用户名: 密码: 验证码:
静载荷与循环冲击组合作用下岩石动态力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多数岩体工程在爆破开挖过程中,围岩承受载荷的形式为具有一定静应力下的循环冲击载荷。岩石在静态或准静态循环荷载作用下的力学特性已取得了丰硕的研究成果,理论体系较完善。对岩石在循环冲击载荷作用下的强度、变形、能量耗散、破坏模式及机理等方面的研究明显不足,其理论研究明显落后于工程实际应用。本文利用动静组合加载试验装置,对岩石在静载荷和循环冲击组合作用下的力学特性进行研究。主要内容和结论性成果如下:
     (1)从理论和试验两个角度证明,利用动静组合加载试验装置进行冲击试验,当弹性杆具有不同轴压,冲头以相同冲击速度撞击弹性杆时,导致入射波的大小不同;轴压越大,入射波越小。因此对具有不同轴压的岩石进行相同能级循环冲击试验时,应确保入射杆上测得的入射波大小相同,而不是确保冲头具有相同的冲击速度(或冲击动能)。
     (2)在循环冲击过程中,单次冲击得到的岩石应力-应变曲线大致可以分为5个阶段:压密阶段、极短的弹性阶段、裂纹扩展的加载阶段、第一卸载阶段和第二卸载阶段。随着冲击次数的增加,透射波幅值越来越小,其峰值出现的时间越来越早;反射波幅值越来越大,其峰值出现的时间越来越晚。
     (3)轴压和循环冲击组合作用下,随着循环冲击次数的递增,岩石平均应变率、峰值应变和单位体积吸收能逐渐增大;峰值应力、加载段变形模量、第一卸载阶段变形模量的绝对值、恢复的弹性应力和应变逐渐减小,表明岩石抵抗外部冲击载荷的强度和变形能力逐渐降低。当冲击载荷一定时,轴压的大小对岩石抵抗循环冲击载荷的能力影响较大,轴压为单轴抗压强度的22%时,岩石的抵抗能力最强。
     (4)三维静载和循环冲击组合作用下,相同围压时,岩石承受的总循环冲击次数随轴压的增大而减小;相同轴压时,随着围压的增高,总循环冲击次数逐渐增加。随着循环冲击次数的增加,岩石动态强度和变形能力逐渐减小。动态强度和平均应变率具有良好的负相关性,二者具有线性关系。
     (5)理论分析和试验结果表明,岩石单位体积吸收能和吸能效率随循环冲击次数的增加而增加;随着循环冲击次数的增加,反射能逐渐增加,透射能逐渐减小,二者呈指数函数形式变化。平均应变率和单位体积吸收能间具有良好的正向相关性;当围压从低到高增加过程中,二者间拟合直线的斜率K随轴压增加的变化关系为“增加-基本不变-减小”。当轴压较小时,斜率K随围压的增加先增加后降低,轴压越小斜率K由上升到下降转折点处的围压越大;当轴压增加到125MPa时,斜率K随围压的增加始终降低。
     (6)在理论和试验角度分析得出,裂隙岩石的密度和纵波波速间具有良好的正向相关性;在同一损伤过程中,波阻抗和纵波波速的相对变化幅值接近,分别用其定义的损伤变量变化趋势一致。为此,可用波阻抗定义循环过程中岩石的损伤变量。
     (7)建立适合表征循环冲击过程中岩石损伤累积演化的倒S型非线性模型,探索模型中参数的物理意义,并给出相应的取值范围。相比已有的损伤累积模型,该模型最大的优点是能体现出轴压和围压对损伤累积演化的影响;也可以描述岩石在多级循环冲击载荷作用下的损伤累积演化特性。当围压增加到一定值时,轴压的大小对岩石损伤累积的影响减弱;无论轴压大小如何,围压始终影响着岩石的损伤累积演化路径。
     (8)无静载作用的岩石在循环冲击作用下,试件逐步破坏成几块,破裂面沿着试件的纵向面,破坏主要是由于横向张应变引起的,为张裂破坏。无围压有轴压岩石试件在循环冲击载荷作用下,由于界面摩擦力的约束,第一次破坏形成的破裂面呈共轭双曲线型,第二次及后续破坏主要发生在与入射杆的接触处,破坏都属于张剪破坏。具有三向静载的岩石在循环冲击作用下破坏形成圆锥体(台),属于拉剪破坏。轴压的大小对形成圆锥顶部大小影响较大。
During blasting excavation in many rock engineerings, the surrounding rock mass is subjected to repeated impact loads coupled with vertical and horizontal static stresses. The static or quasi-static fatigue mechanical behaviors of rock have been studied sufficiently, and perfect theory system has been established. The studies on dynamic strength, deformation characteristics, energy dissipation, failure modes and mechanism of rock under cyclic impact loadings have been generally neglected with the exception of a few rather limited studies, and the existing theory cannot meet the needs of practical engineering. The dynamic mechanical characteristics of rock under coupled static and cyclic impact loadings were studied by using modified split-Hopkinson pressure bar (SHPB) in this paper. The main contents and conclusions are as follows:
     (1) The theoretical analysis and experimental results show that the incident energy varies with change of axial static load, when the striker impacts against input bar with the same velocity. The bigger the axial pressure is, the smaller the incident energy is. So when the same level cyclic impact tests on rock samples with different axial stress are conducted, it is necessary that the incident stress waves are equal, instead of the same velocity of striker.
     (2) The single typical stress-strain curve of rock specimen under cyclic impacts can be divided into five stages:compacted stage, elastic stage, loading stage of internal crack propagation, the first unloading stage and the second unloading stage. With the increase of impact number, the amplitude of the transmitted wave decreases and the corresponding peak value occur increasingly earlier; the amplitude of the reflected wave increases, and the corresponding peak value appears later, respectively.
     (3) With the increasing impact number, the rock average strain rate, peak strain and energy absorption per unit volume gradually increase, whereas its peak stress, deformation modulus of loading stage, the deformation modulus absolute value of the first unloading stage, restorable strain and stress decrease under the coupled cyclic impacts and axial stress. It can be concluded that the rock strength and deformation capacity resisting external impact loading degrade gradually. The value of axial stress has great influence on resistance capacity of rock with the same cyclic impacts, and the capacity of rock resistance is the strongest when22%uniaxial compressive strength is pre-compressed.
     (4) When rock is under coupled three-dimensional static loading and cyclic impacts, the total cyclic number will decreases with axial stress increased when the confining pressure is a constant; The total cyclic number has an increasing trend with the increasing confining pressure when the axial compression is a constant; the dynamic strength and deformation capacity degrade gradually when the number of impacts is increasing. Rock dynamic strength has a good negative linear correlation with average strain rate.
     (5) The theoretical analysis and experimental results show that energy absorption efficiency increases with the increasing number of cyclic impacts, when the cyclic impact loadings are a constant. Meanwhile reflected energy increases while the transmitted energy decrease, which shown the relationship with an exponential function. Average strain rate has a good positive correlation with energy absorption per unit volume. The linear-fitted slope K of average strain rate and energy absorption per unit volume indicates a trend of "increase, constant, then decrease" with the increasing axial stress. When the axial stress is smaller, K increases and then become lower with the increasing of confining pressure. The smaller axial stress is, the bigger the confining pressure corresponding to slope's turning point is. After the axial stress reaches to125MPa, K continually reduces with the increase of confining pressure.
     (6) Rock density and P-wave velocity have a good positive correlation on the basis of theoretical and statistical analysis, the relative variation range of wave impedance is nearly equal to P-wave velocity on the same damage process, and the damage variables defined by velocity and wave impedance shown the same trend. Therefore the damage variable of rock under cyclic impacts can be defined by wave impedance.
     (7) Inverted S-shaped nonlinear model for cumulative damage evolution of rock was established under coupled static and cyclic impact loadings. The physical meanings and range of parameters were investigated. The advantage of the proposed model is that it can express effects of the axial stress and confining pressure on rock damage cumulative evolution (RDCE), and may describe damage evolution of rock under multilevel cyclic impact loadings. When confining pressure is increased to a certain value, the value of axial stress has weak effect on RDCE, and confining pressure always influences on RDCE regardless of the value of axial stress.
     (8) The rock sample gradually fractures into several fragments when it is just subjected to cyclic impact loadings, and their fracture planes are parallel to longitudinal section of sample. The lateral tensile strain is a main factor of failure, and the failure mode is tension crack failure. When rock sample is under coupled axial stress and cyclic impacts, the shape of the sample became to be conjugate hyperbolas after the first fracture due to the interfacial friction constrain, the following failures occur at around of incident interface, and the failure mode is tension-shear failure. Rock specimens rapture into circular cone frustum or circular cone under three dimensional static loading and cyclic impact loadings, and the failure mode is tension-shear failure which is caused by reflected longitudinal wave and reflected transversal wave. The value of axial stress has great effect on the sample final failure shape which is circular cone frustum or circular cone.
引文
[1]武建广,刘晓翔,王新文.碳质板岩地层大断面隧道变形控制施工技术[J].现代隧道技术,2011,2:68-72.
    [2]马伟斌,张梅,赵有明,等.高地应力软岩隧道超前洞室断面优化模拟研究[J].铁道工程学报,2011,9:58-62.
    [3]刘明贵,张国华,刘绍波,等.大帽山小净距隧道群中夹岩累计损伤效应研究[J].岩石力学与工程学报,2009,28(7):1363-1369.
    [4]杨永波,刘明贵,张国华,等.邻近既有隧道的新建大断面隧道施工参数优化分析[J].岩土力学,2010,31(4):1217-1226.
    [5]刘艳青,钟世航,卢汝绥,等.小净距并行隧道力学状态的试验研究[J].岩石力学与工程学报,2000,19(5):590-594.
    [6]房士波.新羊石隧道坍方处理施工技术[J].铁道建筑,2007,9:29-31.
    [7]夏祥,李俊如,李海波,等.广东岭澳核电站爆破开挖岩体损伤特征研究[J].岩石力学与工程学报,2007,26(12):2510-2516.
    [8]苏怀智,吴中如,戴会超,等.三峡永久船闸高陡边坡整体稳定性的多因素综合评价[J].2005,24,1:23-32.
    [9]宋胜武,冯学敏,向柏宇,等.西南水电高陡岩石边坡工程关键技术研究[J].岩石力学与工程学报,2011,30(1):1-22.
    [10]宋卫东,杜建华,杨幸才,等.深凹露天转地下开采高陡边坡变形与破坏规律[J].北京科技大学学报,2010,32(2):145-151.
    [11]乔兰,李远.露天矿山高陡边坡变形破坏的工程地质模型[J].北京科技大学学报,2004,26(5):461-464.
    [12]吴世勇,王鸽.锦屏二级水电站深埋长隧洞群的建设和工程中的挑战性问题[J].岩石力学与工程学报,2010,29(11):2161-2171.
    [13]李夕兵,姚金蕊,宫凤强.硬岩金属矿山深部开采中的动力学问题[J].中国有色金属学报,2011,21(10):2551-2563.
    [14]蔡美峰,刘卫东,李远.玲珑金矿深部地应力测量及矿区地应力场分布规律[J].岩石力学与工程学报,2010,29(2):227-233.
    [15]杨小林.开挖爆破对围岩损伤作用的探讨[J].爆破,2003,20(增刊):19-23.
    [16]M. Ramulu, A.K. Chakraborty, T.G. Sitharam. Damage assessment of basaltic rock mass due to repeated blasting in a railway tunnelling project-A case study[J]. Tunnelling and Underground Space Technology,2009,24(2):208-221.
    [17]Jong-Ho Shin, Hoon-Gi Moon, Sung-Eun Chae. Effect of blast-induced vibration on existing tunnels in soft rocks [J]. Tunnelling and Underground Space Technology,2011,26(1):51-61.
    [18]Zhi-liang Wang, Yong-chi Li, J.G Wang. Numerical analysis of blast-induced wave propagation and spalling damage in a rock plate[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(4):600-608.
    [19]Kaushik Dey, V.M.S.R. Murthy. Prediction of blast-induced overbreak from uncontrolled burn-cut blasting in tunnels driven through medium rock class [J]. Tunnelling and Underground Space Technology,2012,28(1):49-56.
    [20]谢冰,李海波,刘亚群,等.宁德核电站核岛基坑爆破开挖安全控制研究[J].岩石力学与工程学报,2009,28(8):1571-1578.
    [21]Li Haibo, Xia Xiang, Li Jianchun,et,al. Rock damage control in bedrock blasting excavation for a nuclear power plant[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(2):210-218.
    [22]G. R. Adhikari, A. Raj an Babu, R. Balachander, R. N. Gupta. On the application of rock mass quality for blasting in large underground chambers. Tunnelling and Underground Space Technology 1999,14(3):367-375.
    [23]陈明,胡英国,卢文波,等.锦屏二级水电站引水隧洞爆破开挖损伤特性研究[J].岩土力学,2011,32(增2):172-177.
    [24]颜峰,姜福兴.爆炸冲击载荷作用下岩石的损伤实验[J].爆炸与冲击,2009,29(3):275-280.
    [25]闫长斌.爆破作用下岩体累积损伤效应及其稳定性研究[D].长沙:中南大学,2006.
    [26]喻军,刘松玉,童立元.浅埋隧道爆破振动空洞效应[J].东南大学学报(自然科学版),2010,40(1):176-179.
    [27]吴从师,黎高辉,郭云开,等.悬索桥锚碇隧道爆破开挖的围岩累积振动效应研究[J].岩石力学与工程学报,2009,28(7):1499-1505.
    [28]闫长斌,王泉伟,李国权,等.邻近爆破对矩形岩柱稳定性影响的突变理论分析[J].爆炸与冲击,2010,30(5):556-560.
    [29]言志信,彭宁波,江平,等.爆破振动安全标准探讨[J].煤炭学报,2011,36(8):1281-1284.
    [30]卢文波,李海波,陈明,等.水电工程爆破振动安全判据及应用中的几个关键问题[J].岩石力学与工程学报,2009,28(8):1513-1520.
    [31]Anders Ansell. In situ testing of young shotcrete subjected to vibrations from blasting[J]. Tunnelling and Underground Space Technology,2004,19(6): 587-596.
    [32]G.W. Ma, X.M. An. Numerical simulation of blasting-induced rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(6): 966-975.
    [33]闫长斌,徐国元,杨飞.爆破动荷载作用下围岩累积损伤效应声波测试研究[J].岩土工程学报,2007,29(1):88-93.
    [34]马建军.爆破应力波中远区破岩作用分析[J].武汉科技大学学报(自然科学版),2005,28(2):182-187.
    [35]王礼立.应力波基础(第2版)[M].北京:国防工业出版社,2005.
    [36]王卫华,李夕兵,左宇军.非线性法向变形节理对弹性纵波传播的影响[J].岩石力学与工程学报,2006,25(6):1218-1225.
    [37]Zhao J, Cai J G. Transmission of elastic P waves across single fractures with a nonlinear normal deformational behavior [J].Rock Mechanics and Rock Engineering,2001,34(1):3-22.
    [38]李清,张茜,李晟源,等.爆炸应力波作用下分支裂纹动态力学特性试验[J].岩土力学,2011,32(10):3026-3032.
    [39]王卫华,李夕兵,周子龙,等.不同应力波在张开节理处的能量传递规律[J].中南大学学报(自然科学版),2006,37(2):376-380.
    [40]肖建清,冯夏庭,林大能.爆破循环对围岩松动圈的影响[J].岩石力学与工程学报,2010,29(11):2248-2255.
    [41]林大能,陈寿如.循环冲击荷载作用下岩石损伤规律的试验研究[J].岩石力学与工程学报,2005,22(24):4094-4098.
    [42]吕晓聪,许金余,葛洪海,等.围压对砂岩动态冲击力学性能的影响[J].岩石力学与工程学报,29(1):193-201.
    [43]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [44]M. MA, B.H. BRADY. Analysis of the dynamic performance of an underground excavation in jointed rock under repeated seismic loading[J]. Geotechnical and Geological Engineering 1999,17:1-20.
    [45]YAN Chang-bin. Blasting cumulative damage effects of underground engineering rock mass based on sonic wave measurement [J]. J. Cent. South Univ. Technol.2007,14(2):230-235.
    [46]葛修润,卢应发.循环荷载作用下岩石疲劳破坏和不可逆变形问题的探讨[J].岩土工程学报,1992,14(3):56-60.
    [47]葛修润,蒋宇,卢允德,等.周期荷载作用下岩石疲劳变形特性试验研究[J].岩石力学与工程学报,2003,22(10):1581-1585.
    [48]葛修润,任建喜,蒲毅彬,等.岩石疲劳损伤扩展规律CT细观分析初探[J].岩土工程学报,2001,23(2):191-195.
    [49]蒋宇,葛修润,任建喜.岩石疲劳破坏过程中的变形规律及声发射特性[J].岩石力学与工程学报,2004,23(11):1810-1814.
    [50]章清叙,葛修润,黄铭等.周期荷载作用下红砂岩三轴疲劳变形特性试验研究[J].岩石力学与工程学报,2006,25(3):473-478.
    [51]李树春.周期荷载作用下岩石变形与损伤规律及其非线性特征[D].重庆:重庆大学,2008.
    [52]徐建光,张平,李宁.循环荷载下断续裂隙岩体的变形特性[J].岩土工程学报,2008,30(6):802-806.
    [53]Brown ET, Hudson JA. Fatigue failure characteristics of some models of jointed rock [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1974,11(4):199.
    [54]N. Li, W. Chen, P. Zhang, et,al. The mechanical properties and a fatigue-damage model for jointed rock masses subjected to dynamic cyclical loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2001,38(7):1071-1079.
    [55]杨春和,马洪岭,刘建锋.循环加、卸载下盐岩变形特性试验研究[J].岩土力学,2009,30(12):3562-3568.
    [56]朱明礼,朱珍德,李刚,等.循环荷载作用下花岗岩动力特性试验研究[J].岩石力学与工程学报,2009,28(12):2520-2526.
    [57]许江,鲜学福,王鸿,等.循环加、卸载条件下岩石类材料变形特性的实验研究[J].岩石力学与工程学报,2006,25(增1):3040-3045.
    [58]M.N. Bagde, V. Petros. Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading[J].International Journal of Rock Mechanics and Mining Sciences,2005,42(2):237-250.
    [59]Manoj N. Bagde, Vladimir Petros. Fatigue and dynamic energy behaviour of rock subjected to cyclical loading [J].International Journal of Rock Mechanics and Mining Sciences,2009,46(1):200-209.
    [60]Enlong Liu, Siming He. Effects of cyclic dynamic loading on the mechanical properties of intact rock samples under confining pressure conditions [J]. Engineering Geology,2012,125(27):81-91.
    [61]刘恩龙,黄润秋,何思明.循环加载时围压对岩石动力特性的影响[J].岩土力学,2011,32(10):3009-3013.
    [62]张媛,许江,杨红伟,等.循环荷载作用下围压对砂岩滞回环演化规律的影响[J].岩石力学与工程学报,2011,30(2):320-326.
    [63]Kolsky H. Stress waves in solids[M]. Dover, New York:1963
    [64]Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society. Section B,1948, 62 (11):676-700
    [65]Davies R M. A critical study of the Hopkinson Pressure Bar[J]. Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences,1948,240 (821):375-457
    [66]Lindholm U.S. Some experiments with the split Hopkinson pressure bar[J]. Journal of Mechanics and Physics of Solids.1964,12 (5):317-325
    [67]Green J. S, Perkins R. D. Uniaxial compression tests at varying strain tares on three geologic materials, Basic and Applied Rock Mechanics, 3, Univ. Texas, 35-52,1968
    [68]Perkin R D, Green S J, Friedman M. Uniaxial stress behavior of porphritic to nalite at strain rates to 103/sec[J]. International Journal of Rock Mechanics and Mining Sciences,1970,7 (5):527-535
    [69]Friedman M, Perkins R D, Green S J. Observation of brittle-deformation features at the maximum stress of westerly granite and solenhofen limestone [J].International Journal of Rock Mechanics and Mining Science,1970,7(3): 297-320
    [70]Lindholm U S, Ycakley L M, Nagy A. The dynamic strength and fracture properties of dresser basalt[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1974,11 (5):181-191
    [71]Goldsmith W, Sackman J.L, Ewert C. Static and dynamic fracture strength of Barre granite[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1976,13 (11):303-309
    [72]Yang Chunhe, Li Tingjie. An experimental study on the dynamic characteristic behavior of soft rock under a high strain-rate[C]. Proceeding of the international symposium on intense dynamic loading and its effects, Chengdu, China,1992,9-12
    [73]J Zhao, Y.X. Zhou, A.M. Hefny, et al. Rock dynamics research related to cavern development for Ammunition storage [J]. Tunnelling and Underground Spate Technology,1999,14 (4):513-526
    [74]Frew D.J. Forrestal M.J. and Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J]. Experimental Mechanics,2002,42 (1):93-106
    [75]Frew D.J. Forrestal M.J. and Chen W. A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials [J]. Experimental Mechanics,2001,41 (1):40-46
    [76]Lok T S, Li X B, Liu D, et al. Testing and response of large diameter brittle materials subjected to high strain rate[J]. Journal of Materials in Civil Engineering ASCE,2002,14 (3):262-269
    [77]Li X.B. Lok T.S. and Zhao J. et al. Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress-strain curves for rocks [J], International Journal of Rock Mechanics and Mining Science,2000,37(7), 1055-1060.
    [78]X.B.Li, T.S.Lok, J.Zhao. Dynamic characteristics of granite subjected to intermediate loading rate[J]. Rock Mech. Rock Eng.2005,38(1):21-39.
    [79]李夕兵.冲击荷载下岩石能耗及破碎力学性质的研究[硕士学位论文][D].长沙:中南工业大学,1986
    [80]Xia K, Nasseria MHB, Mohanty B. Effects of micro structures on dynamic compression of Barre granite [J]. International Journal of Rock Mechanics and Mining Sciences,2008,45 (6):879-887
    [81]李夕兵,宫凤强,ZHAOJ,等.一维动静组合加载下岩石冲击破坏试验研究[J].岩石力学与工程学报,2010,29(2):251-260.
    [82]寇绍全,虞吉林,杨根宏.石灰岩中应力波衰减机制的试验研究[J].力学学报,1982,14(6):583-588
    [83]于亚伦.用三轴SHPB装置研究岩石的动载特性[J].岩土工程学报,1992,14(3):76-79
    [84]王林,于亚伦.三轴SHPB冲击作用下岩石破坏机理的研究[J].爆炸与冲 击,1993,13(1):84-89
    [85]单仁亮.岩石冲击破坏力学模型及其随机性研究[博士学位论文][D].北京:中国矿业大学(北京),1998
    [86]单仁亮;陈石林;李宝强;花岗岩单轴冲击全程本构特性的实验研究[J].岩石力学与工程学报,2003,22(11):1771-1776
    [87]J.C. Li, G.W. Ma. Experimental study of stress wave propagation across a filled rock joint[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(3):471-478.
    [88]陈荣,郭弦,卢芳云,等.Stanstead花岗岩动态断裂性能[J].岩石力学与工程学报,2010,29(2):375-380
    [89]夏昌敬,谢和平,鞠杨,等.冲击载荷下孔隙岩石能量耗散的实验研究[J].工程力学,2006,23(9):1-5
    [90]夏昌敬,谢和平,鞠杨.孔隙岩石的SHPB试验研究[J].岩石力学与工程学报,2006,25(5):896-900
    [91]ZHOU Zi-long, LI Xi-bing, ZOU Yu-jun, et al. Fractal characteristics of rock fragmentation at strain rate of 100-102 s-1[J]. Journal of Central South University of Techology,2006,13 (3):290-295
    [92]洪亮,李夕兵,马春德等.岩石动态强度及其应变率灵敏性的尺寸效应研究[J].岩石力学与工程学报,2008,27(3):526-533
    [93]叶洲元,李夕兵,周子龙,等.三轴压缩岩石动静组合强度及变形特征的研究[J].岩土力学,2009,30(7):1981-1986
    [94]Ye Zhouyuan, Li Xibing, Liu Xiling, et al. Testing studies on rock failure modes of statically loads under dynamic loading [J]. Transactions of Tianjin University,2008,14 (S1):530-535
    [95]翟越,马国伟,赵均海,等.花岗岩在单轴冲击压缩荷载下的动态断裂分析[J].岩土工程学报,2007,29(3):385-390
    [96]胡柳青.冲击载荷作用下岩石动态断裂过程机理研究[博士学位论文][D].长沙:中南大学,2005.
    [97]李夕兵,古德生.深井坚硬矿岩开采中高应力的灾害控制与碎裂诱变[C].香山第175次科学会议,北京:中国环境科学出版社,2002,101-108
    [98]赵伏军.动静载荷耦合作用下岩石破碎理论分析及试验研究[博士学位论文][D].长沙:中南大学,2004
    [99]左宇军.动静组合加载下的岩石破坏特性研究[博士学位论文][D].长沙: 中南大学,2004
    [100]周子龙.岩石动静组合加载实验与力学特性研究[D].长沙:中南大学,2007.
    [101]Nemat-Nasser S Isaacs J B and Starrett J E. Hopkinson techniques for dynamic recovery experiments [C]. Proceeding of the Royal Society of London, Series A,1991,534(1894):371-391
    [102]Wu X J and Gorham D A. Stress equilibrium in the split Hopkinson pressure bar test[J]. J. Physic. in France,1997,7(3):91-96
    [103]Frew D J, Forrestal M J and Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J]. Experimental Mechanics,2002,42(1):93-106
    [104]卢芳云,Chen W. and Frew D.J.软材料的SHPB实验设计[J],爆炸与冲击,2002,22(1):15-20
    [105]王鲁明,赵坚,华安增等.脆性材料SHPB实验技术的研究[J].岩石力学与工程学报,2003,22(11):1798-1802
    [106]徐明利,张若棋,张光莹.SHPB实验中试件内早期应力平衡分析[J].爆炸与冲击,2003,23(3):235-241
    [107]翟越,马国伟,赵均海,等.花岗岩和混凝土在冲击荷载下的动态性能比较研究[J].岩石力学与工程学报,2007,26(4):762-768
    [108]李夕兵,刘德顺,古德生.消除岩石动态实验曲线振荡的有效途径[J].中南工业大学学报,1995,26(4):457-460
    [109]李夕兵,古德生,赖海辉.岩石在不同应力波下的动态响应[C].第三届全国岩石动力学论文选集,武汉:武汉测绘科技大学出版社,1992,10,142-151
    [110]刘孝敏,胡时胜.大直径SHPB弥散效应的二维数值分析[J].实验力学,2000,15(4):371-377.
    [111]左宇军,唐春安,李术才,等.基于大直径霍普金森压杆数值试验的非均匀介质动态破坏过程分析[J].岩土力学,2011,32(1):230-236,268.
    [112]东兆星,单仁亮.高应变率下岩石本构特性的研究[J].工程爆破,1999,5(2):5-9.
    [113]高文学,刘运通,杨军.脆性岩石冲击损伤模型研究[J].岩石力学与工程学报,2000,19(2);153-156.
    [114]李夕兵,左宇军,马春德.中应变率下动静组合加载岩石的本构模型[J].岩石力学与工程学报,2006,25(5):865-874.
    [115]刘军.岩体在冲击载荷作用下的各向异性损伤模型及其应用[J].岩石力学与工程学报,2004,23(4):635-640.
    [116]单仁亮,薛友松,张倩.岩石动态破坏的时效损伤本构模型[J].岩石力学与工程学报,2003,22(11):1771-1776.
    [117]李海波,赵坚,李俊如,等.基于裂纹扩展能量平衡的花岗岩动态本构模型研究[J].岩石力学与工程学报,2003,22(10):1683-1688.
    [118]LiHB, Zhao J, Li T J. Micromechanical modeling of mechanical properties of granite under dynamic uniaxial compressive loads[J].Int. J. Rock Mech. and Min. Sci.,2000,37:923-935.
    [119]李夕兵.冲击凿岩机具的设计与岩石动力破碎特性[J].湘潭矿业学院学报.1994.9(3):7-10.
    [120]张强,李夕兵,祝方才,等.炸药破碎能耗与块度分布关系式[J].爆破,1998,15(3):15-19.
    [121]李夕兵,赖海辉,朱成忠.冲击载荷作用下岩石破碎能耗及其力学性质的探讨[J].矿冶工程,1988,8(1):15-19.
    [122]高文学,刘运通.冲击载荷作用下岩石损伤的能量耗散[J].岩石力学与工程学报,2003,22(11):1777-1780.
    [123]鞠杨,李业学,谢和平,等.节理岩石的应力波动与能量耗散[J].岩石力学与工程学报,2006,25(12):2426-2434.
    [124]胡柳青,李夕兵,赵伏军.冲击荷载作用下岩石破裂损伤的耗能规律[J].岩石力学与工程学报,2002,21(增2):2304-2308.
    [125]HONG Liang, ZHOU Zi-long, YIN Tu-bing, et, al. Energy consumption in rock fragmentation at intermediate strain rate[J]. J. Cent. South Univ. Technol., 2009,16(4):677-682.
    [126]黎立云,徐志强,谢和平,等.不同冲击速度下岩石破坏能量规律的实验研究[J].煤炭学报,2011,36(12):2007-2011.
    [127]殷志强,李夕兵,金解放,等.围压卸载速度对岩石动力强度与破碎特性的影响[J].岩土工程学报,2011,33(8):1298-1301.
    [128]宫凤强,李夕兵,刘希灵.三维动静组合加载下岩石力学特性试验初探[D].岩石力学与工程学报,2011,30(6):1179-1190.
    [129]李夕兵,古德生.岩石在不同加载波下的动载强度[J].中南矿冶学院学报,1994,25(3):301-304.
    [130]刘军忠,许金余,吕晓聪,等.冲击压缩荷载下角闪岩的动态力学性能试验 研究[J].岩石力学与工程学报,2009,28(10):2113-2120.
    [131]李夕兵,尹土兵,周子龙,等.温压耦合作用下的粉砂岩动态力学特性试验研究[J].岩石力学与工程学报,2010,29(12):2377-2384.
    [132]许金余,吕晓聪,张军,等.围压条件下岩石循环冲击损伤的能量特性研究[J].岩石力学与工程学报,2010,29(增2):4159-4165.
    [133]许金余,吕晓聪,张军,等.循环冲击作用下围压对斜长角闪岩动态特性的影响研究[J].振动与冲击,2010,29(8):60-63,72.
    [134]吕晓聪,许金余,赵德辉,等.冲击荷载循环作用下砂岩动态力学性能的围压效应研究[J].工程力学,2011,28(1):138-144.
    [135]阳生权.爆破地震累积效应理论和应用初步研究[D].长沙:中南大学,2002.
    [136]张国华.基于围岩累积损伤效应的大断面隧道施工参数优化研究[D].武汉:中国科学院武汉岩土力学研究所,2010.
    [137]林大能.平巷掏槽爆破空孔尺寸效应及围岩频繁震动损伤累积特性研究[D].长沙:中南大学,2006.
    [138]M.MA, B.H.BRADY. Analysis of the dynamic performance of an underground excavation in jointed rock under repeated seismic loading[J]. Geotechnical and Geological Engineering,1999,17(1):1-20.
    [139]P.K.Singh. Blast vibration damage to underground coal mines from adjacent open-pit blasting[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(8):959-973.
    [140]J.S.Sharma, A.M.Hefny, J.Zhao, et,al. Effect of large excavation on deformation of adjacent MRT tunnels[J]. Tunnelling and Underground Space Technology,2001,16(2):93-98.
    [141]D.E. Grady, M.E. Kipp. continuum modelling of explosive fracture in oil shale[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1980,17(2):147-157.
    [142]Lee M. Taylor, Er-Ping Chen, Joel S. Kuszmaul. Microcrack-induced damage accumulation in brittle rock under dynamic loading[J]. Computer Methods in Applied Mechanics and Engineering,1986,55(3):301-320.
    [143]KUSZMAUL J S.A new constitutive model for fragmentation of rock under dynamic loading[C]//Proceedings of the 2nd International Symposium on Rock fragmentation by Blasting. Columbia:[s.n.],1987:412-423.
    [144]杨更社,谢定义,张长庆,等.岩石损伤特性的CT识别[J].岩石力学与工程学报,1996,15(1):48-54
    [145]金丰年,范华林.岩石的非线性流变损伤模型及其应用研究[J].解放军理工大学学报,2000,1(3):1-5
    [146]谢和平,鞠杨,黎立匀,等.岩体变形破坏过程的能量机制[J].岩石力学与工程学报,2008,27(9):1729-1740.
    [147]赵明阶,徐蓉.岩石损伤特性与强度的超声波速研究[J].岩土工程学报,2000,22(6):720-722.
    [148]赵奎,金解放,王晓军,等.岩石声速与其损伤及声发射关系研究[J].岩土力学,2007,28(10):2105-2109.
    [149]金丰年,蒋美蓉,高小玲.基于能量耗散定义损伤变量的方法[J].岩石力学与工程学报,2004,23(12):1976-1980.
    [150]周家文,杨兴国,符文熹.脆性岩石单轴循环加卸载试验及断裂损伤力学特性研究[J].岩石力学与工程学报,2010,29(6):1172-1183.
    [151]许江,李树春,唐晓军,等.基于声发射的岩石疲劳损伤演化[J].北京科技大学学报,2009,31(1):19-24.
    [152]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.
    [153]潘华,邱洪兴.基于损伤力学的混凝土疲劳损伤模型[J].东南大学学报(自然科学版),2006,36(4):605-608.
    [154]肖建清.循环荷载作用下岩石疲劳特性的理论与实验研究[D].长沙:中南大学,2009.
    [155]Ju Yang, Wang Huijie, Yang Yongming, et al. Numerical simulation of mechanisms of deformation, failure and energy dissipation in porous rock media subjected to wave stresses [J]. Sci China Tech Sci,2010,53(4): 1098-1113.
    [156]宫凤强,李夕兵,刘夕灵,等.一维动静组合加载下砂岩动力学特性的试验研究[J].岩石力学与工程学报,2010.,29(10):2076-2085.
    [157]Leopold Muller-salzburg, Xiurun Ge. Studies on the mechanical behavior (deformation behavior) of jointed rock masses under cyclic load. The 5th National Rock Mechanics Conference, Australia.1983,1:43-49.
    [158]刘博,李海波,朱小明.循环剪切荷载作用下岩石节理强度劣化规律试验模拟研究[J].岩石力学与工程学报,2011,30(10):2033-2039.
    [159]刘新荣,傅晏,王永新,等.(库)水-岩作用下砂岩抗剪强度劣化规律的试验研究[J].岩土工程学报,2008,30(9):1298-1302.
    [160]蒋宇.周期荷载作用下岩石疲劳破坏及变形发展规律[硕士学位论文][D].上海交通大学,2003.
    [161]胡盛斌.随机载荷下岩石疲劳损伤特性实验与理论研究[硕士学位论文][D].中南大学,2006.
    [162]左建平.温度-应力共同作用下砂岩破坏的细观机制与强度特征[D].中国矿业大学(北京),2006.
    [163]宫凤强.动静组合加载下岩石力学特性和动态强度准则的试验研究[D].中南大学,2010.
    [164]李为民,许金余,翟毅,等.冲击荷载作用下碳纤维混凝土的力学性能[J].土木工程学报,2009,42(2):24-30.
    [165]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003-3010.
    [166]赵忠虎,谢和平.岩石变形破坏过程中的能量传递和耗散研究[J].四川大学学报(工程科学版),2008,40(2):26-31.
    [167]朱泽奇,盛谦,肖培伟.岩石卸围压破坏过程的能量耗散分析[J].岩石力学与工程学报,2011,30(增1):2675-2681.
    [168]HePing Xie, LiYun Li, Yang Ju, RuiDong Peng,et,al. Energy analysis for damage and catastrophic failure of rocks [J]. Science China Technological Sciences,2011,54(Suppl.1):199-209.
    [169]Yariv Hamiel,Vladimir Lyakhovsky, Yehuda Ben-zion. The Elastic Strain Energy of Damaged Solids with Applications to Non-Linear Deformation of Crystalline Rocks[J]. Pure Appl. Geophys.2011,168:2199-2210
    [170]Revnivtsev V I. We really need revolution in comminution[C]. XVI International Mineral Processing Congress. Amsterdam:Elsevier Science Publishers,1988,93-114
    [171]Carroll M M. Mechanics of geological materials [J]. Applied Mechanics Division,1985,70(38):1256-1260
    [172]Prasher C L. Crushing and grinding process handbook[M]. Chichester [West Sussex]:John Wiley & Sons Limited,1987
    [173]Zhang Z X, Kou S Q, Jiang L G, et al. Effects of loading rate on rock fracture: fracture characteristics and energy partitioning. International Journal of Rock Mechanics and Mining Sciences[J].2000,37(5):745-762
    [174]李夕兵,赖海辉,古德生.不同加载波形下矿岩破碎的耗能规律[J].中国有色金属学报,1992,2(4):10-14.
    [175]李夕兵,赖海辉.论应力波幅值和延续时间对破岩效果的影响[J].中南矿冶学院学报[J].1989,20(6):595-604.
    [176]殷志强.高应力储能岩体动力扰动破裂特征研究[D].中南大学,2011.
    [177]叶洲元,李夕兵,万国香,等.受三维静载压缩岩石对冲击能的吸收效应[J].爆炸与冲击,2009,29(4):419-424.
    [178]I. D. Rivkin, M. I. Semenko, V. V. Sakovich, et,al. The influence of the stress-strain state of rock on the energy consumption in underground borehole ore breaking[J]. Journal of Mining Science,1976, 11(5):533-538.
    [179]Essaieb Hamdi, Najla Bouden Romdhane, Jean du Mouza, et,al. Fragmentation energy in rock blasting [J]. Geotechnical and Geological Engineering,2008,26(2):133-146.
    [180]Exadaktylos, Stavropoulou, Xiroudakis. A spatial estimation model for continuous rock mass characterization from the specific energy of a TBM[J]. Rock Mechanics and Rock Engineering,2008,41(6):797-834.
    [181]洪亮.冲击荷载下岩石强度及破碎能耗特征的尺寸效应研究[D].中南大学,2008.
    [182]许国安,牛双建,靖洪文,等.砂岩加卸载条件下能耗特征试验研究[J].岩土力学,2011,32(12):3611-3617.
    [183]伍法权,刘彤,汤献良,等.坝基岩体开挖卸荷与分带研究——以小湾水电站坝基岩体开挖为例[J].岩石力学与工程学报,2009,28(6):1091-1098.
    [184]卢文波,杨建华,陈明,等.深埋隧洞岩体开挖瞬态卸荷机制及等效数值模拟[J].岩石力学与工程学报,2011,30(6):1089-1096.
    [185]潘岳.岩石破坏过程的折迭突变模型[J].岩土工程学报,1999,21(3):299-303.
    [186]左宇军,李夕兵,马春德,等.动静组合载荷作用下岩石失稳破坏的突变理论模型与试验研究[J].岩石力学与工程学报,2005,24(5):741-746.
    [187]顾怡.FRP疲劳累积损伤理论研究进展[J].力学进展,2001,31(2):193-201.
    [188]金解放,赵奎,王晓军,等.岩石声发射信号处理小波基选择的研究[J].矿业研究与开发,2007,27(2):12-15.
    [189]金解放,赵奎.岩石声发射测量地应力信号处理技术研究[J],江西理工大学学报,2008,29(3):10-12.
    [190]Michel Israel, Peter Tschobanoff. Exposure to non-ionizing radiation of personnel in physiotherapy[J]. NATO Security through Science Series,2006, BIOELECTROMAGNETICS Current Concepts,367-376.
    [191]Nie Ru, Yue Jian-hua, Deng Shuai-qi, et,al. Wave impedance inversion in coalfield based on immune genetic algorithm[J]. Procedia Earth and Planetary Science,2009,1(1):929-935.
    [192]Shouzhuo Yao, Kang Chen, Dezhong Liu, et,al. Circuit network analysis method applied to surface acoustic wave impedance system in liquids [J]. Analytica Chimica Acta,1994,293(3):311-318.
    [193]Takaji Kokusho, Ryuichi Motoyama, Hiroshi Motoyama. Wave energy in surface layers for energy-based damage evaluation[J]. Soil Dynamics and Earthquake Engineering,2007,27(4):354-366.
    [194]S. Kahraman, M. Alber. Predicting the physico-mechanical properties of rocks from electrical impedance spectroscopy measurements[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(4):543-553.
    [195]张宇,范华林,金丰年.化爆作用下岩石介质自由场应力波传播方程拟合方法研究[J].岩土力学,2011,32(10):3043-3047.
    [196]张明振,印兴耀,谭明友,等.对测井约束地震波阻抗反演的理解与应用[J].石油地球物理勘探,2007,42(6):699-702.
    [197]康钟绪,季振林,连小珉,等.掠过流作用下穿孔板的声阻抗[J].声学学报,2011,36(1):51-59.
    [198]K.X. Hu, Y. Huang. Estimation of the elastic properties of fractured rock masses[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1993,30(4):381-394.
    [199]王宏图.岩石弹性波理论及其在地应力测试中的应用研究[D].重庆:重庆大学,1995.
    [200]王宏图,李晓红,杨春和,等.准各向同性裂隙岩体中有效动弹性参数与弹性波速关系的研究[J].岩土力学,2005,26(6):873-876.
    [201]G. H. F. Gardner, L. W. Gardner, A. R. Gregory. Formation velocity and density-the diagnostic basics for stratigraphic traps[J]. Geophysics,1974,39: 770-780.
    [202]朱广生,桂志先,熊新斌,等.密度与纵横波速度关系[J].地球物理学报,1995,38(增1):260-264.
    [203]De-hua Han,A. Nur,Dale Morgan. Effects of porosity and clay content on wave velocities in sandstones [J]. Geophysics,1986,51:2093-2107.
    [204]孟召平,张吉昌,JoachimTiedemann煤系岩石物理力学参数与声波速度之间的关系[J].地球物理学报,2006,49(5):1505-1510.
    [205]周子龙,李夕兵,龙八军.岩石SHPB试验信号的小波包去噪[J].岩石力学与工程学报,2005,24(增1):4779-4783.
    [206]Zilong Zhou, Xibing Li, Zhouyuan Ye, et al. Obtaining constitutive relationship for rate-dependent rock in SHPB tests[J].Rock Mechanics and Rock Engineering,2010,43(6):697-706.
    [207]王本楠.S—型增长曲线的最小二乘拟合方法比较[J].北京林业大学学报,1988,10(增刊):59-65.
    [208]毋河海.S形分布的数据拟合数学模型研究[J].武汉大学学报(信息科学版),2009,34(4):474-478.
    [209]Nadia Pallotta, Maurizio Giovannone, Patrizio Pezzotti, et,al. Ultrasonographic detection and assessment of the severity of Crohn's disease recurrence after ileal resection[J]. BMC Gastroenterology,2010,10(1):1-11.
    [210]徐洪钟,施斌,李雪红.全过程沉降量预测的Logistic生长模型及其适用性研究[J].岩土力学,2005,26(3):387-391.
    [211]李波,徐宝松,武金坤,等.基于最小二乘支持向量机的大坝力学参数反演[J].岩土工程学报,2008,30(11):1722-1725.
    [212]T.Szwedzicki. A Hypothesis on Modes of Failure of Rock Samples Tested in Uniaxial compression[J]. Rock mech. Rock Eng.2007; 40(1):97-104.
    [213]左宇军,唐春安,朱万成,等.动载荷作用下岩石破坏过程的数值试验研究[J].岩土力学,2008,29(4):887-892.
    [214]LI C L, RICHARD P, ERLING N. The stress-strain behavior of rock material related to fracture under compression[J].Energy Geology,1998,49(3-4): 293-302.
    [215]胡柳青.冲击载荷作用下岩石动态断裂过程机理研究[博士学位论文][D].长沙:中南大学,2005.
    [216]H.B.Li, J.Zhao, T.J.Li Analytical simulation of the dynamic compressive strength of a granite using the sliding crack model [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2001,25(9):853-869.
    [217]Ogawa K. IMPact friction test method by applying stress wave[J]. Experimental Mechanics,1997,37(4):398-402
    [218]Meng H. and Li Q.M. Correlation between the accuracy of a SHPB test and the stress uniformity based on numerical experiments [J]. International Journal of IMPact Engineering.2003,28(5):537-555
    [219]郭保华.岩样尺度、孔道及端部摩擦效应的数值分析[J].岩石力学与工程学报,2009,28(增2):3391-3401.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700