用户名: 密码: 验证码:
永磁同步电机直接转矩控制系统若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁同步电机由于具有高效率、高功率密度、高转矩惯量比等特点,在各种调速系统中应用越来越广泛,研究分析高性能的永磁同步电机驱动系统具有十分重要的经济和社会意义。目前,在高性能永磁同步电机调速领域,研究较多的主要有两种控制方案:一种是矢量控制,也称为磁场定向控制(FOC);一种是直接转矩控制(DTC)。众所周知,对电机的控制本质上是对电机转矩的控制,矢量控制主要通过对电机直交轴电流的控制来间接控制转矩,实现过程中要求严格的磁场定向,而直接转矩控制则是将电机和逆变器作为一个整体,直接以转矩为控制对象,通过优选的空间电压矢量实现对电机转矩的直接控制。直接转矩控制技术首先是针对异步电机提出并得到成功应用的,直到1997年才由南京航空航天大学和澳大利亚新南威尔士大学合作提出了正弦波永磁同步电机DTC方案,该方案自提出后迅速成为热点研究问题。本文的研究内容就是围绕永磁同步电机DTC技术展开,以正弦波和方波永磁同步电机为研究对象,对采用DTC时的若干关键问题进行理论分析和仿真实验研究,为永磁同步电机DTC技术的进一步发展和工程应用打下坚实的基础。本文研究内容如下:
     对永磁同步电机DTC技术国内外研究现状进行了综述,指出,目前对正弦波永磁同步电机DTC研究的广度和深度都已经达到一个新的高度,涉及的方向很多,内容非常丰富,大致可以归纳为下面几个方向:降低转矩脉动方法的研究;无传感器运行的研究;定子磁链控制方法的研究等。而对于方波永磁同步电机,由于电机电流非正弦,存在关断相等特点,在采用DTC方法时有其特殊性,近几年正逐渐成为研究热点。
     介绍了正弦波永磁同步电机不同坐标系下的数学模型和传统DTC的基本理论,给出了不同定子绕组连接方式下传统DTC方法的实现过程。针对采用DTC时首先需要解决的参数测定问题,详细介绍了一种DTC条件下额定定子磁链幅值等重要电机参数的测定方法,分析了不同运行条件下参数的变化规律,并进行了实验验证。该方法对一般DTC下电机参数的确定具有借鉴意义,有助于推动直接转矩控制的进一步工程应用。
     针对正弦波永磁同步电机传统DTC在数字控制条件下的特点,在分析定子磁链幅值、转矩角和转矩变化规律的基础上,以降低稳定运行时的转矩脉动和减少起动时间为目标,提出了一种DTC转矩调节器设计方法,该方法既保证了电机稳定运行时较低的转矩脉动又实现了电机具有较短的起动时间,仿真和实验验证了该方法的正确性和有效性,对一般电机DTC中转矩调节器的设计具有指导意义。
     针对传统DTC中磁链幅值恒定,转子永磁体单独励磁的特点,从减少无功电流,降低电机损耗,提高电机效率角度出发提出了一种磁链自适应DTC方法,实现了在满足负载转矩要求的条件下对定子磁链给定的动态调整,通过在线实时调整定子磁链给定保证了电机在运行过程中始终具有较少的无功电流和较高的功率因数,仿真和实验验证了该方法的可行性和有效性。
     从正弦波永磁同步电机传统DTC方法的实现过程不难看出,其还是受到了异步电机DTC方法的影响,仍然采用磁链和转矩双闭环的不解耦控制方式。而正弦波永磁同步电机中转子永磁体磁链为定值,定子磁链幅值和转矩角均为可控变量,因此,实现直接转矩控制的方法不唯一。对不同转矩控制方法进行了分析和比较,提出了一种无磁链闭环DTC方法,该方法实现过程中直接根据转矩的控制要求选择最优空间电压矢量,实现了对转矩更快更准确的控制,省去了磁链控制环节。仿真和实验证明了该方法的正确性和可行性,为DTC的进一步研究提供了参考。
     方波永磁同步电机由于变量的非正弦,存在关断相等特点,使得在采用DTC方法时有其特殊性。在实现直接转矩控制方法时,只要根据转矩控制要求选择交轴分量最优的空间电压矢量作用于电机即可实现对转矩的快速控制,无需观测定子磁链。为保证电机稳定运行,在无磁链观测条件下需要对电流进行限制,由于采用120度导通方式,通过控制转矩能够实现对电流的限制。仿真和实验验证了提出的无磁链观测DTC方法理论的正确性和方法的可行性,为进一步提高方波永磁同步电机DTC的性能奠定了基础。
     基于TI公司高性能数字控制器设计了永磁同步电机实验平台,不同控制策略下进行的实验证明了该平台的可靠性。
Permanent magnet synchronous motor has been widely applied in various AC drive systems for itsmerits of high efficiency, high power density and high torque/inertia ratio and the research ofpermanent magnet synchronous motor drive system with high performance deserves importanteconomy and society value.At present, there are mainly two control schemes in high performancedrive systems: one is vector control or called field orientation control, and the other is direct torquecontrol(DTC).As known, the essence of motor control is the control of motor torque.In vector controlscheme, the torque control is indirectly achieved by the control of d-axis and q axis current,in thisprocess,the accurate flux linkage orientation is needed.And DTC method considers the motor andinverter as a whole,and controls the torque directly by applying the optimal voltage vectors. DTC waspresented and applied in induction motor firstly and the DTC method for sinusoidal permanentmagnet synchronous motor was not presented until1997which was introduced by Nanjing Universityof Aeronautics and Astronautics and University of New South Wales. DTC has been the hot researchissuse since it was introduced.The main content of this thesis is about direct torque control ofpermanent magnet synchronous motor.Both of the sinusoidal and trapezoidal motors areresearched.The theoretical analysis, simulation and experiments are taken to solve the key issues indirect torque control of the two motors which helps to laying the foundation for further developmentand application of DTC.The main research issues are as follows:
     The research of permanent magnet synchronous motor at home and aboard is reviewed.It ispointed that the width and depth of DTC research on sinusoidal motor have been a new level,manysubjects are included and the content is very rich, and they can be roughly divided into three subjects:the research about torque ripple reduction; the research about sesorless operation;the control of statorflux linkage and so on.But for the trapezoidal motor,there is some specificity with DTC for thenon-sinusoidal voltage and current,and the turn-off phase.And the research of DTC of trapezoidalmotor has been the hot research issuses.
     The models of sinusoidal permanent magnet synchronous motor under different coordinate systemsand the traditional direct torque control basic theory are introduced,and the implementation procseesof traditional DTC with different stator winding connection styles are presented.With respect to theproblem of parameter determination,taking a sinusoidal permanent magnet synchronous motor forinstance, a parameter determination method for DTC is introduced detailedly.And the parametervariation under different situations is analyzed and the results are verified by the experiments.Theproposed parameter determination method is helpful for the normal DTC application.
     The characteristics of traditional DTC for sinusoidal motor under digital control are analyzedincluding the stator flux linkage variation,torque angle variation and the torque variation.The resultsshow that: the lag control of stator flux linkage exits in digital congrol system;the influence of rotorflux linkage positon variation can not be neglected under high speed operation;and the control ofmotor torque by voltage vectors shows the positive and negative asymmetry; the maintenance strengthof zero voltage vector to the torque depends on the motor speed.On the base of analysis of traditionalDTC,a torque regulator design method is proposed, and low torque ripple and short starting time can be achieved with this method,simulation and experiment results validate the regulator designmethod.The torque regulator design method provides the guidance for normal torque regulator designin DTC.
     Taking the non-salient pole sinusoidal permanent magnet synchronous motor for example,therelationship between stator flux linkage d-axis and q-axis components and motor torque.A stator fluxlinkage adaptive direct torque control is presented, in this method,the stator flux linkage referenceadaptive control is achieved,meanwhile, it also meets the requirement of load torque,and high powerfactor is gained.Simulation and experiment results verified the effectiveness and validity.
     It can be seen from sinusoidal permanent magnet synchronous motor traditional DTC that itsimplementation is still affected by induction motor DTC,in which flux linkage and torque close loopcontrol method is adopted.In fact, the amplitude of stator flux linkage and torque angle arecontrollable variables while the rotor flux linkage is constant in sinusoidal permanent magnetsynchronous motor,therefore,the implementation of DTC is not unique.After analyzing andcomparing different methods,a DTC method without flux linkage close loop control is presented.Themain feature of optimal direct torque control is that the rapid torque response is achieved bycontrolling the stator flux linkage q-axis component directly,and the optimal voltage vector is selectedaccoding to the torque requirement only,in this method,the flux linkage control loop iseliminated.The optimal control of torque is achieved by making using of the characteristic of constantrotor flux linkage in sinusoidal motor.This method provides the reference for further research in DTC.
     The direct torque control method of trapezoidal permanent magnet synchronous motor has its ownspecificity for the non-sinusoidal voltage and current,turn-off pahse.The torque variation is analyzedfrom the normal torque expression of trapezoidal motor, and the results show that the amplitude offlux linkage vector which is induced from rotor flux linkage is not constant,it is the function of rotorpositon.And for a certain rotor position,the torque variation is only decided by the variation of statorflux linkage q-axis component.Therefore,the direct torque control of trapezoidal motor can beachieved by choosing the voltage vector which the q-axis component is optimal according to therequirement of torque control,and there is no need to observe the stator flux linkage.And the currentlimitation is achieved by control the motor torque under120degree conduction mode.Theeffectiveness and validity of the proposed DTC method without flux linkage observation is verified bythe simulation and experiment results.
     The permanent magnet synchronous motor general experiment platform is designed based on TIhigh performance digital controller, and the stability is verified by different experiments mentionedabove.
引文
[1]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,2002.
    [2]王秀和.永磁电机[M].北京:中国电力出版社,2007.
    [3]郭庆鼎.交流伺服系统[M].北京:机械工业出版社,1994.
    [4]秦忆.现代交流伺服系统[M].武汉:华中理工大学出版社,1995.
    [5]李钟明,刘卫国.稀土永磁电机[M].北京:国防工业出版社,1999.
    [6]王季秩.电机在电子信息特殊领域中的应用[J].微电机,2002,35(6):48-53.
    [7]廖自力等.数字交流全电炮控系统研究[J].装甲兵工程学院学报,2002,16(1):24-28.
    [8]叶金虎等.无刷直流电动机[M].北京:机械工业出版社,1990.
    [9]张琛.直流无刷电动机原理及应用[M].北京:机械工业出版社,1997.
    [10]王成元等.电机现代控制技术[M].北京:机械工业出版社,2006.
    [11]蓝伟庭.风力发电市场与技术发展概观[J].新兴能源,2007,11:76-83.
    [12]李俊峰等.风力12在中国[M].北京:化学工业出版社,2005.
    [13]谢宝昌.兆瓦级风力发电机综述[J].电机与控制应用,2007,34(2):1-5.
    [14]刘雪菁等.永磁同步风力发电机组控制策略的仿真研究[J].计算机仿真,2009,26(3):264-267.
    [15]瞿兴鸿等.永磁同步直驱风力发电系统的并网变流器设计[J].电力电子技术,2008,42(3):22-24.
    [16]王剑飞等.永磁直驱型风力发电机组的无传感器控制研究[J].电力电子技术,2009,43(3):6-8.
    [17]徐锋等.兆瓦级永磁直驱风力发电机组变流技术[J].电力自动化设备,2007,27(7):57-61.
    [18]郭冰.直驱永磁风力发电机发展及其设计方法综述[J].微特电机,2007,11:56-59.
    [19]吴昊.变频空调压缩机控制算法的优化与仿真[D].[硕士学位论文],北京,清华大学,2008.
    [20]刘时珍.变频空调压缩机矢量控制系统的研究[D].[硕士学位论文],吉林,吉林大学,2009.
    [21] I.Takahashi,T.Noguchi. A new quick-response and high-efficiency Control Strategy of an Induction Motor[J]. IEEE Transaction on Industry Applications,1986,22(5):820-827.
    [22] Depenbrock M. Direct Self-Control(DSC)of Inverter-Fed Induction Machine[J]. IEEE TransPower Electro,1988,3(4):420-429.
    [23] U Baader,Depenbrock M. Direct self control (DSC) of inverter-fed induction machine:abasis for speed control without speed measurement[J]. IEEE Trans Ind Applica,1992,28(3):581-588.
    [24] Pekka Tiitnen. The next generation motor control method, DTC direct torque control[C], Power Electronics, Drives and Energy Systems for Industrial Growth,1996(1):37-43.
    [25] Zhong L, Rahman M F, Hu Y W, et al. Analysis of Direct Torque Control in PermanentMagnet Synchronous Motor Drives[J], IEEE Transaction on Power Electronics,1997,12(3):528-535.
    [26] Blaschke F., Das prinzip der feldorientierung, die Grundlage f ü r die Transvektor-Regelung vo Drehfeldmachinen, Siemens-zeitschrift,1971(45):757.
    [27] Bayer, Field-oriented close-loop control of a synchronous machine with new transverter control system, Siemens Review,1972(5).
    [28]李志民,张遇杰,同步电机调速系统[M],北京,机械工业出版社,1996.
    [29]李崇坚,交流同步电机调速系统[M],北京,科学出版社,2006.
    [30]许大中.交流电机调速理论[M].浙江,浙江大学出版社,1997.
    [31] Hu Yuwen,Tian Cun,Gu yikang. In-depth research on direct torque control of permanentmagnet synchronous motor[C],28th Annual Conference of the IEEE Industrial ElectronicsSociety,2002(3):1060-1065.
    [32]冯江华等.永磁同步电机直接转矩控制系统转矩调节新方法[J].中国电机工程学报,2006,26(13):151-157.
    [33] Vanja Ambrozic,Giuseppe S., Bujia, Band-constrained technique for direct torque control ofinduction motor[J], IEEE Transactions on industrial electronics,2004,51(4):776-784.
    [34]孙笑辉,基于直接转矩控制的感应电动机转矩脉动最小化方法研究[J].中国电机工程学报,2002,22(8):109-112.
    [35] Nik Rumzi Nik Idris,Abdul Halim Mohamed Yatim. Direct torque control of induction machines with constant switching frequency and reduced torque ripple[J], IEEE Transaction on power electronics,2004,51(4):758-767.
    [36] D.Casadei. D.Casadei, Improvement of direct torque control performance by using a discrete SVM technique[C], PESC’98,1998:997-1003.
    [37] D.Casadei, Implementation of a direct torque control algorithm for induction motors basedon discrete space vector modulation[J], IEEE Transactions on power electronics,2000,15(4):769-777.
    [38] D.Casadei, FOC and DTC: Two viable schemes for induction motors torque control[J], IEEE Transactions on power electronics,2002,17(5):779-787.
    [39] Yen-Shin Lai,Wen-Ke Wang and Yen-Chang Chen, Novel switching techniques for reducingthe speed ripple of AC drives with direct torque control[J], IEEE Transactions on industrial electronics,2004,51(4):768-775.
    [40] Li Liang-bing, A variable-voltage direct torque control based on DSP in PM synchronousmotor drives[C], TENCON’02, Proceedings.2002IEEE Region10Conference on Computers,Communication,Control and Power Engineering,2002:2065-2068.
    [41]廖晓钟等.直接转矩控制的十二区段控制方法[J].中国电机工程学报,2006,26(6):167-173.
    [42]王晓磊等.永磁同步电机定子磁链十二区间直接转矩控制[J].青岛大学学报,2006,21(4):66-69.
    [43]吴晓东等.无速度传感器十二区段直接转矩控制[J].机电工程,2008,25(3):46-48.
    [44]徐艳平等.扇区细分和占空比控制相结合的永磁同步电机直接转矩控制[J].中国电机工程学报,2009,29(3):102-108.
    [45] Lixin Tang and M.F.Rahman, A new direct torque control strategy for flux and torque ripple reduction for induction motors drive by using space vector modulation[C], IEEE PESC’2001,2001:1440-1445.
    [46] L Tang, L.zhong, M.F.Raman and Y.Hu, A novel direct torque control scheme for interiorpermanent magnet synchronous machine drive system with low ripple in torque and flux,and fixed switching frequency[C], IEEE PESC’2002,2002:529-534.
    [47] L. Tang, L. Zhong, M.F.Rahman and Y.Hu, An investigation of a modified direct torque control strategy for flux and torque ripple reduction for induction machine drive system with fixed switching frequency[C], IEEE IAS’2002,2002:837-844.
    [48] Tang L X, Zhong L M, Rahman M F and Hu Y W., A novel direct torque controlled interior permanent magnet synchronous machine drive with low ripple in flux and torque andfixed switching frequency[J],IEEETransactions on power electronics,2004,19(2):346-354.
    [49] Jun Zhang, Zhuang Xu,Lixin Tang, Rahman M F, A novel direct load angle control for interior permanent magnet synchronous machine drives with space vector modulation [C], Proceedings of the International Conference on Power Electronics and Drive Systems,2005:607-611.
    [50] Sayeef, S, Foo G.,Rahman M F, SVM direct torque control of IPM synchronous machinesat very low speeds [C],4th IET International Conference on Power Electronics, Machinesand Drives,2008:296-300.
    [51] Foo Gilbert,Sayeef Saad,Rahman M.F., Sensorless SVM direct torque controlled interior permanent magnet synchronous drive [C],2007Australasian Universities Power EngineeringConference,2007:675-680.
    [52] Minghua Fu, Longya Xu, A sensorless direct torque control technique for permanent magnet synchronous motors[C], IEEE-IAS Annu. Meeting,1999:159-164.
    [53] Minghua Fu, Ling Xu, A sensorless direct torque control technique for permanent magnetsynchronous motors[C], Power Electronics in Transportation,1998:21-28.
    [54] Liu Qinghua, Ashwin M. Khambadkone and M.A.Jabbar, Direct flux control of interior permanent magnet synchronous motor drives for wide-speed operation[C], Power Electronics and Drive Systems,2003. PEDS2003:1680-1685.
    [55] Anshuman Tripathi, Ashwin M Khambadkone, Space-vector based, constant frequency, direct torque control and dead beat stator flux control of AC machine[C], IECON’2001:1219-1224.
    [56] Cristian Lascu, Ion Boldea, A modified direct torque control for induction motor sensorlessdrive[J], IEEE Transactions on industry applications,2000,36(1):122-130.
    [57] Yen Shin Lai, Jian Ho Chen, A new approach to direct torque control of induction motordrives for constant inverter switching frequency and torque ripple reduction[J], IEEE Transactions on energy conversion,2001,16(3):220-227.
    [58] U.Baader, High dynamic torque control of induction motor in stator flux oriented coordinates[J], ETZ Arch.,1998,11(1):11-17.
    [59] Jun Zhang, Rahman M Faz, Grantham, Colin, A new scheme to direct torque control of interior permanent magnet synchronous machine drives for constant inverter switching frequency and low torque ripple [C], Conference Proceedings-IPEMC2006: CES/IEEE5th International Power Electronics and Motion Control Conference,2007:1864-1868.
    [60] Foo Gilbert, Sayeef Saad, Rahman M F, Wide speed sensorless SVM direct torque controlled interior permanent magnet synchronous motor drive [C], Proceedings-34th Annual Conference of the IEEE Industrial Electronics Society,2008:1439-1444.
    [61] Foo Gilbert, Goon C S, Rahman M F, Analysis and design of the SVM direct torque andflux control scheme for IPM synchronous motors [C], Proceedings-The12th International Conference on Electrical Machines and Systems,2009:1430-1436.
    [62]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
    [63] Cristian Lascu and Andrzej M. Trzynadlowski, Combining the principles of sliding mode,direct torque control, and space-vector modulation in a high-performance sensorless AC drive[J], IEEE Transations on industry application,2004,40(1):170-177.
    [64] Cristian Lascu, Ion Boldea and Frede Blaabjerg, Variable-structure direct torque control—aclass of fast and robust controllers for inductance machine drives[J], IEEE Transactions on industry electronics,2004,51(4):785-792.
    [65] Cristian Lascu,Ion Boldea and Frede Blaabjerg, Direct torque control of sensorless induction motor drives: a sliding-mode approach[J], IEEE Transactions on industry applications,2004,40(2):582-590.
    [66] Xu, Zhuang, Rahman M F, A variable structure torque and flux controller for a DTC IPMsynchronous motor drive [C], IEEE Annual Power Electronics Specialists Conference,2004:445-450.
    [67] Xu, Z., Rahman M F, Direct torque and flux regulation of an IPM synchronous motor drive using variable structure control approach [C], IECON2004-30th Annual Conferenceof IEEE Industrial Eelctronics Society,2004:2733-2738.
    [68] Sayeef Saad, Foo, Gilbert, Rahman M F, Very low speed operation of a variable structuredirect torque controlled ipm synchronous motor drive using combined HF signal injectionand sliding observer [C], Proceedings of the2008International Conference on ElectricalMachines,2008:1430-1436.
    [69]贾洪平等.永磁同步电机滑模变结构直接转矩控制[J].电工技术学报,2006,21(1):1-6.
    [70]贾洪平等.基于滑模变结构的永磁同步电机直接转矩控制[J].中国电机工程学报,2006,26(20):134-138.
    [71]童克文等.基于新型趋近律的永磁同步电动机滑模变结构控制[J].中国电机工程学报,2008,28(21):102-106.
    [72]孙丹,基于模糊逻辑的永磁同步电动机直接转矩控制[J],电工技术学报,2003,18(1):33-38.
    [73] Yang Xia, Oghanna W., Fuzzy direct torque control of induction motor with stator flux estimation compensation[C], IECON’97:505-510.
    [74] Soliman Hussein F. E., Elbuluk Malik E., Improving the torque ripple in DTC of PMSMusing fuzzy logic [C], IAS Annual Meeting (IEEE Industry Applications Society),2008:1430-1436.
    [75] Hu, Y W, Zhong, L., Rahman, M.F., Direct torque control of an induction motor using fuzzy logic [C], Canadian Conference on Electrical and Computer Engineering,1997:767-772.
    [76] P.Z.Grabowski, M.P.Kazmierkowski, B.K.Bose, et al. A simple direct-torque neuro-fuzzy control of PWM-inverter-Fed induction motor drive[J], IEEE Transactions on industrial electronics,2004,51(4):863-870.
    [77] Hyeoun-Dong Lee,Seog-Joo Kang, Efficiency-optimized direct torque control of synchronous reluctance motor using feedback linearization[J], IEEE Transactions on industrial electronics,1999,46(1):192-198.
    [78] Damien Grenier, Sam Yala, Direct torque control of PM AC motor with non-sinusoidal flux distribution using state-feedback linearization techniques[C], IEEE IECON’98:1515-1520.
    [79] Damien Grenier, L.-A.Dessaint, Experimental nonlinear torque control of a permanent-magnet synchronous motor using saliency [J], IEEE Transactions on industrial electronics,1997,44(5):680-687.
    [80] Kyo-Beum Lee, Torque ripple reduction in DTC of induction motor driven by three-level inverter with low switching frequency[J], IEEE Transactions on power electronics,2002,17(2):255-263.
    [81] Jose Rodriguez, Direct torque control with imposed switching frequency in an11-level cascaded inverter[J], IEEE Transactions on industrial electronics,2004,51(4):827-833.
    [82] Domenico Casadei, The use of matrix converters in direct torque control of induction machines[C], IECON’98. Proceedings of24th annual conference of the IEEE,744-749.
    [83] Domenico Casadei, The use of matrix converters in direct torque control of induction machines[J], IEEE Transactions on industrial electronics,2001,48(6):1057-1064.
    [84] Xiao, D., Rahman, M.F., Direct torque control of an interior permanent magnet synchronous machine fed by a direct AC-AC converter [C], IPEMC2006. CES/IEEE5th International Power Electronics and Motion Control Conference,983-988.
    [85] Xiao, D., Rahman, M.F., A modified direct torque control for matrix converter drives [C],AUPEC2008.2008Australasian Universities Power Engineering Conference,749-755.
    [86] Xiao, D., Rahman, M.F., An Improved Direct Torque Control for Matrix converter driveninterior permanent magnet synchronous Motor [C], AUPEC2008.2008Australasian Universities Power Engineering Conference,1-6.
    [87] Xiao, D., Rahman, M.F., A modified direct torque control for a matrix converter-fed interior permanent magnet synchronous machine drive [C], PESC'06.37th IEEE Power Electronics Specialists Conference,1-7.
    [88] Leila Parsa and Hamid A. Toliyat, Sensorless direct torque control of five-phase interior permanent magnet motor drives[C], IAS2004:992-999.
    [89] Lin Chen and Kang-Ling fang, A novel direct torque control for dual-three-phase inductionmotor[C], IEEE Proceedings of the second international conference on machine learning and cybernetics,Xi’an,2003:876-881.
    [90] Kim JS, Sul SK, High performance PMSM drives without rotational position sensors usingreduced order observers[C], IEEE IAS,Annual Meeting,1995:75-82.
    [91] Kim JS, Sul SK, New standstill position detection strategy for PMSM drive without rotational transducers[C], Conf. Record of IEEE, APEC,1994:363-369.
    [92] Haque, M.E., Zhong, L.,Rahman, M.F., A sensorless initial rotor position estimation scheme for a direct torque controlled interior permanent magnet synchronous motor drive [C], APEC. IEEE Applied Power Electronics Conference and Exposition,879-884.
    [93] Haque, M.E., Zhong, L.,Rahman, M.F., A sensorless initial rotor position estimation scheme for a direct torque controlled interior permanent magnet synchronous motor drive [J], IEEE Transactions on Power Electronics,2003,18(6),1376-1383.
    [94] Sayeef, S., Foo, G.,Rahman, M.F., Rotor position and speed estimation of a variable structure direct torque controlled ipm synchronous motor drive at very low speeds [C], AUPEC2008.2008Australasian Universities Power Engineering Conference,1-6.
    [95] Joohn Sheok Kim, Seung Ki Sul, New stand-still position detection strategy for PMSM drive without rotational transducers[C], IEEE APEC’94,363-369.
    [96] Foo, Gilbert, Sayeef, Saad,Rahman, M.F., Sensorless direct torque and flux control of an ipm synchronous motor drive at low speed and standstill [C], AUPEC2008.2008Australasian Universities Power Engineering Conference,277-282.
    [97] Foo, Gilbert, Sayeef, Saad,Rahman, M.F., Wide speed operation of a direct torque and flux controlled IPM synchronous motor drive without a mechanical sensor [C], ICSET2008.2008IEEE International Conference on Sustainable Energy Technologies,1244-1249.
    [98] Foo, Gilbert, Rahman, M.F., Sensorless direct torque and flux control of IPM synchronousmotor drives using an extended rotor flux model [C], AUPEC'09.200819th AustralasianUniversities Power Engineering Conference,1-6.
    [99] Foo, Gilbert, Sayeef, Saad,Rahman, M.F., Low-speed and standstill operation of a sensorless direct torque and flux controlled IPM synchronous motor drive [J], IEEE Transactions on Energy Conversion,2010,25(1)25-33.
    [100]Rahman, M.F., Zhong, L., A direct torque controlled permanent magnet synchronous motordrive without a speed sensor [C], IEMDC'99.1999IEEE International Electric Machinesand Drives Conference,123-125.
    [101]Rahman, M.F., Haque, M.E., Zhong, L., A sensorless speed estimator for the direct torquecontrol of an interior permanent magnet synchronous motor drive [C], International Conference on Power Electronics, Machines and Drives,2002,504-509.
    [102]Rahman, M.F., Zhong, L., Haque, Md.E., A direct torque-controlled interior permanent-magnet synchronous motor drive without a speed sensor [J], IEEE Transactions on Energy Conversion,2003,18(1)17-22.
    [103]Foo, G., Rahman, M.F., A novel speed sensorless direct torque and flux controlled interior permanent magnet synchronous motor drive [C],2008IEEE Power Electronics Specialists Conference,2008,50-56.
    [104]贾洪平等.一种适合DTC应用的非线性正交反馈补偿磁链观测器[J].中国电机工程学报,2006,26(1):101-105.
    [105]Hu, Jun, Wu, Bin, New integration algorithms for estimating motor flux over a wide speed range [J], IEEE Transactions on Power Electronics,1998,13(5)969-977.
    [106]Xu, Zhuang, Rahman, M.F., An extended kalman filter observer for the direct torque controlled interior permanent magnet synchronous motor DRIVE [C], IPEC20036th International Power Engineering Conference,2003,331-336.
    [107]Foo, Gilbert, Rahman, M.F., An extended Kalman filter for sensorless direct torque controlled IPM synchronous motor drive [C], AUPEC2008Australasian Universities Power Engineering Conference,2008,271-276.
    [108]I.El Hassan, E.v.Westerholt, X.Roboam, et al. Original direct torque control strategy for speed-sensorless induction motors using extended kalman filtering[C], Power Electronic Drives and Energy Systems for Industrial Growth,1998:32-37.
    [109]Vasile COMNAC, Marcian N.CIRSTEA, Florin MOLDOVEANU,et al. Sensorless speed and direct torque control of interior permanent magnet synchronous machine based on extended kalman filter[C], ISIE2002(4):1142-1147.
    [110]F. Parasiliti, R. Petrella, M. Tursini, Sensorless speed control of a PM synchronous motorby sliding mode observer[C], ISIE’97-Guimaraes, Portugal,1106-1111.
    [111]J. Hu, D. Zhu, Yongdong Li,et al. Application of sliding observer to sensorless permanentmagnet synchronous motor drive system[C], IEEE IAS Aunn. Meeting,1994:532-536.
    [112]Xu, Z., Rahman, M.F., An adaptive sliding stator flux observer for a direct torque controlled IPM synchronous motor drive [C],2005IEEE International Conference on Electric Machines and Drives,2005,704-709.
    [113]Xu, Z., Rahman, M.F., An improved stator flux estimation for a variable structure direct torque controlled IPM synchronous motor drive using a sliding observer [C],2005IEEE Industry Applications Conference,40th IAS Annual Meeting,2005,2484-2490.
    [114]C. Bruguier, G. Champenois and J. P. Rognon, ID_Model control of a synchronous motorwithout position and speed sensor[C], Applied Power Electronics Conference and Exposition, APEC '95. Conference Proceedings1995(1):387-391.
    [115]C. Bruguier, G. Champenois and J. P. Rognon, A new control of a synchronous motor without position and speed sensors: the current-model[C],IEEE Power Electronics Congress,1995. Technical Proceedings. CIEP95., IV IEEE International,97-100.
    [116]田淳,无位置传感器同步电机直接转矩控制理论研究与实践,[博士学位论文],南京,南京航空航天大学,2001.
    [117]Jawad F S, Hossein M Z, A novel technique for estimation and control of stator flux ofa salient-pole PMSM in DTC method based on MTPF [J], IEEE Trans Ind Electron,2003,50(2)262-268.
    [118]马保柱等.基于空间矢量脉宽调制的永磁同步电动机直接磁链控制[J].北京科技大学学报,2008,30(6):674-679.
    [119]陈书锦等.基于MTPF永磁同步电动机直接磁链控制[J].电机与控制学报,2009,13(6):827-833.
    [120]Liu Q H, Khambadkone A M, Tripathi A, Torque control of IPMSM drives using direct flux control for wide speed operation [C], IEEE International Electric Machine Drives Conference,2003.,188-194.
    [121]郎宝华等.基于最大转矩电流比动态磁链给定的直接转矩控制[J].电气传动,2008,38(1):23-26.
    [122]许峻峰等.永磁同步电机直接转矩控制中定子磁链的分析[J].电气传动,2005,35(1):10-18.
    [123]李耀华等.永磁同步电动机直接转矩控制系统的最大转矩电流比控制[J].微特电机,2007,1:23-26.
    [124]Yong Liu,Z Q Zhu,David Howe, Direct Torque Control of Brushless DC Drives WithReduced Torque Ripple [J], IEEE Trans on Ind Application,2005,41(2)599-608.
    [125]Arab Markadeh G R,Mousavi S I,Abazari S,et al.Position sensorless direct torque control of BLDC motor[C].IEEE International Conference on Industrial Technology,Sichuang,Chengdu,2008.
    [126]高瑾等.六边形磁链轨迹的无刷直流电机直接自控制[J].中国电机工程学报,2007,27(15):64-69.
    [127]高瑾等.超空间矢量下的无刷直流电机直接转矩控制[J].中国电机工程学报,2007,27(24):97-101.
    [128]夏长亮等.永磁无刷直流电机直接转矩控制[J].中国电机工程学报,2008,28(6):104-109.
    [129]安群涛等.无刷直流电机的磁链自控直接转矩控制[J].中国电机工程学报,2010,30(12):86-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700