--N leaching loss in apple orchards. Plant Soil,2005.(268):357–366.
    Dubey S. K., Padmanabhan P., Purohit H. J. and Upadhyay S. N. Tracking of methanotrophsand their diversity in paddy soil:a molecular approach. Curr. Sci,2003.(85):92-95.
    Dunfield K. E. and Germida J. J. Seasonal changes in the rhizosphere microbial communitiesassociated with field grown genetically modified canola (Brassica napus). Appl.Environ. Microbioliol,2003.(69):7310–7318.
    DuPont S. T., Culman S. W., Ferris H., Buckley D. H. and Glover J. D. No-tillage conversionof harvested perennial grassland to annual cropland reduces root biomass, decreasesactive carbon stocks, and impacts soil biota. Agr. Ecosyst. Environ,2010.(137):25–32.
    Egamberdiyeva D. Plant-growth-promoting rhizobacteria isolated from a Calcisol in asemi-arid region of Uzbekistan: biochemical characterization and effectiveness. J. PlantNutr. Soil Sci,2005.(168):94–99.
    El-Mehalawy A. A., Hassanein N. M., Khater H. M., Karam El-din E. A. and Youssef Y. A.Influence of maize root colonization by the rhizosphere actinomycetes and yeast fungi onplant growth and on the biological control of late wilt disease. Int. J. Agric. Biol,2004.(6):599-605.
    El-Tarabily K. A. Suppression of Rhizoctonia solani diseases of sugar beet by antagonisticand plant growth-promoting yeasts. J. Appl. Microbiol,2004.(96):69-75.
    El-Tarabily K. A. and Sivasithamparam K. Potential of yeasts as biocontrol agents ofsoil-borne fungal plant pathogens and as plant growth promoters. Mycoscience,2006.(47):25-35.
    Esitken A., Karlidag H., Ercisli S., Turan M. and Sahin F. The effects of spraying a growthpromoting bacterium on the yield, growth and nutrient element composition of leaves ofapricot (Prunus armeniaca L. cv. Hacihaliloglu). Aust. J.Agr. Res,2003.(54):377–380.
    Esperschutz J., Buegger F., Winkler J.B., Munch J.C., Schloter M., Gattinger A. Microbialresponse to exudates in the rhizosphere of young beech trees (Fagus sylvatica L.) afterdormancy. Soil Biol. Biochem,2009.(41):1976-1985.
    Farina R., Beneduzi A., Ambrosini A., de Campos S. B., Lisboa B. B., Wendisch V., VargasL. K. and Passaglia L. M. P. Diversity of plant growth-promoting rhizobacteriacommunities associated with the stages of canola growth. Appl. Soil Ecol,2012,55:44–52.
    Fell J. W, Boekhout T., Fonseca A., Scorzetti G. and Statzell-Tallman A. Biodiversity andsystematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2domain sequence analysis. Int. J. Syst. Evol. Micr,2000,50(3):1351-1371.
    Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution,1985.(39):783–791.
    Fierer N. and Jackson R. B. The diversity and biogeography of soil bacterial communities. P.Natl. Acad. Sci. USA,2006.103,626–631.
    Fierer N., Schimel J. P. and Holden P. A. Influence of drying-rewetting frequency on soilbacterial community structure. Microb. Ecol,2003.(45):63-71.
    Findley K., Rodriguez-Carre M., Metin B., Kroiss J., Fonseca A., Vilgalys R. and Heitman J.Phylogeny and phenotypic characterization of pathogenic Cryptococcus species andclosely related saprobic taxa in the Tremellales. Eukaryot Cell,2009.(8):353–361.
    Floch C., Capowiez Y. and Criquet S. Enzyme activities in apple orchard agroecosystems:How are they affected by management strategy and soil properties. Soil Biol. Biochem,2009,41(1):61-68.
    Fonseca A., Boekhout T. and Fell J. W. Cryptococcus Vuillemin. In The Yeasts, ATaxonomic Study,5th edn,2011:1661-1737.
    Francesca N., Chiurazzi M., Romano R., Aponte M. and Settani L. Moschetti GIndigenousyeast communities in the environment of "Rovello bianco" grape variety and their use incommercial white wine fermentation. World J Microb. Biot,2010.(26):337-351.
    Franche C., Lindstrom K. and Elmerich C. Nitrogen-fixing bacteria associated withleguminous and non-leguminous plants. Plant Soil,2009.321:35–59.
    Franklin R. B. and Mills A. L. Multi-scale variation in spatial heterogeneity for microbialcommunity structure in an eastern Virginia agricultural field. FEMS Microbiol. Ecol.,2003.(44):335–346.
    Gadagi R. S., Krishnaraj P. U., Kulkarni J. H. and Sa T. The effect of combined Azospirilluminoculation and nitrogen fertilizer on plant growth promotion and yield response of theblanket flower Gaillardia pulchella. Sci. Hortic,2004.100,323–332.
    Garbisu C., Alkorta I. and Epelde L. Assessment of soil quality using microbial properties andattributes of ecological relevance. Appl.Soil Ecol,2011,49(1):1-4.
    Garcia de Salamone I. E., Hynes R. K. and Nelson L. M. Cytokinin production by plantgrowth promoting rhizobacteria and selected mutants. Can. J. Microbiol,2001.47,404–411.
    Garland J. L. and Mills A. L. Classification and characterization of heterotrophic microbialcommunities on the basis of patterns of community-level-sole-carbon-source utilization.Appl. Environ. Microbioliol,1991.(57):2351–2359.
    Girvan M. S., Bullimore J., Pretty J. N., Osborn A. M., Ball A. S. Soil type is the primarydeterminant of the composition of the total and active bacterial communities in arablesoils. Appl. Environ. Microbiol,2003.(69):1800–1809.
    Glick B. R., Cheng Z., Czarny J. and Duan J. Promotion of plant growth by ACCdeaminase-producing soil bacteria. Eur. J. Plant Pathol,2007a.(119):329–339.
    Glick B. R, Todorovic B., Czarny J., Cheng Z., Duan J. and McConkey B. Promotion of plantgrowth by bacterial ACC deaminase. Crit. Rev. Plant Sci,2007b.(26):227–242.
    Golubev W. I., Pfeiffer I. and Tomashevskaya M. A. Cryptococcus pinus sp. nov., ananamorphic basidiomycetous yeast isolated from pine litter. Int. J. Syst. Evol. Micr,2008.(58):1968-1971.
    Gomaa A. M. and Mohamed M. H. Application of bio-organic agriculture and its effects onguar (Cyamopsis tetragonoloba L.) root nodules, forage, seed yield and yield quality.World Journal of Agricultural Sciences,2007.(3):91–96.
    Griffith B. S, Bonkowski M., Roy J. and Ritz K. Functional stability, substrate utilisation andbiological indicators of soils following environmental impacts. Appl.Soil Ecol,2001,16(1):49-61.
    Griffiths R. I., Thomson B. C., James P., Bell T., Bailey M. and Whiteley A. S. The bacterialbiogeography of British soils. Environ. Microbiol,2011.(13):1642-1654.
    Gutierrez-Manero F. J., Ramos-Solano B., Probanza A., Mehouachi J., Tadeo F. R. and TalonM. The plant-growthpromoting rhizobacteria Bacillus pumilus and Bacilluslicheniformis produce high amounts of physiologically active gibberellins. Physiol.Plantarum,2001.(111):206–211.
    Gyaneshwar P., Naresh Kumar G., Parekh L. J. and Poole P. S. Role of soil microorganismsin improving P nutrition of plants. Plant Soil,2002.(245):83–93.
    Habekost M., Eisenhauer N., Scheu S., Steinbeiss S., Weigelt A. and Gleixner G. Seasonalchanges in the soil microbial community in a grassland plant diversity gradient fouryears after establishment. Soil Biol. Biochem.,2008.(40):2588–2595.
    Hallin S., Jones C. M., Schloter M. and Philippot L. Relationship between N-cyclingcommunities and ecosystem functioning in a50-year-old fertilization experiment. ISMEJ,2009.(3):597–605.
    Hao Y., Charles T. C. and Glick B. R. ACC deaminase from plant growth-promoting bacteriaaffects crown gall development. Can. J. Microbiol,2007.(53):1291–1299.
    Hattenschwiler S., Tiunov A.V. and Scheu S. Biodiversity and litter decomposition interrestrial ecosystems. Annu. Rev. Ecol. Evol. S,2005.(36):191-218.
    Hawksworth D. L. A new dawn for the naming of fungi: impacts of decisions made inMelbourne in July2011on the future publication and regulation of fungal names.MycoKeys,2011.(1):7-20.
    Hentschel U., Steinert M. and Hacker J. Common molecular mechanisms of symbiosis andpathogenesis. Trends Microbiol,2000.(8):226-231.
    Hinojosa M. B., Carreira J. A., Garcia-Ruiz R. and Dick R. P. Soil moisture pre-treatmenteffects on enzyme activities as indicators of heavy metalcontaminated and reclaimedsoils. Soil Biol. Biochem.,2004.(36):1559–1568.
    Holguin G. and Glick B. R. Expression of the ACC deaminase gene from Enterobactercloacae UW4in Azospirillum brasilense. Microb. Ecol,2001.(41):281–288.
    Holguin G. and Glick B. R. Transformation of Azospirillum brasilense Cd with an ACCdeaminase gene from Enterobacter cloacae UW4fused to the Tetr gene promoterimproves its fitness and plant growth promoting ability. Microb. Ecol,2003.(46):122–133.
    Houlden A., Timms-Wilson T. M., Day M. J., Bailey M. J. Influence of plant developmentalstage on microbial community structure and activity in the rhizosphere of three fieldcrops. FEMS Microbiol. Ecol,2008.(65):193–201.
    Hughes J. B., Hellmann J. J., Ricketts T. H., Bohannan B. J. M. Minireview: counting theuncountable: statistical approaches to estimating microbial diversity. Appl. Environ.Microbioliol,2001.(67):4399-4406.
    Hunter P. J., Petch G. M., Calvo-Bado L. A., Pettitt T. R., Nick R., Parsons N. R., MorganJ.A.W. and Whipps J.M. Differences in microbial activity and microbial populations ofpeat associated with suppression of damping-off disease caused by Pythium sylvaticum.Appl. Environ. Microbioliol,2006.(72):6452-6460.
    Hurek T., Reinhold-Hurek B., Van Montagu M. and Kellenberger E. Root colonization andsystemic spreading of Azoarcus sp. strain BH72in grasses. J. Bacteriol,1994.(176):1913–1923.
    Isabel D., Raymond G., Malcolm L. Soil microbial community response to land-managementand depth, related to the degradation of organic matter in English wetlands: Implicationsfor the in situ preservation of archaeological remains. Appl.Soil Ecol,2010.(44):219–227.
    Jeon J. S., Lee S. S., Kim H. Y., Ahn T. S. and Song H. G. Plant growth promotion in soil bysome inoculated microorganisms. J. Microbiol,2003.(41):271–276.
    Joergensen R. G. Ergosterol and microbial biomass in the rhizosphere of grassland soils. SoilBiol. Biochem.,2000.(32):647-652.
    Johansson J. F., Paul L. R. and Finlay R. D. Microbial interactions in the mycorrhizosphereand their significance for sustainable agriculture. FEMS Microbiol. Ecol.,2004.48,1–13.
    Kaiser C., Koranda M., Kitzler B., Fuchslueger L., Schnecker J., Schweiger P., Rasche F.,Zechmeister-Boltenstern S., Sessitsch A. and Richter A. Belowground carbon allocationby trees drives seasonal patterns of extracellular enzyme activities by altering microbialcommunity composition in a beech forest soil. New Phytologist,2010.(187):843-858.
    Kang H., Kang S. and Lee D. Variations of soil enzyme activities in a temperate forest soil.Ecol. Res,2009.(24):1137-1143.
    Katarina H. S, Erland B. The influence of nitrogen fertilization on bacterial activity in therhizosphere of barley. Soil Biol. Biochem,2004.(36):195-198.
    Khalid A., Arshad M. and Zahir Z. A. Screening plant growthpromoting rhizobacteria forimproving growth and yield of wheat. J. Appl. Microbiol,2004.(96):473–480.
    Khan S., Hesham E. L. A., Qiao M., Rehman S. and He J. Z. Effects of Cd and Pb on soilmicrobial community structure and activities. Environ. Sci. Pollut. R,2010.(17):288–296.
    Khan S. A., Mulvaney R. L., Ellsworth T. R. and Boast C. W. The myth of nitrogenfertilization for soil carbon sequestration. J. Environ. Qual,2007.(36)1821–1832.
    Kimura M. A simple method for estimating evolutionary rates of base substitutions throughcomparative studies of nucleotide sequences. J. Mol. Evol,1980.(16):111–120.
    Kirk J. L., Beaudette L. A., Hart M., Moutoglis P., Klironomos J. N., Lee H. and Trevors J. T.Methods of studying soil microbial diversity. J. Microbiol. Meth,2004.(58):169-188.
    Klose S., Acosta-Martinez V., Husein A. and Ajwa H. Microbial community composition andenzyme activities in a sandy loam soil after fumigation with methyl bromide oralternative biocides. Soil Biol. Biochem.,2006.(38):1243-1254.
    Knee E. M., Gong F. C., Gao M., Teplitski M., Jones A. R. and Foxworthy A. Root mucilagefrom pea and its utilization by rhizosphere bacteria as a sole carbon source. Mol. PlantMicrobe In,2001.(14):775–784.
    Kowalchuk G. A., Buma D. S., de Boer W., Klinkhamer P. G. L. and van Veen J. A. Effectsof above-ground plant species composition and diversity on the diversity of soil-bornemicroorganisms. Antonie Van Leeuwenhoek,2002.(81):509–520.
    Kuklinsky-Sobral J., Araujo W. L., Mendes R., Geraldi I. O., Pizzirani-Kleiner A. A.,Azevedo J. L. Isolation and characterization of soybean-associated bacteria and theirpotential for plant growth promotion. Environ. Microbiol,2004.(6):1244–1251.
    Kurtzman C. P., Fell J. W., Boekhout T. and Robert V. Methods for Isolation, PhenotypicCharacterization and Maintenance of Yeasts. In The Yeasts, A Taxonomic Study,5thedn,2011:87-110.
    Kurtzman C. P. and Robnett C. J. Identification of clinically important ascomycetous yeastsbased on nucleotide divergence in the5' end of the large-subunit (26S) ribosomal DNAgene. J. Clin. Microbiol,1997.(35):1216-1223.
    Kurtzman C. P., Robnett, C. J., Ward, J. M., Brayton, C., Gorelick, P. and Walsh, T. J.Multigene phylogenetic analysis of pathogenic Candida species in the Kazachstania(Arxiozyma) telluris complex and description of their ascosporic states as Kazachstaniabovina sp. nov., K. heterogenica sp. nov., K. pintolopesii sp. nov., and K. slooffiae sp.nov. J. Clin. Microbiol,2005.(43):101–111.
    Lamattina L., Garcia-Mata C., Graziano M., Pagnussat G. Nitric oxide: The versatility of anextensive signal molecule. Annu. Rev. Plant Biol,2003.(54):109–136.
    Lauber C. L., Hamady M., Knight R. and Fierer N. Pyrosequencing-based assessment of soilpH as a predictor of soil bacterial community structure at the continental scale. Appl.Environ. Microbiol,2009.(75):5111–5120.
    Lee D. H., Zo Y. G., Kim S. J. Nonradioactive method to study genetic profiles of naturalbacterial communities by PCR single strand conformation polymorphism. Appl. Environ.Microbiol,1996.(62):3112-3120.
    Lemanceau P., Bauer P., Kraemer S., Briat J. F. Iron dynamics in the rhizosphere as a casestudy for analyzing interactions between soils, plants and microbes. Plant Soil,2009.(321):513–535.
    Li J., Ovakim D. H., Charles T. C. and Glick B. R. An ACC deaminase minus mutant ofEnterobacter cloacae UW4no longer promotes root elongation. Curr. Microbiol,2000.(41):101–105.
    Li Y., Lu J., Zhang L. Z. Biodiversity of yeast in soils from Longan grape plantations inShacheng region. Food Science,2010.(31):313-316.
    Liang W. J., Lou Y. L., Li Q., Zhong S., Zhang X. K., Wang J. K. Nematode faunal responseto long-term application of nitrogen fertilizer and organic manure in Northeast China.Soil Biol. Biochem.,2009.(41):883–890.
    Lima G., De Curtis F., Piedimonte D., Spina A. M., De Cicco V. Integration of biocontrolyeast and thiabendazole protects stored apples from fungicide sensitive and resistantisolates of Botrytis cinerea. Postharvest Biol. Tec,2006.(40):301-307.
    Lipson D. A. Relationships between temperature responses and bacterial community structurealong seasonal and altitudinal gradients. FEMS Microbiol. Ecol.,2007.(59):418–427.
    Liu B. R., Jia G. M., Chen J. and Wang G. Review of methods for studying microbialdiversity in soils. Pedosphere.2006.(16):18-24.
    Lucy M., Reed E. and Glick B. R. Applications of free living plant growth-promotingrhizobacteria.Antonie van Leeuwenhoek,2004.(86):1-25.
    Makimura K., Murayama Y. S. and Yamaguchi H. Detection of a wide range of medicallyimportant fungi by the polymerase chain reaction. J.Med.Microbiol,1994.(40).358-364.
    Malik K. A. and Rakhshanda B. Association of nitrogen-fixing plant growth promotingRhizobateria (PGPR) with Kallar grass and rice. Plant Soil,1997.(194):37-44.
    Marek-Kozaczuk M., Skorupska A. Production of B-group vitamins by plantgrowth-promoting Pseudomonas fluorescens strain267and the importance of vitaminsin the colonization and nodulation of red clover. Biol. Fertil. Soils,2001.(33):146–151.
    Marschner P., Yang C. H., Lieberei R. and Crowley D. E. Soil and plant specific effects onbacterial community composition in the rhizosphere. Soil Biol. Biochem.,2001.(33):1437-1445.
    Marschner P., Kandeler E. and Marschner B. Structure and function of the soil microbialcommunity in a long-term fertilizer experiment. Soil Biol. Biochem,2003.(35):453–461.
    Masalha J., Kosegarten H., Elmaci O., Mengel K. The central role of microbial activity foriron acquisition in maize and sunflower. Biol. Fertil. Soils,2000.(30):433–439.
    Medina A., Vassileva M., Caravaca F., Roldan A. and Azcon R. Improvement of soilcharacteristics and growth of Dorycnium pentaphyllum by amendment with agrowastesand inoculation with AM fungi and/or the yeast Yarrowia lipolytica. Chemosphere,2004.(56):449-456
    Metin B., Findley K. and Heitman J. The Mating Type Locus (MAT) and SexualReproduction of Cryptococcus heveanensis: Insights into the Evolution of Sex andSex-Determining Chromosomal Regions in Fungi. Plos Genet,2010.(6):1-19.
    Mijangos I., Perez R., Albizu I. and Garbisu C. Effects of fertilization and tillage on soilbiological parameters. Enzyme Microb. Tech,2006.(40),100–106.
    Mirza S. M., Mehnaz S., Normand P., Prigent-Combaret C., Moenne-Loccoz Y., Bally R. andMalik K. A. Molecular characterization and PCR detection of a nitrogen-fixingPseudomonas strain promoting rice growth. Biol. Fertil. Soils,2006.(43):163-170.
    Moawad H., Salem S. H., Badr El-Din S. M. S., Khater T. and Iskandar M. Yeasts in soils ofEgypt. Zentralbl. Mikrobiol,1986.(141):431-435.
    Mohamed H. A. and Gomaa, A. M. Faba bean growth and green yield and its quality asinfluenced by the application of bio-organic farming system. Journal of Applied SciencesResearch,2005.(1):380-385.
    Moreno J. L., Garcia C. and Hernandez T. Toxic effect of cadmium and nickel on soilenzymes and the influence of adding sewage sludge. Eur. J. Soil Sci,2003.(54):377–386.
    Morgan J. A., Bending G. D. and White P. J. Biological costs and benefits to plant-microbeinteractions in the rhizosphere. J. Exp. Bot,2005,(56):1729-1739.
    Mozafar A., Oertli J. J. Uptake of a microbially-produced vitamin (B12) by soybean roots.Plant Soil,1992.(139):23–30.
    Muyzer G, Waal E C, Uitterlinden A G. Profiling of complex microbial populations bydenaturing gradient gel electrophoresis analysis of polymerase chain reaction amplfiedgenes coding for16S rRNA. Appl. Environ. Microbioliol,1993.(59):695-700.
    Nassar A. H., El-Tarabily K. A. and Sivasithamparam, K. Promotion of plant growth by anauxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea maysL.) roots. Biol. Fertil. Soils,2005.(42):97-108.
    Neilsen D. and Neilsen G. H. Efficient use of nitrogen and water in highdensity appleorchards. HortTechn,2002.(12):19–25.
    Nihorimbere V., Ongena M., Smargiassi M. and Thonart P. Beneficial effect of therhizosphere microbial community for plant growth and health. Biotechnol. Agron. Soc.Environ,2011.(15):327-337.
    Okano Y., Hristova K. R., Leutenegger C. M., Jackson L. E., Denison R. F., Gebreyesus B.,Lebauer D., Scow K. M. Application of real-time PCR to study effects of ammonium onpopulation size of ammonia-oxidizing bacteria in soil. Appl. Environ. Microbioliol,2004.(70):1008–1016.
    Osler G. H. R. and Sommerkorn M. Toward a complete soil C and N cycle: incorporating thesoil fauna. Ecology,2007.(88):1611–1621.
    Ovreas L. and Torsvik V. Microbial diversity and community structure in two differentagricultural soil communities. Microb. Ecol,1998.(36):303–315.
    Ovreas L. Population and community level approaches for analysing microbial diversity innatural environments. Ecol. Lett,2000.(3):236–251.
    Pace N. R. A molecular view of microbial diversity and the biosphere. Science,1997.(276):734-740.
    Panikov N. S. Understanding and prediction of soil microbial community dynamics underglobal change. Appl. Soil Ecol,1999.(11):161-176.
    Pastorelli R., Piccolo R. and Landi S. Changes in active microbial soil communities inagricultural managements: from anthropic to natural. Agrochimica,2009.(53):386–397.
    Patten C. L. and Glick B. R. Role of Pseudomonas putida indoleacetic acid in development ofthe host plant root system. Appl. Environ. Microbioliol,2002.(68):3795–3801.
    Pelliccia C., Antonielli L., Corte L., Bagnetti A., Fatichenti F. and Cardinali G. Preliminaryprospection of the yeast biodiversity on apple and pear surfaces from Northern Italyorchards. Ann. Microbiol,2011.61(4):965-972.
    Perrig D., Boiero M. L., Masciarelli O. A., Penna C., Ruiz O. A., Cassan F. D. and Luna M. V.Plant-growth-promoting compounds produced by two agronomically important strains ofAzospirillum brasilense, and implications for inoculant formulation. Appl. Microbiol.Biotechnol,2007.(75):1143–1150.
    Pii Y., Crimi M., Cremonese G., Spena A. and Pandolfini T. Auxin and nitric oxide controlindeterminate nodule formation. BMC Plant Biol,2007.(7):21.
    Pothier J. F., Wisniewski-Dye F., Weiss-Gayet M., Moenne-Loccoz Y., Prigent-Combaret C.Promoter trap identification of wheat seed extract-induced genes in the plantgrowth-promoting rhizobacterium Azospirillum brasilense Sp245. Microbiol,2007.(153):3608–3622.
    Prigent-Combaret C., Blaha D., Pothier J. F., Vial L., Poirier M. A., Wisniewski-Dye F. andMoenne-Loccoz Y. Physical organization and phylogenetic analysis of acdR asleucineresponsive regulator of the1-aminocyclopropane-1-carboxylate deaminase geneacdS in phytobeneficial Azospirillum lipoferum4B and other Proteobacteria. FEMSMicrobiol. Ecol,2008.(65):202–219.
    Raaijmakers J. M., Paulitz T. C., Steinberg C., Alabouvette C., Moenne-Loccoz Y. Therhizosphere: a playground and battlefield for soilborne pathogens and beneficialmicroorganisms. Plant Soil,2009.(321):341–361.
    Rafet A., Ramazan C. and Fikrettin S. Effect of plant growth promoting rhizobacteria onyoung apple tree growth and fruit yield under orchard conditions. Sci. Hortic,2007.(111):371–377.
    Ravella S. R., James S. A., Bond C. J., Roberts I. N., Cross K., Retter A. and Hobbs P J.Cryptococcus shivajii sp. nov.: a novel basidiomycetous yeast isolated from biogasreactor. Curr Microbiol,2010.(60):12-16.
    Revillas J. J., Rodelas B., Pozo C., Martinez-Toledo M. V. and Gonzalez-Lopez J. Productionof B-group vitamins by two Azotobacter strains with phenolic compounds as sole carbonsource under diazotrophic and adiazotrophic conditions. J. Appl. Microbiol,2000.(89):486–493.
    Ribaudo C. M., Krumpholz E. M., Cassan F. D., Bottini R., Cantore M. L., Cura J. A.Azospirillum sp. promotes root hair development in tomato plants through a mechanismthat involves ethylene. J. Plant Growth Regul,2006.(25):175–185.
    Richardson A. E., Barea J. M., McNeill A. M. and Prigent-Combaret C. Acquisition ofphosphorus and nitrogen in the rhizosphere and plant growth promotion bymicroorganisms. Plant Soil,2009.(321):305-339.
    Richardson A. E. Prospects for using soil microorganisms to improve the acquisition ofphosphorus by plants. Aust. J. Plant Physiol,2001.(28):897–906.
    Riefler M., Novak O., Strnad M. and Schmulling T. Arabidopsis cytokinin receptor mutantsreveal functions in shoot growth, leaf senescence, seed size, germination, rootdevelopment, and cytokinin metabolism. Plant Cell,2006.(18):40–54.
    Ritz K., Black H. I. J., Campbell C. D., Harris J. A., Wood C. Selecting biolog-ical indicatorsfor monitoring soils: a framework for balancing scientific and technical opinion to assistpolicy development. Ecol. Indic,2009.(9):1212–1221.
    Robin A., Vansuyt G., Hinsinger P., Meyer J. M., Briat J. F., Lemanceau P. Iron dynamics inthe rhizosphere: consequences for plant health and nutrition. Adv. Agron,2008.(99):183–225.
    Rodelas B., Salmeron V., Martinez-Toledo M. V., Gonzalez-Lopez J. Production of vitaminsby Azospirillum brasilense in chemically defined media. Plant Soil,1993.(153):97–101.
    Ruiz Palomino M., Lucas Garcia J. A., Ramos B., Gutierrez Manero F. J. and Probanza A.Seasonal diversity changes in alder (Alnus glutinosa) culturable rhizobacterialcommunities throughout a phenological cycle. Appl. Soil Ecol,2005.(29):215-224.
    Rumberger A., Yao S. G., Merwin I. A., Eric B. Nelson E. B. and Thies J. E. Rootstockgenotype and orchard replant position rather than soil fumigation or compost amendmentdetermine tree growth and rhizosphere bacterial community composition in an applereplant soil. Plant Soil,2004.(264):247-260.
    Sahin F., Cakmakci R. and Kantar F. Sugar beet and barley yields in relation to inoculationwith N2-fixing and phosphate solubilizing bacteria. Plant Soil,2004.(265):123–129.
    Sait M., Davis K. E. R. and Janssen P. H. Effect of pH on isolation and distribution ofmembers of subdivision1of the phylum Acidobacteria occurring in soil. Appl. Environ.Microbioliol,2006.(72):1852–1857.
    Saiya-Cork K. R., Sinsabaugh R. L. and Zak D. R. The effects of long term nitrogendeposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol.Biochem,2002.(34):1309–1315.
    Sampaio J. P. Utilization of low molecular weight aromatic compounds byheterobasidiomycetous yeasts: taxonomic implications. Can. J. Microbiol,1999.(45):491-512.
    Schloter M., Dilly O. and Munch J. C. Indicators for evaluating soil quality. Agr. Ecosyst.Environ,2003.(98):255–262.
    Schutter M. E, Sandeno J. M. and Dick R. P. Seasonal, soil type, and alternative managementinfluences on microbial communities of vegetable cropping systems. Biol. Fertil. Soils,2001.(34):397-410.
    Schutter M. and Dick R. Shift in substrate utilization potential and structure of soil microbialcommunities in response to carbon substrates. Soil Biol. Biochem,2001.(33):1481-1491.
    Seeling B., Zasoski R. J. Microbial effects in maintaining organic and inorganic solutionphosphorus concentrations in a grassland topsoil. Plant Soil,1993.(148):277–284.
    Sharma V., Kumar V., Archana G., Kumar G. N. Substrate specificity of glucosedehydrogenase (GDH) of Enterobacter asburiae PSI3and rock phosphate solubilizationwith GDH substrates as C sources. Can. J. Microbiol,2005.(51):477–482.
    Sharma R. R., Singh D. and Singh R. Biological control of postharvest diseases of fruits andvegetables by microbial antagonists: a review. Biological Control,2009.(50):205-221.
    Shen J. P., Zhang L. M., Guo J. F., Ray J. L. and He J. Z. Impact of long-term fertilizationpractices on the abundance and composition of soil bacterial communities in NortheastChina. Appl. Soil Ecol,2010.(46):119-124.
    Shen J. P., Zhang L. M., Zhu Y. G., Zhang J. B. and He J. Z., Abundance and composition ofammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkalinesandy loam. Environ. Microbiol,2008.(10):1601–1611.
    Sheng S., Metin B., Findley K., Fonseca A. and Heitman J. Validation of Kwoniellaheveanensis, teleomorph of the basidiomycetous yeast Cryptococcus heveanensis.Mycotaxon,2011.(116):227-229.
    Shin K. S., Oh H. M., Park Y. H., Lee K. H., Poo H., Kwon G. S. and Kwon O. Y.Cryptococcus mujuensis sp. nov. and Cryptococcus cuniculi sp. nov., basidiomycetousyeasts isolated from wild rabbit faeces. Int J Syst Evol Microbiol,2006.(56):2241-2244.
    Sierra S., Rodelas B., Martinez-Toledo M. V., Pozo C. and Gonzalez-Lopez J. Production ofB-group vitamins by two Rhizobium strains in chemically defined media. J. Appl.Microbiol,1999.(86):851–858.
    Silverman F. P., Assiamah A. A., Bush D. S. Membrane transport and cytokinin action in roothairs of Medicago sativa. Planta,1998.(205):23–31.
    Singh J. S., Pandey V. C. and Singh D. P. Efficient soil microorganisms: A new dimensionfor sustainable agriculture and environmental development. Agric. Ecosyst. Environ.2011,(140):339–353.
    Sinsabaugh R.L., Zak D.R., Gallo M., Lauber C. and Amonette R. Nitrogen deposition anddissolved organic carbon production in northern temperate forests. Soil Biol. Biochem.,2004.(36):1509–1515.
    Six J., Ogle S., Jay breidt M., Conant F., Mosier R. T. and Paustian A. R. The potential tomitigate global warming with no-tillage management is only realized when practised inthe long term. Global Change Biol,2004.(10):155–160.
    Smit E., Leeflang P., Gommans S., van den Broek J., van Mil S., Wernars K. Diversity andseasonal fluctuations of the dominant members of the bacterial soil community in awheat field as determined by cultivation and molecular methods. Appl. Environ.Microbioliol,2001.(67):2284–2291.
    Sniegowski P. D., Dombrowski P. G. and Fingerman E. Saccharomyces cerevisiae andSaccharomyces paradoxus coexist in a natural woodland site in North America anddisplay different levels of reproductive isolation from European conspecifics. FEMSYeast Res,2002.(1):299-306.
    Sowerby A., Emmett B., Beier C., Tietema A., Penuelas J., Estiarte M., Van Meeteren M. J.M., Hughes S. and Freeman C. Microbial community changes in heath land soilcommunities along a geographical gradient: interaction with climate changemanipulations. Soil Biol. Biochem,2005.(37):1805–1813.
    Spadaro D., Sabetta W., Acquadro A., Portis E., Garibaldi A. and Gullino M. L. Use of AFLPfor differentiation of Metschnikowia pulcherrima strains for postharvest diseasebiological control. Microbiol. Res,2008.(163):523-530.
    Spaepen S., Vanderleyden J. and Remans R. Indole-3-acetic acid in microbial andmicroorganism-plant signaling. FEMS Microbiol. Rev,2007.(31):425–448.
    Spencer J. F. T. and Spencer D. M. Ecology: where yeasts live. Yeasts in Natural andArtificial Habitats. Springer, Berlin,1997:33-58.
    Statzell-Tallman A., Belloch C. and Fell J. W. Kwoniella mangroviensis gen. nov., sp. nov.(Tremellales, Basidiomycota), a teleomorphic yeast from mangrove habitats in theFlorida Everglades and Bahamas. FEMS Yeast Res,2008.(8):103-113.
    Statzell-Tallman A. and Fell J. W. Kwoniella Statzell-Tallman and Fell. In The Yeasts, ATaxonomic Study,5th edn,2011:1481-1484.
    Steer J. and Harris J. A. Shifts in the microbial community in rhizosphere and non-rhizosphere soils during the growth of Agrostis stolonifera. Soil Biol. Biochem,2000.(32):869-878.
    Sterflinger K. Black yeasts and meristematic fungi: ecology, diversity and identification, yeastin soil. The Yeast Handbook; Biodiversity and Ecophysiology of Yeasts.Springer-Verlag, Berlin,2006:501-532.
    Sun H.Y., Deng S. P. and Raun W. R. Bacterial community structure and diversity in acentury-old manure-treated agroecosystem. Appl. Environ. Microbioliol,2004.(70):5868–5874.
    Susanne K., Veronica A. M. and Husein A. Microbial community composition and enzymeactivities in a sandy loam soil after fumigation with methyl bromide or alternativebiocides. Soil Biol. Biochem,2006.(38):1243-1254.
    Tabacchioni S., Chiarini L., Bevivino A., Cantale C. and Dalmastri C. Bias caused by usingdifferent isolation media for assessing the genetic diversity of a natural microbialpopulation. Microb. Ecol,2000.(40):169–176.
    Thanh V. N., Hai D. A. and Lachance M. A. Cryptococcus bestiolae and Cryptococcusdejecticola, two new yeast species isolated from frass of the litchi fruit borerConopomorpha sinensis Bradley. FEMS Yeast Res,2006.(6):298-304.
    Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F. and Higgins D. G. TheCLUSTAL-X Windows interface: flexible strategies for multiple sequence alignmentaided by quality analysis tools. Nucleic Acids Res,1997.(25):4876–4882.
    Thuler D. S., Floh E. I. S., Handro W., Barbosa H. R. Plant growth regulators and amino acidsreleased by Azospirillum sp. in chemically defined media. Lett. Appl. Microbiol,2003.(37):174–178.
    Timmusk S., Nicander B., Granhall U. and Tillberg E. Cytokinin production by Paenibacilluspolymyxa. Soil Biol. Biochem.,1999.(31):1847–1852.
    Tomme P., Warren R. A. J. and Gilkes N. R. Cellulose hydrolyses by bacteria and fungi. Adv.Microb. Physiol,1995.(37):1-81.
    Torsvik V. and Ovreas L. Microbial diversity and function in soil: from genes to ecosystems.Curr. Opin. Microbiol,2002.(5):240-245.
    Toyota K. and Kuninaga S. Comparison of soil microbial community between soils amendedwith or without farmyard manure. Appl. Soil Ecol,2006.(33):39-48.
    Van der Walt J. P. and Scott D. B. Bullera dendrophila sp. n. Antonie van Leeuwenhoek,1970.(36):383-387.
    Vansuyt G., Robin A., Briat J. F., Curie C. and Lemanceau P. Iron acquisition fromFe-pyoverdine by Arabidopsis thaliana. Mol. Plant Microbe In,2007.(20):441–447.
    Vessey J. K. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil,2003.(255):571–586.
    Vishniac H. S. Simulated in situ competitive ability and survival of a representative soilyeasts, Cryptococcus albidus. Microb. Ecol,1995.(30):309-320.
    Waldrop M. and Firestone M. Seasonal dynamics of microbial community composition andfunction in oak canopy and open grassland soils. Microb. Ecol,2006.(52):470-479.
    Walker T. S., Bais H. P., Grotewold E. and Vivanco J. M. Root exudation and rhizospherebiology. Plant Physiol,2003.(132):44-51.
    Wang C., Knill E., Glick B. R. and Defago G. Effect of transferring1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonasfluorescens strain CHA0and its gacA derivative CHA96on their growth-promoting anddisease-suppressive capacities. Can. J. Microbiol,2000.(46):898–907.
    Wang Q. M., Bai, F.Y., Zhao J. H. and Jia J. H. Dioszegia changbaiensis sp. nov., abasidiomycetous yeast species isolated from northeast China. J. Gen. Appl. Microbiol,2003.(49):295–299.
    Wang Q. M., Li J., Wang S. A., Bai F. Y. Rapid differentiation of phenotypically similaryeast species by single-strand conformation polymorphism analysis of ribosomal DNA.Appl. Environ. Microbioliol,2008a.(74):2602-2611.
    Wang Y. P., Li Q. B., Shi J. Y., Lin Q., Chen X. C., Wu W. and Chen Y. X. Assessment ofmicrobial activity and bacterial community composition in the rhizosphere of a copperaccumulator and a non-accumulator. Soil Biol. Biochem,2008b.(40):1167–1177.
    Wardle D. A., Bardgett R. D., Klironomos J. N., Setala H., Van der Putten W. H. and Wall D.H. Ecological linkages between aboveground biota. Science,2004.(304):1629-1633.
    Wei X. D., Zou H. L., Chu L. M., Liao B., Ye C. M. and Lan C. Y. Field released transgenicpapaya effect on soil microbial communities and enzyme activities. J. Environ. Sci,2006.(18):734-740.
    Whitelaw M. Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv.Agron,2000.(69):99–151.
    Whitelaw M. A., Harden T. J., Bender G. L. Plant growth promotion of wheat inoculated withPenicillium radicum sp. nov. Aust. J. Soil Res,1997.(35):291–300.
    Whitelaw M. A, Harden T. J. and Helayer K. R. Phosphate solubilization in solution cultureby the soil fungus Penicillium radicum. Soil Biol. Biochem.,1999.(31):655–665.
    Williams M. A. and Rice, C. W. Seven years of enhanced water availability influences thephysiological, structural, and functional attributes of a soil microbial community.Appl.Soil Ecol,2007.(35):535-545.
    Wittenmayer L., Merbach W. Plant responses to drought and phosphorus deficiency:contribution of phytohormones in root-related processes. J. Plant Nutr. Soil Sci,2005.(168):531–540.
    Xu Y. X., Wang G. H., Jin J., Liu J. J., Zhang Q. Y. and Liu X. B. Bacterial communities insoybean rhizosphere in response to soil type, soybean genotype, and their growth stage.Soil Biol. Biochem,2009.(41):919-925.
    Yao H., He Z., Wilson M. J. and Campbell C. D. Microbial biomass and community structurein a sequence of soils with increasing fertility and changing land use. Microb. Ecol,2000.(40):223–237.
    Yarrow D. Methods for the isolation,maintenance and identification of yeasts. In The Yeasts,a Taxonomic Study,4th edn,1998:77-100.
    Yaxley J. R., Ross J. J., Sherriff L. J. and Reid J. B. Gibberellin biosynthesis mutations androot development in pea. Plant Physiol,2001.(125):627–633.
    Zak J. C., Willig M. R., Moorhead D. L. and Wildman H. G. Functional diversity of microbialcommunities: a quantitative approach. Soil Biol. Biochem,1994.(26):1101–1108.
    Zimmer W., Wesche M. and Timmermans L. C. Identification and isolation of theindole-3-pyruvate decarboxylase gene from Azospirillum brasilense Sp7: Sequencingand functional analysis of the gene locus. Curr. Microbiol,1998.(36):327–331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700