用户名: 密码: 验证码:
一氧化氮对小麦产量和蛋白质品质及茎蘖位叶片衰老进程的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一氧化氮(NO)是植物体内重要的信号分子,与许多生理进程密切相关,包括逆境调节与衰老控制。为了明确NO对小麦生长调节的生理机制,本研究采用以下两种方法:1.喷施外源NO对干旱胁迫下小麦叶片光合及叶绿素荧光特性及籽粒蛋白组分、GMP含量和粒度分布的影响。2.内源NO的氮肥调节及其含量变化对小麦不同茎蘖位衰老的影响。试验1在雨养条件下进行,在小麦生育主要时期(拔节期、抽穗期和开花期)进行不同浓度NO喷施处理;试验2选用两个不同穗型的高产冬小麦品种济南17(多穗型)和泰农18(大穗型)作为研究对象,设定不同的施氮水平,研究从拔节期到开花期不同茎蘖位小麦主要功能叶片内硝酸还原酶(NR)活性和NO含量的变化及衰老的发生。主要研究结果如下:
     1外源一氧化氮对干旱胁迫下冬小麦叶片光合特性及籽粒蛋白质组成的调节
     1.1外源一氧化氮对干旱胁迫下小麦叶片光合及叶绿素荧光特性的调控
     不同时期外源NO处理显著提高干旱胁迫下叶片的光合速率,随着NO处理浓度的增加,光合速率表现出先升高、后降低的趋势,低浓度NO显著提高干旱胁迫下叶片的光合速率并使其一直保持较高水平;叶片的蒸腾速率(Tr)的影响因时期、品种和处理浓度不同而存在差异,总的来说,随着NO处理浓度的增加,表现为先升后降的趋势,但是,外源NO对不同小麦品种类型的影响存在差异,可以显著提高多穗型品种的蒸腾速率,而对大穗型品种作用不明显。低浓度NO对气孔导度表现为促进作用,高浓度则抑制,适量NO浓度处理对维持干旱胁迫下小麦叶片气孔开放具有积极意义。外源NO处理提高了干旱胁迫下叶片的瞬时水分利用效率,并在C2(0.4mmol L-1)浓度下达最大值,不同NO处理时期间影响效果不同,拔节期>抽穗期>开花期。外源NO提高叶片了叶绿素含量,但是对类胡萝卜素含量无显著影响。NO能提高小麦最大光化学效率(Fv/Fm),以拔节期喷施效果最显著。喷施NO处理增加了光合电子传递能量占总吸收光能的比例,提高了光能利用率。
     1.2外源一氧化氮对干旱胁迫下不同基因型小麦籽粒蛋白组分的调控
     干旱胁迫条件下,通过对4个不同筋型小麦籽粒蛋白质组成和谷蛋白大聚合体含量及粒度分布的研究显示,外源NO处理提高了小麦籽粒中的谷蛋白比例,而对清蛋白、球蛋白和醇溶蛋白的影响存在品种间差异,说明小麦籽粒谷蛋白的合成与积累受NO的调节。在外源NO作用下,更多的贮存蛋白以谷蛋白形式存在。NO处理可以增加强筋型品种的清蛋白含量,降低醇溶蛋白含量,对球蛋白调节效果不明显。外源NO增加了中筋型品种的球蛋白含量,降低清蛋白含量,醇溶蛋白则对NO调节表现不敏感。
     2内源一氧化氮对冬小麦茎蘖位叶片衰老的调节
     2.1内源NO含量对小麦不同茎蘖位叶片衰老进程的调节
     NO含量的改变可以引起衰老。在主茎和一级分蘖中,叶片内NO含量在抽穗期达到最大值,然后在开花期迅速下降,与其叶片DNA片段化的发生时间一致。从拔节期到抽穗期,二级分蘖叶片中NO含量一直处于较高水平,二级分蘖叶片DNA降解发生时间最早。表明NO确实与叶片的衰老密切相关,而且NO含量的骤然改变可能是引起衰老的主要原因。
     2.2施N水平对小麦叶片内源NO产生和NR活性的影响
     拔节期和挑旗期,不同蘖位叶片内NO含量和NR活性都呈显著正相关关系,增施氮肥提高NR活性及NO含量,表明NO的产生主要依赖于叶片内的NR途径,并且氮肥对二者具有调节作用。随着生育时期进程,叶片内NR活性与NO的产生的相关性减弱,甚至在抽穗期二者无相关性,说明对于孕穗期后NO的产生,叶片内合成作用减弱。不同氮肥处理条件下,NO含量和NR活性都存在着饱和性,二者都是先升高,在达到最大值之后再降低。在抽穗期,叶片内NO含量和NR活性达较高水平。
     2.3茎蘖位衰老进程对产量和蛋白质含量的影响
     施氮量低于N-240处理时,增施氮肥可以获得更多的有效穗数。N-240处理条件下,济南17和泰农18的每个植株分别可以产生最多的分蘖数3.84个和1.94个,继续增施氮肥至N-360,穗数降低,济南17为3.19个分蘖,泰农18为1.69个。两品种在施氮量N-240处理时,产量最高,且产量的形成与一级分蘖的成穗率密切相关,后者受氮肥施入量的影响。N-360处理条件下,一级分蘖叶片的衰老较晚,直到开花期才开始,但是成熟后单位面积有效穗数少于N-240处理,说明在开花期有很多无效分蘖死亡,这些无效分蘖在消耗了大量养分后死亡,导致产量相对N-240处理下有所降低。施氮量影响籽粒中蛋白质含量,增施氮肥增加籽粒中的蛋白质含量。与主茎相比,一级分蘖籽粒中蛋白质含量显著减少,增加氮肥施入量,则减少主茎与一级分蘖间的含量差异。表明,通过控制氮肥施入量调节一级分蘖有效穗数及其籽粒品质的途径是可行的。
Nitric oxide (NO) is a key signaling molecule in different physiological processes ofplants, including adapting stress and senescence. The objective of this study was to determinethe effects of NO in wheat growing period. Field-experiments were conducted in2009-2011growing seasons used exogenous and endogenous two kinds of methods to certain:1.Theeffect of exogenous NO on photosynthetic characteristics, chlorophyll fluorescence in leavesand protein components, GMP content and particle size distribution in grains under droughtstress.2. The effect of endogenous NO on senescence of tillers in leaves in wheat. The firstexperiment was carried out in water stress condition which depending on raining entirely,with different concentrations on NO at different spraying time (jointing stage, heading stageand anthesis) was conducted. The second experiment was carried out under different nitrogenlevels using two wheat cultivars with different panicle-type. The main results were as follows:
     1. The adjustment of exogenous nitric oxide to leaves photosynthetic characteristicsand grain protein composition under drought stress in winter wheat
     1.1The adjustment of exogenous nitric oxide to leaves photosynthetic characteristics andChlorophyll fluorescence properties under drought stress in winter wheat
     Exogenous NO improved the leaf photosynthetic rate under drought stress significantly,and with concentration increasing, photosynthetic rate rose at first and then declined. Lowconcentration NO increased leaf photosynthetic rate significantly and made it keep higherlevel. Transpiration rate was influenced by period, variety and NO concentration. In generallyspeaking, with increasing of concentration, it first increased and then trends dropped.However, exogenous treatment was not same at different wheat varieties. Low NOconcentration promoted the stomata conductance and high concentration was suppressed. Ithad a positive meaning for NO to maintain suitable stomata opening wheat under droughtstress. NO improved instantaneous water use efficiency of leaves under drought stress, andC2(0.4mmol L-1) improved significantly. Different effects showed as different periodprocessing, jointing stage>heading stage>anthesis. NO improved the chlorophyll content buthad no significantly effect on carotenoid content. It increased Fv/Fm most significantly spraying at jointing stage. Because of increasing the ratio of photosynthetic electron transferenergy to total absorption of light energy, the utilization rate of light energy improved.
     1.2The adjustment of exogenous nitric oxide to protein composition under drought stress inwinter wheat
     Under drought stress condition, we researched different wheat types for grain protein,GMP content and particle size distribution. It showed that, exogenous NO treatment improvedproportion in glutenin, but to albumin, globulin and gliadin, it influenced differently betweenthe varieties. More storage protein in the cereal was the form of glutenin with the NOspraying. NO increased the strong gluten varieties of albumin content type and reducedgliadin content but had no obviously effect on globulin. It increased in the weak glutencultivars type of globulin content, declined albumin content and was not sensitive to gliadin.In conclusion, it was known that NO adjusted the ratio of glutenin and gliadin to influence thegluten type of wheat. While for the structure protein, it regulated albumin or globulinbasically to suit the function of their metabolic activity.
     2The effect of endogenous NO on senescence of tillers in leaves in wheat
     2.1The adjustment of endogenous nitric oxide to senescence of tillers in leaves in wheat
     The changes of NO content influenced senescence. NO content in main stem andprimary tiller was produced plentifully at heading and then fallen sharply at anthesis. It was atheading that the cell of main stem and primary tiller leaves going active apoptosis began toproduced the DNA fragmentation (except for the primary tiller under N3treatment). Inaddition, the shift induced by NO content changes accompanying with the aging of leaves.NO content in secondary tiller were much higher than main stem and primary tiller duringjointing to heading, and the earliest DNA degradation happened at secondary tiller sincebooting stage, when NO was found to accumulate rapidly. The present results had shown thatthe aging of leaves could be significantly influenced by NO, and it was also suggested thatsenescence were more sensitive relation to the marked changes of NO content than NOcontent itself.
     2.2The adjustment of N supplying to both endogenous nitric oxide content and NR activity inwheat leaves
     An apparent positive correlation existed in both cultivars leaves between NO content andNR activity among main stem, primary tiller and secondary tiller at early stage. Higher Napplications produced higher NR activity and higher NO content. With the progress ofgrowing period, it was weakened for the relationship between NR activity and NO content in leaves, or even with no correlation at heading stage. And with N application levels increasing,both NR activity and NO content reached the maximum and then decreased. There wassaturability for both the NR activity and the NO content in vivo as the N applicationincreasing.
     2.3The adjustment of endogenous nitric oxide to both tillers senescence and yield and proteincontent
     There was an increase in the survival of productive tillers with increase of nitrogen leveluntil N2treatment. Number of live tillers per plant in wheat increased to a peak of3.84(or1.94) for JN17(or TN18) at240-N treatment as more N application supplied. The maximumgrain yield reached at240-N application as the tillers increasing. Thus, grain production wasclosely related to the number of ears producing by primary tiller, which had much more effectupon by N-fertilizer. The aging happened later for primary tiller than main stem under thesame N level. Unlike the other N treatment, the360-N treatment resulted in later aging forprimary tiller till anthesis, however, the largest numbers of ears were not obtained under theN-360application level at maturity. Numbers of tillers died at anthesis. Too late dying fornumbers of ineffective primary tiller had consumed lots of nutrients which caused thereduction of grain yield comparing with240-N application. Nitrogen level influenced kernelprotein content. Compared with main stem, it was decreased by15.8to2.4%for primary tillerin JN17, and by15.7to3.7%in TN18, respectively. Supplied with more N-fertilizer, itbecame more less for the difference between main stem and primary tiller. Overall, these dataindicated that N-fertilizer regulated the ears number of primary tiller and reduced thedifference of protein content between main stem and primary tiller, in other words, it was aneffective ways to regulate the number and quality of primary tiller by N application in order tobalance the yield and uniformity of ears.
引文
曹广才.小麦生态研究.浙江科技出版社.1990.
    陈如梅,马俊虎,杜永芹.小麦灌浆成熟过程中蛋白质及其组成变化初报.上海农业学报.1992,8(1):78-80.
    陈善福,舒庆尧.植物耐干旱胁迫的生物学机理及其基因工程研究进展.植物学通报.1999,16(5):555-560.
    程国旺.小麦高分子量麦谷蛋白亚基组成与面包烘烤品质关系的研究.安徽农业大学学报.2002,29(4):369-372.
    杜金哲,李文雄,白祥和.第八次全国小麦高产栽培研讨会论文(山东).1998.
    范雪梅,姜东,戴廷波,荆奇,曹卫星.花后干旱和渍水对不同品质类型小麦籽粒品质形成的影响.植物生态学报.2004,28(5):680-685.
    高庆荣,于金凤,柳坤.小麦籽粒品质、高分子量谷蛋白亚基组成类型与面筋质量相关性的研究.麦类作物学报.2003,23(2):30-33.
    高翔,李硕碧.小麦高分子量谷蛋白亚基对加工品质影响的效应分析.西北植物学报.2002,22(4):771-779.
    韩新文,杨淑萍,张宏纪.氮肥与硫肥施用对相同HMW-GS组分春小麦谷蛋白大聚合体含量的影响.黑龙江农业科学.2008,(4):26-29.
    何照范.粮油籽粒品质及其分析技术.北京:中国农业出版社.1985.
    黄东印,林作揖,雷振生.冬小麦品质性状与面条品质性状关系的初步研究.华北农学报.1990,5(l):40-45.
    黄祥辉,胡茂兴.小麦栽培生理.上海:上海科学技术出版社.1984.
    姜鸿明,余松烈,于振文,赵倩,邱化蛟,丁晓义.小麦谷蛋白聚合作用对增施氮肥的反应.麦类作物学报.2003,23(2):43-46.
    李保云,王岳光,刘凤鸣,孙辉,刘广田.小麦高分子量谷蛋白亚基与小麦品质性状关系的研究.作物学报.2000,26(3):322-326.
    李春喜,将丽娜.李秀明.不同氮肥运筹对超高产小麦NR活性和产量影响的研究.作物学报.1998,24(6):847-852.
    李东方,李紫燕,李世清.施氮对不同品种冬小麦植株硝态氮和硝酸还原酶活性的影响.西北植物学报.2006,(1):104-109.
    李志西,魏益民,张建国.小麦蛋白质组分与面团特性和烘焙品质关系的研究.中国粮油学报.1998,13(3):1-5.
    梁太波,尹燕枰,蔡瑞国,闫素辉,李文阳,耿庆辉,王平,邬云海,李勇,王振林.不同土壤条件下山农12小麦籽粒HMW-GS积累及GMP粒度分布特征.作物学报.2008,34(12):2160-2167.
    阮海华.一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应.科学通报.2001,46(23):1993-1997.
    邵瑞鑫,上官周平.外源NO调控小麦幼苗生长与生理的浓度效应.生态学报.2008,(1):302-309.
    宋建民,刘爱峰,吴祥云,刘建军,赵振东,刘广田.高分子量谷蛋白亚基组成及其含量与小麦品质关系研究.中国农业科学.2003,36(2):128-133.
    宋建民,吴祥云,刘建军.小麦籽粒特性与品质关系研究进展.山东农业科学.2002,(2):47-51.
    孙辉,姚大年,李保云,刘广田,张树榛.小麦谷蛋白大聚合体含量的影响因素.麦类作物学报.2000,20(2):23-27.
    孙辉,姚大年,李保云.普通小麦谷蛋白大聚合体的含量与烘焙品质相关关系.中国粮油学报.1998,(12):13-16.
    王宪泽,张树芹.不同蛋白质含量小麦品种叶片NRA与氮素积累关系的研究.西北植物学报.1999,19(2):315-320.
    王月福,于振文,李尚霞.施氮量对小麦籽粒蛋白质组分含量及加工品质的影响.中国农业科学.1990,23(6):35-41.
    魏道智,宁书菊.拔节期追施氮肥对小麦根、叶衰老生理特性的影响.河北农业大学学报.2003.26(2):16-19.
    闻玉,赵翔,张骁.水分胁迫下一氧化氮对小麦幼苗根系生长和吸收的影响.作物学报.2008,34(2):344348
    许振柱,于振文,王东.灌溉条件对小麦籽粒蛋白质组分积累及其品质的影响.作物学报.2003,29(5):682-687.
    于振文编著.优质专用小麦品种及栽培.中国农业出版社.2001.
    于振文,田奇卓.黄淮麦区冬小麦超高产栽培的理论与实践.作物学报.2002,28(5):577-585.
    余松烈.山东小麦.北京:中国农业出版社.1990.
    岳鸿伟,秦晓东,戴廷波,荆奇,曹卫星,姜东.施氮量对小麦籽粒HMW-GS及GMP含量动态的影响.作物学报.2006,32(11):1678-1683.
    张少颖,任小林,程顺昌.外源一氧化氮供体浸种对玉米种子萌发和幼苗生长的影响.植物生理学通讯.2004,40(3):309-310.
    赵惠贤,段惠,梁亮,郭蔼光.不同品质类型小麦谷蛋白聚合体含量及亚基组成的初步研究.西北植物学报.2003,23(5):755-758.
    赵文明.种子蛋白质基因工程.西安:陕西科学技术出版社.1995.
    周永斌,殷有,苏宝玲.外源一氧化氮供体对几种植物种子萌发和幼苗生长的影响.植物生理学通讯.2005,41(3):316-318.
    朱德群,朱遐龄,王雁.与冬小麦子粒蛋白质有关的几项生理参数.作物学报.1991,17(2):135-144.
    朱小乔,刘通讯.面筋蛋白及其对面包品质的影响.粮油食品科技.2001,(4):18-21.
    Akio U, Andre T J, Takashi H. Effects of hydrogen per-oxide and nitric oxide on bothsalt and heat stress tolerance in rice. Plant Science.2002,163:515-523.
    Albassam B A. Inhibition of wheat leaf nitrate reductase activity by phenolic compound.Bioscience Biotechnology Biochemistry.2000,64:1507-1510.
    Allderson L, Mansfield T A. The effeets of nitric oxide pollution on the growth oftomato.Environ Pollution.1979,20:113-121.
    Andrea M, Christine B, Diger H R. Negative regulation of nitrate reductase geneexpression by glutamine or asparagine accumulating in leaves of sulfur-deprived tobacco.Planta.2000,211:587-595.
    Azqueta A, Collins A R. The Comet Assay: A Sensitive and Quantitative Method forAnalysis of DNA Damage. Encyclopedia of Analytical Chemistry.2011.
    Barber M J, Desai S K, Marohnic C C. Synthesis and bacterial expression of a geneencoding the heme domain of assimilatory nitrate reductase. Arch Biochem Biophys.2002,402:38-50.
    Becker T W, Foyer C, Caboche M. Light-regulated expression of the nitrate reductaseand nitrite reductase genes in tomato and in the phytochrome-deficient aurea mutant oftomato. Planta.1992,188:39-47.
    Beligni M V, Fath A, Bethke P C, Lamattina L, Jones R L. Nitric oxide acts as anantioxidant and delays programmed cell death in barley aleurone layers. Plant Physiology.2002,129:1642-1650.
    Beligni M V, Lamattina L. Nitric oxide counteracts cytotoxic processes mediated byreactive oxygen species in plant tissues. Planta.1999,208:337-344.
    Beligni M V, Lamattina L. Is nitric oxide toxic or protective? Trends Plant Sci.1999,4:299-310.
    Beligni M V, Lamattina L. Nitric oxide in plants: the history is just beginning. Plant.Cell&Environ.2001,24:267-278.
    Beligni M V, Lamattina L. Nitric oxide stimulates seed gemination and de-etiolation, andinhibits hypocotyls elongation, three light-inducible responses in plants. Planta.2000,210:215-221.
    Bethke P C, Badger M R, Jones R L. Apoplastic synthesis of Nitric oxide by plant tissues.The plant cell.2004,16:332-341.
    Bielher K, Fock H. Evidence for the contribution of the mehler-peroxidase reaction indissipating excess electrons in drought-stressed wheat. Plant Physiology.1996,112:265-272.
    Binnerup S J, Sorensen J. Nitrate and nitrite microgradients in barley rhizosphere asdetected by a highly sensitive denitrification bioassay. Applied and EnvironmentMicrobiology.1992,58,2375-2380.
    Bray E A. Plant responses to water defieit. Trends Plant Sci.1997,2:1360-1385.
    Campbell W H. Nitrate reductase structure function and regulation: bridging the gapbetween biochemistry and physiology. Annu. Rev.Plant Physiol. Plant Mol. Biol.1999,50:277-303.
    Caro A, Puntarulo S. Nitric oxide decreases superoxide anion generation by6microsomes from soybean embryonic axes. Physiologia Plantarum.1998,104:357-364.
    Caro A, Puntarulo S. Nitric oxide generation by soybean embryonic axes possible effecton mitochondrial function. Free Radical Researeh.1999,31:205-212.
    Chandok M R, Ytterberg A J, van Wijk K J, Klessig D F. The pathogen-inducible nitricoxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylasecomplex. Cell.2003,113:469-482.
    Charbonnier L, Moss J. Large scale isolation of gliadin fractions. Journal of the Scienceof Food and Agriculture.1980;31:54-61.
    Chen H P, Liao Z P, Huang Q R, He M. Sodium Ferulate attenuates anoxia/reoxygenation-induced calcium over load in neonatal rat cardiomyocytes by NO/cGMP/PKGpathway. European Journal of Pharmacology.2009,603:86-92.
    Christine D, Silke H, Heinrich F. Regulation of nitrate reductase transcript levels byglulation of a ferredoxin-dependent glutamate synthase-deficient glu S mutant of Arabidopsisthaliana, and by glutamine provided via the roots. Planta.1998,206:515-522.
    Cooney R V, Harwood P J, Custer L J, Adrian A, Frake P. Light-mediated conversion ofnitrogen dioxide to nitric oxide by carotenoids. Environ Health Perspectives.1994,102:460-62.
    Corpas F J, Barroso J B, Carreras A, Quirós M, León A M., Romero-Puertas M C,Esteban F J, Valderrama R, Palma J M, Sandalio L M, Gómez M, del Río L A. Cellular andsubcellular localization of endogenous nitric oxide in young and senescent pea plants. PlantPhysiology.2004,13:2722-2733.
    Corpas F J, Palma J M, del Río L A, Barroso J B. Evidence supporting the existence ofL-arginine-dependent nitric oxide synthase activity in plants. New Phytologist.2009,184:9-14.
    Correa-Aragunde N, Graziano M, Lamattina L. Nitric oxide plays a central role indetermining lateral root development in tomato. Planta.2004,218:900-905.
    Crawford N M, Guo F Q. New insights into nitric oxide metabolism and regulatoryfunctions. Trends in Plant Science.2005,10:195-200.
    Cueto M,Hernandez-Perera O, Martin R. Presence of nitric oxide synthase aetivity inroots and nodules of Lupinus albus. FEBS Lett.1996,398:159-164.
    Danon A, Delorme V, Mailhac N, Gallois P. Plant programmed cell death: a commonway to die. Plant Physiology and Biochemistry.2000,38:647-655.
    De Pinto M C, Tomassi F, De Gara L. Changes in the antioxidant systems as part of thesignaling pathway responsible for the programmed cell death activated by nitric oxide andreactive oxygen species in tobacco bright-yellow2cells. Plant Physiology.2002,130:698-708.
    Dean J V, Harper J E. The conversion of nitritc to nitrogen oxide(s) by the constitutiveNAD(P)H-nitrate reduetase enzyme from soybean. PlantPhysiol.1988,88:389-395.
    Delledonme M, Xia Y, Dixon R A, Lamb C. Nitric oxide funetions as a signal in Plantdiseas resistance. Nature.1998,394:585-588.
    Delledonne M, Zeier J, Maroeeo A. Signal interaction between nitric oxide and reactiveoxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl AcadSci USA.2001.
    Demmig A, Adams W W. Xanthophyll cycle-dependent energy dissipation and flexiblePSII efficiency in plants acclimated to light stress. Australian Journal of Plant Physiology.1995,22:261-276.
    Demmig A, Admas W W. Photoprotection and other responses of plants to high lightstress. Annual Review of Plant Physiology and Plant Molecular Biology.1992.43:599-626.
    Dodd I C, Cfitchley C, Woodall G S. Photo inhibition in differently colored juvenileleaves of Syzygiumspecies. Journal of Experimental Botany.1998,49:1437-1445.
    Don C, Lichtendonk W, Plijter J. J, Hamer R. J. Glutenin Macropolymer: a Gel Formedby Glutenin Particles. Journal of Cereal Science.2003,37:1-7.
    Don C, Lookhart G, Naeem H, MacRitchie F, Hamer R.J. Heat stress and genotype affectthe glutenin particles of the glutenin macropolymer-gel fraction. Journal of Cereal Science.2005,42:69-80.
    Du S T, Zhang Y S, Lin X Y, Wang Y, Tang C X. Regulation of nitrate reductase by nitricoxide in Chinese cabbage pakchoi (Brassica chinensis L.). Plant, Cell and Environment.2008,31:195-204.
    Durzan D J, Pedroso M C. Nitric oxide and reactive nitrogen oxide species in plants.Biotechnology Genetic Engineering Reviews.2002,19:293-337.
    Edmonson D L, Kane H J, Rew T. Substrate isomerization inhibits ribulosebisphosphatecarboxylase-oxygenase during catalysis. FEBS Letters.1990,260:62-66.
    Fan T, Lu H, Hu H, Shi L, McClarty G A, Nance D M, Greenberb A H, Zhong G.Inhibition of apoptosis in chlamydia-infected cells: blockade of mitochondrial cytochrome crelease and caspase activation. The Journal of Experimental Medicine.1998,4:487-496.
    Fan X, Gordon-Weeks R, Shen Q, Miller A J. Glutamine transport and feedbackregulation of nitrate reductase activity in barley roots leads to changes in cytosolic nitratepools. J Exp. Bot.2006,57:1333-1340.
    Fasano J M, Swanson S J, Blancaflor E B, Dowd P E, Kao T H, Gilroy S. Changes inroot cap pH are required for the gravity response of the Arabidopsis root. Plant Cell.2001,13:907-921.
    Furchgott R F, Zawadzki J V. The obligatory role of endothelial cells in the relaxation ofaltering smooth musele by acetyleholine. Nature.1980,288:273-276.
    Gabaldon C, Gómez Ros L V, Pedre o M A, Ros Barceló A. Nitric oxide production bythe differentiating xylem of Zinnia elegans. New Phytologist.2005,165:121-130.
    Galangau F, Danlel-Vedele F, Moureaux T. Expression of leaf nitratereductase genesfrom tomato and tobacco in relation to light-dark regimes and nitrate supply. Plant Physiol.1988,88:383-388.
    Genty B, Briantais J M and Baker N R. The relationship between the quantum yield ofphotosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica etBiophysica Acta.1989,990:87-92.
    Gimene Z C., Mitchell V J, Lawlor D W. Regulation of photosynthetic rate of twosunflower hybrids under water stress.Plant Physiology.1992,98:516-524.
    Greenberg J T. Programmed cell death: a way of life for plants. Proceedings of theNational Academy of Sciences.1996,93:12094-12097.
    Griffith O W, Stuehr D J. Nitric oxide synthases: Properties and ceatalytic mechanisms.Ann Rev Physiol.1995,57:707-736.
    Grun S, Lindermayr C, Sell S, Dumer J. Nitric oxide and gene regulation in plants. J ExpBot.2006,57:507-516.
    Guerrero M G, Vega J M, Losaola M. The assimilatory nitrate-reducing system and itsregulation. Ann. Rew. Physiol.1981,32:169-204.
    Gunaseker A D, Berkowitz G A. Use of transgenic plants with ribulose-1,5-bisphosphatecarboxylase/oxygenase antisense DNA to evaluate the rate limitation of photosynthesis underwater stress. Plant Physiology.1993,103:629-635.
    Guo F Q, Kamoto M O and Crawford N M. Identification of a plant nitric oxide synthasegene involved in hormonal signaling. Science.2003,302:100-103.
    Gupta R B, Khan K, Macritchie F. Biochemical Basis of Flour Properties in BreadWheats. I. Effects of Variation in the Quantity and Size Distribution of Polymeric Protein.Journal of Cereal Science.1993,18:23-41.
    Hageman R H, Reed A J. Nitrate reductase from higher plants. Methods in Enzymology.1980,69:270-280.
    He Y, Tang R H, Hao Y, Stevens R D, Cook C W, Ahn S M, Jing L, Yang Z, Chen L, GuoF. Nitric oxide repress the Abraidopsis floral transition. Science.2004,305:1968-1971.
    Hecht, Oelmüller, Schmidt R. Action of light,nitrate and ammonium on the levels ofNADH and ferredoxin-dependent glutamatesynthase in the cotelydons of musmustardseedlings. Planta.1988,175:130-138.
    Henry Y A, Guissani A, Dacastel B, Austin T X, Larnb C, Dison R A. The oxidative burstin plant desease resistance. Annual Review of Plant Physiology and Plant Molecular Biology.1997,48:251-275.
    Ishag H M, Taha M B. Production and survival of tillers of wheat and their contributionto yield. The Journal of Agricultural Science.1974,83:117-124.
    Jackson W A, Flesher D,Hageman R H. Nitrate uptake by dark-grown corn seedlings:Some characteristics of apparent induction.Plant Physiol.1973,51:120-127.
    Jih P J, Chen Y C, Jeng S T. Involvement of hydrogen peroxide and nitric oxide inexpression of the ipomoelin gene from sweet potato. Plant Physiology.2003,132:381-389.
    Jones A M. Programmed cell death in development and defense. Plant Physiology.2001,125:94-97.
    Kaiser W M, Weiner H, Kandlbimder A, Tsai C-B, Rockel P, Sonoda M, Planchet E.Modulation of nitrate reductase: some new insights, an unusual case and a potentiallyimportant side reaction. Journal of Experimental Botany.2002,53:875-882.
    Keck R W, Boyer J S. Chloroplast response to low leaf water potentials. Differinginhibition of electron transport and photophosphorylation. Plant Physiology.1974,53:474-479.
    Kelm M, Dahmann R, Wink D, Feelisch M. The nitric oxide/superoxide assay. Journal ofBiological Chemistry.1997,272:9922-9932.
    Kirby E J M, Fairs D J. The effect of plant density on tiller growth and morphology inbarley. Journal of Agricultural Science and Cambridge.1972,78:281-288.
    Klepper L A. Nitric oxide emission from soybean leaves during in vivo nitrate reductaseassays. Plant Physiology.1987,85:96-99.
    Klessig D F, Durner J, Noad R, Navarre A, Wendehenne D, Kumar D, Zhou J, Shah J,Zhang S, Kachroo P, Trita Y, Pontier D, Lam E, Silva H. Nitric oxide and salicylic acidsignaling in plant defence. Proceedings of the National Academy of Sciences.2000,97:8849-8855.
    Kuo W N, Kuo T W, Jones D L, Baptiste J J. Nitric oxide synthase immunoreaetivity inbaker’s and wheat germ. Biol Arch.1995,11:73-78.
    Lam E, Kota N, Lawton M. Programmed cell death, mitochondria and the planthypersensitive response. Nature.2001,411:848-853.
    Laude H M, Ridley, J R, Suneson C A. Tiller senescence and grain decelopment in barley.Crop science.1967,7:231-233.
    Lawlor D W, Cornic G. Photosynthetic carbon assimilation and associated metabolism inrelation to water deficits in higher plants. Plant Cell Environment.2002,25:275-294.
    Lea P J, Miflin B J. Alternative route for nitrogen in higher plants. Nature.1974,251:614-616.
    Lea U S, Ten H, Provan F, Kaiser W M, Meyer C, Lillo C. Mutation of the regulatoryphosphorylation site of tobacco nitrate reducase results in high nitrite excretion and NOemission from leaf and root tissue. Planta.2004,219:59-65.
    Leshem Y Y, Haramaty E. Plant aging: the emission of NO and ethylene and the effect ofNO-releasing compounds on growth of Pea(Pisum sativum) foliage. Plant Physiology.1996,148:258-263.
    Leshem Y Y, Pinchasov Y. Non-invasive photoacoustic spcetroscopic determination ofrelative endogenous nitric oxide and ethylene content stoichiometry during the ripening ofstraw berries fragaria anan nasa (Duch.) and avocados persea Americana (Mill.). Journal ofExperimental Botany.2000,51:1471-1473.
    LeshemY Y. Nitric Oxide in Plants. Kluwer Academic Publishers. London.2001.
    Li Y, Yin Y P, Zhao Q, Wang Z L. Changes of Glutenin Subunits due to Water–NitrogenInteraction Influence Size and Distribution of Glutenin Macropolymer Particles and FlourQuality. Crop science.2011,51:2809-2819.
    Lindermayr C, Saalbach G, Bahnweg G, Durner J. Differential inhibition of Arabidopsismethionine adenosyltransferases by protein S-nitro-sylation. Journal of Biological Chemistry.2006,281:4285-4291.
    Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B. Moleeular identification ofzeaxanthin epoxidase of Nicotiana plumbaginifolia,a gene involved in abscisic acidbiosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO.1996,15:2331-2342.
    Mata C G, Lamatiuna L. Nitric oxide in duces stomatal closure and enhances theadaptive plant responses against drought stress. Plant Physiol.2001,126:1196-1204.
    Medrano H, Parrym A J, Socia S. X, Lawlor D.W. Long term water stress inactivatesRubisco in subterranean clover. Annals of Applied Biology.1997,131:491-501.
    Morot-Gaudry-Talarmain Y, Rockel P, Moureaux T, Quilleré I, Leydecker M T, Kaiser WM, Morot-Gaudry J F. Nitrite accumulation and nitric oxide emission in relation to cellularsignaling in nitrite reductase antisense tobacco. Planta.2002,215:708-715.
    Murgial I, de Pinto MC, Delledomie M, Soave C, De Gara L. Comparative effects ofvarious nitric oxide donors on ferritin regulation,programmed cell death,and cell redox statein plant cells. Journal of Plant Physiology.2004a,161:777-783.
    Murgial I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C. Arabidopsisthaliana plants over expressing thylakoidal ascorbate peroxidase show increased resistance toparaquat-induced photooxidative stress and to nitric oxide-induced cell death. The PlantJournal.2004b,38:940-953.
    Murphy P M. Nitric oxide and cell death. Biochimica et Biophysica Acta.1999,1411:401-414.
    Neill S J, Desikan R, Clarke A, Hancock JT. Nitric oxide is a novel component ofabscisic acid signalling in stomatal guard cells. Plant Physiology.2002a,128:13-16.
    Neill S J, Desikan R, Clarke A, Hurst R D, Hancock J T. Hydrogen peroxide and nitricoxide as signalling molecules in plants. Journal of Experimental Botany.2002b,53:1237-1242.
    Neill S J, Desikan R, Hancock J T. Nitric oxide signalling in plants. New Phytologist.2003b,159:11-35.
    Nishimura H, Hayamizu T, Yanagisawa Y. Reduction of N02to NO by Rush and otherplants. Environ Sci Tech.1986,20:413-416.
    Osborne T B. The proteins of the wheat kernel. Washington D C: Carnegie of instituteWashington publication.1907.
    Pagnussat G C, Lanten M L, Lombardo M C, Lamattina L. Nitric oxide mediates theindole acetic acid induction activation of a mitogen-activated protein kinase cascade involvedin adventitiou root development. Plant Physiology.2004,135:279-286.
    Pagnussat G C, Lanteri M L, Lamattina L. Nitric oxide and cyclic GMP are messengersin the indole acetic acid-induced adventitious rooting process. Plant Physiology.2003,132:1241-1248.
    Payne P I, Holt L M, Jackson E A, Law C N. Wheat storage proteins: their genetics andtheir potential for manipulation by plant breeding. Philosophical Transactions of the RoyalSociety London B.1984,304:359-371.
    Pedroso M C, Magalhaes J R, Durzan D. A nitric oxide burst precedes apoptosis inangiosperm and gymnosperm callus cells and foliar tissues. Journal of Experimental Botany.2000,51:1027-1036.
    Power J F, Alessi J. Tiller development and yield of stardand and semidwarf springwheat varieties as affected by nitrogen fertilizer. The Journal of Agricultural Science.1978,90:97-108
    Rajasekhar V K, Gowrl G, Campbell W H. Phytochrome-mediated light regulation ofnitrate reductase expression in squash cotyledons.Plant Physiol.1988,88:242-244.
    Rao K P, Rains D W. Nitrate Absorption by Barley. Plant Physiology.1976,57:55-58.
    Ribeiro E A, Cunha F Q, Tamashiro W M, Martins I S. Growth phase dependentsubcellular localization of nitric oxide synthase in maize cells. FEBS Letters.1999,445:283-286.
    Rockel P, Strube F, Rockel A, Wildt J, Kaiser W M. Regulation of nitric oxide productionby plant nitrate reductase in vivo and in vitro. Journal of Experimental Botany.2002,53:103-110.
    Romero-Puertas M C, Perazzolli M, Zago E D, Delledonne M. Nitric oxide signallingfunctions in plant-pathogen interactions. Cell Microbiol.2004,6:795-803.
    Rosales E P, Lannone M F, Groppa M D, Benavides M P. Nitric oxide inhibits nitratereductase activity in wheat leaves. Plant Physiology and Biochemistry.2011,49:124-130.
    Ruan H H, Shen W B, Ye M B. Protective effects of nitric oxide on salt stress-inducedoxidative damage to wheat leaves. Chinese Sciense Bulletin.2002,7:677-681.
    Sakihama Y, Nakamura S, Yamasaki H. Nitric oxide Production mediated by nitratereductase in the green alga Chlamydomonas reinhardtii: an alternative NO productionPathway in photosynthesis organisms. Plant Cell Physiol.2002,43:290-297.
    Sapirstein H D, Fu B X. Inter cultivar variation in the quantity of monomeric proteins,soluble and insoluble glutenin, and residue protein in wheat flour and relationships to breadmaking quality. Cereal Chem.1998,75:500-507.
    Schmidt H H, Kelm M. Determination of nitrite and nitrate by the Griess reaction.Methods in Nitric Oxide Research. New York.1996.
    Shaner D L, Boyer J S.Nitrate reductase activity in maize (Zea mays L.) leaves.Regulation by nitrate flux. Plant Physiol.1976,58:499-504.
    Shangguan Z P, Li S Q. Nitrogen nutritional physio-ecology on dryland crop.2004.
    Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction inWater-stress response. Plant Physiology.1997,115:327-334.
    Steel R G, Torric J H. Principles and procedures of statistics: a biometrical approach.NewYork.1980.
    St hr C, Strube F, Marx C. A plasma membrane-bound enzyme of tobacco rootscatalyses the formation of nitric oxide from nitrite. Planta.2001,212:835-841.
    St hr C, Ullrich W R. Gerneration and possible roles of NO in plant roots and theirapoplastic space. Journal of Experimental Botany.2002,53:2293-2303.
    Streit L, Feller U. Changing activities of nitrogen-assimilation enzymes during growthand senescence of drarf beans (phaseolus vulgaris.L.). Zeitschrift für Pflanzenphysiologie.1982,108:273-281.
    Tezara W, Mitchell V J, Driscoll S P, Lawlor D W. Water stress inhibits plantphotosynthesis by decreasing coupling factor and ATP. Nature.1999,401:914-917.
    Tourneux C, Peltier G. Effects of water deficit on photosynthetic oxygen exchangemeasured using18O2and mass spectroscopy in Solanum tuberosum leaf discs. Planta.1995,195:570-577.
    Tu J, ShenW B, Xu L L. Regulation ofnitric oxide on the aging process of wheat leaves.Acta Botanica Sinica.2003,45:1055-1062.
    Vargas M A, Maurino S G, Maldonado J M. Flavinmediated photo inactiv at ion ofspinach leaf nitrate reductase involving superox-ideradical and activating effect of hydrogenperoxide. Photochem Photobiol Biol.1987,1:195-201.
    Vincentz M, Moureaux T, Leydecker M T. Regulation of nitrate and nitrite reductaseexpression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant.1993,3:315-324.
    Wang L Q, Wang Y, Dong Y, Wang W B. Induced activity of nitrate reductase by nitrateand cloning of nitrate reductase gene. Chinese Journal of Biotechnology.2003,19:695-698.
    Wang X T, Below F E. Cytokinins in enhanced growth and tillering of wheat induced bymixed nitrogen source. Crop Science.1996,36:121-126.
    Wang Y F, Jiang D, Yu Z W. Effects of nitrogen rates on grain yield and protein contentof wheat and its physiological basis. Scientia Agricultura Sinica.2003,36:513-520.
    Weegels P L, Pijpekamp A M, Graveland A, Hamer R J, Schofield J D. Depolymerisationand re-polymerisation of wheat glutenin during dough processing: relationships betweenglutenin macropolymer content and quality parameters. Journal of Cereal Science.1996,23:103-111.
    Weitzberg E, Lundberg J. Nonenzymatic nitric oxide production in humans. Nitric oxideBiol Chem.1998,2:1-7.
    Wendehenne D, Pugin A, Klessig D F, Durner J. Nitric oxide: comparative synthesis andsignalling in animal and plant cells. Trends in Plant Sciences.2001,6:177-183.
    Wojtaszek P. Nitric oxide in plants to NO or not to NO. Phytochemistry.2000,54:1-4.
    Yamasaki H, Sakihama Y, Takahashi S. An alternative pathway for nitric oxideproduction in plants: new features of an old enzyme. Trends in Plant Sciences.1999,4:128-129.
    Yamasaki H, Sakihama Y. Simultaneous production of nitric oxide and peroxynitrite byplant nitrate reductase: in vitro evidence for the NR-dependent formation. FEBS Letters.2000,468:89-92.
    Yamasaki H. Nitrite-dependent nitric oxide production pathway: implications forinvolvement of active nitrogen species in photoinhibition in vivo. Philosophical Transactionsof the Royal Society B: Biological Sciences.2000,355:1477-1488.
    Yu Q, Tang C, Kuo J. A critical review on methods to measure apoplastic pH in plants.Plant Soil.2000,219:29-40.
    Zemojtel T, Frohlich A, Palmieri M C, Kolanczyk M, Mikula I, Wyrwicz L S, Wanker EE, Mundlos S, Vingron M, Martasek, Durner J. Plant nitric oxide synthase: a never endingstory? Trends in Plant Science.2006,11:524-525.
    Zhang H, Shen WB, Zhang W, Xu L L.A Rapid response of beta-amylase to nitric oxidebut not GA in wheat seeds during the early stage of germination. Planta.2005,220:708-716.
    Zhao L, Zhang F, Guo J. Nitric oxide functions as a signal insalt resistance inthe callusesfromtwo ecotypes of reed. Plant Physiol.2004,134:849-857.
    Zhu J B, Khan K. Characterization of nonnumeric and glutenin polymeric proteins ofhard red spring wheats during grain development by multitasking SDS-PAGE and capillaryzone electrophoresis. Cereal Chemistry.1999,76:261-269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700