用户名: 密码: 验证码:
串联型液压混合动力汽车的能量管理策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着经济的发展,公路运输规模和运输汽车数量都在不断增加,运输汽车的燃油消耗量也相应地大幅增长,因此提高运输汽车燃油经济性的需求越来越强烈,这极大地促进了与运输汽车相关的新能源汽车的研究和发展。在这些研究中,采用液压混合动力技术来提高运输汽车的燃油经济性非常具有吸引力。其一,运输汽车一般质量较大,需要的驱动功率也较高;其二,液压系统的一些优秀性能,比如液压泵/马达具有很高的功率密度和效率,液压储能器能够在其整个工作范围内进行快充和快放等,使其非常适合应用于运输汽车的混合动力系统中。因此,液压混合动力技术被视为能有效降低运输汽车耗油量的最可行的技术。然而,液压储能器的能量密度低也给这项技术的应用带来一些挑战。正是液压混合动力技术所面临的这些机遇和挑战使其成为目前混合动力汽车研究领域的热点之一。
     液压混合动力系统的结构形式大致可分为串联型和并联型。其中串联型液压混合动力系统能够使发动机与汽车传动系统解耦,进而可以大幅提高发动机的操作柔性和使用性能。再者,串联型液压混合动力系统具有更好的提高运输汽车燃油经济性的潜力。基于以上考虑,本文以串联型液压混合动力系统作为研究对象,并针对当前该研究中存在的需要解决的问题,主要从以下几个方面展开研究:
     (1)高精度的发动机仿真模型。目前混合动力系统研究中采用的发动机模型普遍将油耗与发动机运行状态视为静态映射,这种方法难以准确估计发动机处于瞬态时的油耗。本文所建立的发动机仿真模型描述了发动机的进气动态和输出力矩动态,并根据发动机电子控制单元的工作方式来修正瞬时油耗。实验结果表明该模型能够精确估计各种情况下的发动机瞬时油耗,并能够准确描述发动机的工作动态。
     (2)分层递阶的控制系统结构在串联型液压混合动力系统中的应用。本文所建立了分层递阶的控制系统结构包含两个层级,共三个子控制器。顶层的子控制器即为整个混合动力系统的能量管理策略。底层控制器包含两个子控制器,一个用于控制发动机和与发动机相连的液压泵,另一个用于控制汽车驱动马达和机械制动器。这种控制系统结构使得系统中的全部被控对象和需要特殊考虑的各种特殊情况都能被有效控制和管理。
     (3)基于模型预测控制的能量管理策略在串联型液压混合动力系统中的应用以及和其它策略效果的对比。目前混合动力系统能量管理策略种类繁多,根据其发展顺序和特点,大致可分为三类,即基于规则的、基于离线优化的(包括确定型动态规划法、随机动态规划法等)和基于在线优化的(即模型预测控制方法)。其中基于模型预测控制的能量管理策略提出较晚,而且目前该策略在液压混合动力系统中的应用尚未见诸于文献。本文设计并应用了这三种类型中各自最具代表性的能量管理策略,即基于液压储能器荷能状态调节的规则式能量管理策略(Rule Based,RB),基于随机动态规划方法的离线优化式能量管理策略(Stochastic Dynamic Programming,SDP)和基于模型预测控制的在线优化式能量管理策略(Model Predictive Control,MPC),并分别研究其特点和应用效果。结果表明无论从提高燃油经济性还是从改善汽车动力性来说,MPC>SDP>RB(“>”表示“优于”的意思)。其中MPC能充分挖掘该串联型液压混合动力系统的潜力。
     (4)实时寻优算法研究。在线寻优计算的实时性是基于模型预测控制的能量管理策略在应用中需要解决的主要问题。本文针对性地提出基于李雅普诺夫方法的实时寻优方法,该方法相比于常用的二次规划法,不仅具有更好的实时性,而且计算时间随优化变量个数的增加仅线性增加。此外,该方法具有和二次规划法相当的计算稳定性。
The challenge of improving fuel economy and reducing emission provides strongimpetus for pursuing ultra-efficient vehicle concept. In recent years, fuel consumed bytrucks grows faster, this is a consequence of an increase in the relative number of trucks,as well as higher demand for transportation of goods. As a result, truck systems callfor significantly improved fuel efficiency and hybridization of trucks has become nec-essary. The hydraulic pumps and motors are characterized by high power density andhigh efficiency, in addition, hydraulic accumulators have the ability to accept both highfrequencies and high rate of charging and discharging. These virtues make hydraulic hy-bridization very attractive in large mass associated trucks, thus hydraulic hybrid vehiclesappear to be one of the most viable technologies with significant potential to reduce fuelconsumption. However, the relatively low power density of the hydraulic accumulatorbrings about a unique control challenge, which makes hydraulic hybridization attractedgreat attention in studies.
     Hydraulic hybridization of vehicle opens up many possibilities related to systemarchitecture, which can be classified into two broad categories, series or parallel. Becausethere is no mechanical connection between the engine and the wheels in series system, fullflexibility in engine operation can be allowed. Furthermore, with the potential of furtherimproving vehicle fuel economy, hydraulic hybrid vehicle with the series architecture(i.e. Series Hydraulic Hybrid Vehicle, SHHV) is the object of this research. In this paper,research was conducted with respect to some deficiencies which currently exit within thecontext of SHHV studies.
     (1) High fidelity engine model. One of the most common methodologies used withinthe context of hybrid powertrain system models considers a purely static approach to es-timate the engine fueling. A steady state fueling map is used to estimate the engine fuelconsumption at different engine operating conditions. Even though this approach givesa satisfactory estimate of the fueling in steady state conditions, large discrepancies areobserved when the engine operates in transient conditions. The engine model developedin this paper focus on a simplified description of the air handling system dynamics inorder to estimate the real air mass flow rate in transient conditions. Similarly, the engine in-cylinder processes which lead to the torque production are described in a simplifiedway and only the low frequency bandwidth dynamics due to torque request variations aredescribed. The final estimation of the fuel mass flow rate is the result of the combinationof a map-based fuel mass flow rate to which a set of corrections accounting for specificphenomena are fully taken into consideration. The approach mimics the actual operationof an ECU (Electric Control Unite) algorithm. Comparison between engine model simu-lation results and experimental data demonstrated the high fidelity property of this enginemodel.
     (2) Design and application of hierarchical control architecture in SHHV system. Thehierarchical control architecture developed in this work includes two levels and threesub-module controllers. There is one top level controller, which is the vehicle powermanagement policy. There are two low level sub-module controller, one manages theengine and its associated hydraulic pump/motor, the other one operate the vehicle drivingmotors and the mechanical brakes. This architecture allows all the control variables andspecific phenomena in this SHHV system can properly managed.
     (3) Application of model predictive control based power management strategy andits comparison with other power management strategies. There is a rich literature on thepower management strategy study, which can be classified into three broad categories,i.e. rule based strategies, strategies with off-line optimization (e.g. deterministic dynamicprogramming, stochastic dynamic programming, etc.) and strategies with on-line opti-mization (i.e. model predictive control based strategies). In this research, three powermanagement strategies that are typical in their respective categories are developed andthoroughly studied. The three different strategies are thermostatic SoC (of rule based cat-egory, denoted with RB), stochastic dynamic programming based (of the category withoff-line optimization, denoted with SDP) and model predictive control based (of the cat-egory with on-line optimization, denoted with MPC). In particular, currently no studyemploying MPC in SHHV exits, and this work is the first instance. Simulation resultson the federal urban driving schedule demonstrate that MPC>SDP>RB (here”>” meas”better than on fuel economy improvement and power performance”), and more precisely,MPC can significantly expand the operational envelope of SHHV.
     (4) Real time optimization. One main disadvantage of MPC for application is thatMPC requires on-line real time optimization, which is computational expensive. To over- come this problem, a Lyapunov based dynamic optimization approach is proposed inthis study. Compared with conventional real time optimization methods (typically thequadratic programming approach), this Lyapunov based approach converges faster andneeds fewer computation time. More importantly, the computation time of the Lyapunovbased approach increases linearly with the number of optimization variables. Further-more, its computing stability can be as good as that of quadratic programming.
引文
[1] W. F. Powers, P. R. Nicastri. Automotive vehicle control chanllenges in the21st century. ControlEngineering Practice,2000,8(6):605-618.
    [2] S. C. Davis, S. W. Diegel. Transportation energy data book, Edition24. Center for Transporta-tion Analysis Engineering Science and Technology Division, Oak Ridge National Laboratory,2004.
    [3] W. Backe. Present and future of fluid power. Journal of System&Control Engineering,1993,207(4):193-212.
    [4] Environmental Protection Agency. World’s first full-size hydraulic hybrid SUV presented at2004SAE World Congress,2004, EPA420-F-04-019.
    [5] US Department of Energy. Research and development opportunities for heavy trucks.2009.
    [6]李永福.解读道路运输车辆燃料消耗量检测和监督管理办法.物流技术与应用,2009,6:54-55.
    [7]李永福.道路运输车辆燃料消耗量政策管理与发展动向(报告).北京,2011.
    [8] A. Szumanowski.混合电动车辆基础(陈清泉,孙逢春译).北京:北京理工大学出版社,2001.
    [9] P. Buchwald, H. Christensen, H. Larsen, et al. Improvement of city bus fuel economy using ahydraulic hybrid propulsion system-A theoretical and experimental study. SAE Paper790305,1979.
    [10] M. J. Miller, M. Everett. An assessment of ultra-capacitors as the power cache in Toyota THS-II, GM-Allision AHS-2and Ford FHS hybrid propulsion systems. Applied Power ElectronicsConference and Exposition, Twentieth Annual IEEE,2005,1:481-490.
    [11] J. Alson, D. Barba, J. Bryson, et al. Progress Report on Clean and Efficient Automotive Tech-nologies Under Development at EPA. United States Environmental Protection Agency,2004,EPA420-R-04-002.
    [12] L. Triger, J. Paterson P. Drozdz. Hybrid vehicle engine size optimization. Warrendale, PA,1993,SAE Paper931793,1993.
    [13] S. M. Aceves, J. R. Smith, L. J. Perkins, et al. Optimization of CNG series hybrid conceptvehicle. Warrendale, PA,1996, SAE Paper960234,1996.
    [14] T. C. Moore. Tools and strategies for hybrid electric drivetrain optimization. Warrendale, PA,1996, SAE Paper961660,1996.
    [15] Green Car Congress. Eaton and Peterbilt to produce hydraulic hybrids.http://www.greencarcongress.com/2004/10/eaton and peter.html,2004.
    [16] Green Car Congress. EPA, Eaton and partners developing full disel hydraulic series hybrid forUPS. http://www.greecarcongress.com/2005/02/epa eaton and p.html,2005.
    [17] United States Evironmental Protection Agency. Hydraulic technology: A proven approach.2004, EPA420-F-04-24.
    [18] United States Evironmental Protection Agency. World’s first full hydraulic hybrid SUV pre-sented at2004SAE World Congress. EPA420-F-04-019,2004.
    [19] T. Blohm, S. Anderson. Hybrid refuse truck study. MSC Software Virtual Product DevelopmentConference. Huntington Beach, California,2004.
    [20] Institute for the analysis of global security. EPA display the first advanced hydraulic hybridvehicle. http://www.iagsorg/n033104t3.html,2004.
    [21] Altair Product Design. The BUSSolutions Story: Evolution of the LCO-140H Hybrid HydraulicBus. http://www.altairbusolutions.com,2011.
    [22] A. Pourmovahed, N. H. Beachley, F. J. Fronczak. Modeling of a hydraulic energy regereationsystem, Part I: Analytical Treatment. Journal of Dynamic Systems, Measurement and Control,1992,114:155-159.
    [23] A. Pourmovahed, N. H. Beachley, F. J. Fronczak. Modeling of a hydraulic energy regereationsystem, Part II: Experimental Program. Journal of Dynamic Systems, Measurement and Con-trol,1992,114:160-165.
    [24] J. H. Lumkes JR. Design, simulation, and testing of an energy storage hydraulic vehicle trans-mission and controller:[Ph.D Dissertation]. Madison, US: University of Wisconsin-Madison,1997.
    [25] C. Cheng. Application of artificial networks in the power split controller for a series hydraulichybrid vehicle:[M.S. Dissertation]. Toledo, USA: The University of Toledo,2010.
    [26] Xianwu Zeng. Improving the energy density of hydraulic hybrid vehicle (HHVs) and evaluatingplug-in HHVs:[M.S. Thesis].Toledo, USA: THe Univeristy of Toledo,2009.
    [27] D. N. Assanis, Z. S. Filipi, S. Gravante, et al. Validation and use of SIMULINK integrated,high fidelity, engine-vehicle simulation of the international class VI truck. Warrendale, PA,SAE Paper2000-01-0288,2000.
    [28]张林,杜子学,文孝霞,等.并联混合动力汽车动力系统参数设计及仿真.北京汽车,2006,1:29-32.
    [29]彭婕.嘉捷博大瘦腿液压混合动力公交车.城市车辆,2008,3:18.
    [30]肖献法.交大神舟环保节能型公交车及专用车研发初见端倪——再访上海交大神舟汽车设计开发有限公司总经理陈杰博士.商用汽车,2006,12:83-85.
    [31]肖华.上海交大神舟液压混合动力系统——城市公交的新选择.城市车辆,2007,5:24.
    [32]上海交大神舟汽车设计开发有限公司.城市车辆,2007,3:36.
    [33]赵春涛,姜继海,赵克定.采用恒压系统的公交汽车主要元件参数匹配的研究.机床与液压,2001,2:36-39,79.
    [34]姜继海,韩永刚,王德海,等.二次调解静液驱动系统的智能PID控制.哈尔滨工业大学学报,1998,1:45-48.
    [35]姜继海,于庆涛.二次调解静液传统技术.流体传动与控制,2005,4:1-5.
    [36]赵春涛,姜继海,赵克定.二次调解静液传动技术在城市公交车辆中的应用.汽车工程,2001,23(6):423-426.
    [37]赵春涛,姜继海,赵克定.车辆串联混合传动中二次调解系统的节能制动.中国机械工程,2003,14(6):529-532.
    [38]姜继海,赵春涛,孟兆生.二次调解静液传动在城市公交车辆驱动中的节能技术研究.中国机械工程,2001,(3):272-280.
    [39]吴光强,王会义.车辆静液驱动与智能控制系统.上海:上海科学技术文献出版社,1998.
    [40]闫业翠,刘国庆,陈杰.液压混合动力公交车动力性能仿真与实验研究.汽车工程,2010,32(2):93-97,102.
    [41]曾洋.静液驱动二次调解技术的研究:[硕士学位论文].广州:华南理工大学,2002.
    [42]周奉香,苑士华,李辉.公交车辆制动能量回收与再利用系统研究.客车技术与研究,2003,25(6):6-7.
    [43]陈华志,苑士华.城市用车辆制动能量回收的液压系统设计.液压与气动,2003,4:1-3.
    [44]李翔晟,常思勤.新型电控液驱车储能元件特性研究.中国机械工程,2006,37(3):12-16.
    [45]李翔晟,常思勤,韩文.静液压储能传动汽车动力源系统匹配及性能分析.农业机械学报,2006,37(3):12-16.
    [46]李翔晟,常思勤.静液压储能传动车辆动力源系统设计分析.南京林业大学学报,2005,29(4):65-68.
    [47]韩文,常思勤.新型二次调解静液车辆传动系统智能PID控制研究.农业机械学报,2004,35(5):9-11,19.
    [48]韩文,常思勤.模糊控制在新型二次调解静液传动车辆的应用.汽车工程,2004,26(3):322-324,335.
    [49]韩文,常思勤.静液二次调解技术传动系统转速的模糊PID控制研究.拖拉机与农用运输车,2005,3:27-29.
    [50]韩文.新型电控液驱车关键技术研究——驱动/制动系统:[博士学位论文].南京:南京理工大学,2005.
    [51]韩文,常思勤.液压技术在车辆制动能量回收的研究.机床与液压,2003,6:247-248,47.
    [52]易纲.液驱混合动力车辆控制系统研究:[博士学位论文].南京:南京理工大学,2008.
    [53]魏英俊,柏军玲,周友.液驱混合动力技术——车辆技能新技术.拖拉机与农用运输车,2007,34(2):13-14,16.
    [54]魏英俊.新型液压驱动混合动力运动型多用途车的研究.中国机械工程,2006,8:1645-1648.
    [55]赵岩.并联液压混合动力汽车制动系统建模和仿真研究:[硕士学位论文].长春:吉林大学,2009.
    [56] J. Tj nnas, T. A. Johansen. Adaptive control allocation. Automatica,2009,44:2754-2765.
    [57] V. Adetola, M. Guay. Integration of real-time optimization and model predictive control. Jour-nal of Process Control,2010,20:125-133.
    [58] P. D. Bowles. Modeling and energy management for a parallel hybrid electric vehicle with con-tinuouly variable transimission:[M.S. Dissertation]. Ann Arbor, USA: University of Michigan,1999.
    [59] Y. Hung, P. Lin, C. Hong. A rule based control algorithm for hybrid electric motocycle power-train systems. Proceedings of the6th International Symposium on Adavanced Vehicle Control,Hiroshima, Japan,2002.
    [60] B. Wu, C. C. Lin, Z. Filipi, H. Peng and D. Assanis. Optimal power management for a hydraulichybrid delivery truck. Vehicle Systems Dynamics,2004,42(2):23-40.
    [61] C. C. Lin, H. Peng, J. W. Grizzle, et al. Control system development of a advanced-technologymedium duty hybrid electric truck. SAE Paper2003-01-3369,2003.
    [62] I. Kolvmanovsky, I. Sieverguina, B. Lygoe. Optimization of powertrain operation policy forfeasibility assessment and calibration: stochastic dynamic programming approach. Proceedingsof the2002American Control Conference, Anchorage, USA,2002,1425-1430.
    [63] C. Dextreit, F. Assdian, I. Kolmanovsky, et al. Hybrid electric vehicle energy managementusing game theory. Proceedings of SAE World Congress, Detroit, MI,2008, SAE Paper2008-01-1317,2008.
    [64] S. Moura, H. Fathy, D. callaway, et al. A stochastic optimal control approach for power man-agment in plug-in hybrid electric vehicles. Proceedings of2008Dynamic Systems and ControlConference, Ann Arbor,2008,545-555.
    [65]申彩英.串联混合动力汽车能量优化管理策略研究:[博士学位论文].天津:天津大学,2010.
    [66]于海芳.混合动力汽车符合储能系统参数匹配与控制策略研究:[博士学位论文].哈尔滨:哈尔滨工业大学,2010.
    [67]熊伟威.混连式混合动力客车能量优化管理策略研究:[博士学位论文].上海,上海交通大学,2009.
    [68] M. Lindgren. A transient fuel consumption model for non-road mobile machinery. BiosystemsEngineering,2005,91(2):139-147.
    [69] S. Tian, J. Li, F. Yang, et al. A control oriented simplified transient torque model of tur-bocharged diesel engines. SAE Technical Paper2008-01-1708,2008.
    [70] J.P. Jensen, A.F. Kristensen, S.C. Sorenson, et al. Mean value modleing of a small turbochargeddiesel engine, SAE Paer910070,1991.
    [71] M. Kao, J.J. Moskwa. Turbocharged diesel engine modeling for nonlinear engine control andstate estimation. Journal of Dynamics Systems Measurement and Control, Transactions ofASME,1995,117(1):20-30.
    [81] G. Rizzoni, S. Drakunov, Y.Y. Wang. Online estimation of indicated torque in IC engine viasliding mode observers. Proceedings of The American Control Conference, Seattle, WA, USA,1995,3:2123-2127.
    [73] G. Rizzoni, F.T. Connolly. Estimate of IC engine torque from measurement of crankshaft angu-lar position. SAE Technical Paper932410,1993.
    [74] G. Rizzoni. Estimate of indicated torque from crankshaft speed fluctations: A model for thedynamics of the IC engine. IEEE Transactions on Vehicular Technology,1989,38(3):168-179.
    [75] L. Guzzella, A. Amstutz. Control of diesel engines. IEEE Control Systems,1998,18(5):53-71.
    [76] L. Guzzella, C. Onder. Introduction to modeling and control of internal combustion enginesystems, Berlin: Springer,2004.
    [77] A. Chevalier, M. Mueller, E. Hendricks. On the validity of mean value engine models duringtransient conditions. SAE Technical Paper2000-01-1261,2000.
    [78] J. Wang. Hybrid robust air-path control for diesel engines operating conventional and low tem-perature combustion modes. IEEE Transactions on Control Systems Technology,2008,16(6):1138-1151.
    [79] J. Moskwa, M. Kao. Turbocharged diesel engine modeling for nonlinear engine control andstate estimation. ASME Journal of Dynamics Systems, Measurement and Control,1995,117(1):20-30.
    [80] I. Haskara, L. Mianzo. Real-time cylinder pressure and indicated torque estimation via secondorder sliding modes. Proceedings of the American Control Conference,2001,5:3324-3328.
    [81] G. Rizzoni, S. Drakunov, Y. Wang. On-line estimatin of indicated torque in IC engine via slidingmode observers. Proceedings of the American Control Conference,1995,3:2123-2127.
    [82] E. Hendricks, A. Chevalier, M. Jensen, et al. Modeling of the intake manifold filling dynamics.SAE Technical Paper960037,1996.
    [83] L. Zhong, N. A. Henein, w. Bryzik. Simulation Based cold start control strategy for a dieselengine with common rail fuel system at different ambient temperatures. SAE Techical Paper2007-01-0933,2007.
    [84] A. M. Lippert, D. W. Stanton, R. D. Reitz, et al. Investigating the effect of spray targeting andimpingement on diesel engine cold start. SAE Technical Paper2000-01-0269,2000.
    [85] Z. Han, N. Henein, B. Nitu, et al. Diesel engine cold start combustion instability and controlstrategy. SEA Technical Paper2001-01-1237,2001.
    [86] J. B. Heywood. Internal combustion engine fundamentals. New York: McGraw-Hill,1989.
    [87] A. Pourmovahed, D. R. Otis. Effects of thermal damping on the dynamic response of a hyraulicmotor-accumulator system. ASME Journal of Dynamic Systems, Measurement and Control,Transactions of the ASME,1984,106(1):21-26.
    [88] D. R. Otis, A. Pourmovahed. An algorithm for coomputing nonflow gas process in gas springsand hydropneumatic accumulators. ASME Journal of Dynamic Systems, Measurement andControl, Transactions of the ASME,1985,107(1):93-96.
    [89] A. Pourmovahed. Durability testing of an elastomeric foam for use in hydraulic accumulators.ASME Journal of Solar Energy Engineering,1990,112:223-228.
    [90] A. Pourmovahed, D. R. Otis. An experimental thermal time constant correction for hydraulicaccumulators. ASME Journal of Dynamic Systems, Measurement and Control,1990,112(1):116-221.
    [91] D. R. Otis, A. Pourmovahed. Improving performance of gas charged accumulators using elas-tomeric foams. Proceedings of International Symposium on Advanced and Hybrid Vehicles,Glasgow,1984,93-99.
    [92] A. Pourmovahed. Energy storage capacity of gas charged hydraulic accumulators. AIAA Ther-mophysics, Plasmadynamics and Lasers Conference, San Antonio, Texas,1988, AIAA-88-2656.
    [93] H. W.Cooper, J. C. Goldfrank. B-W-R constants and new correlations. Hydrocarbon Processing,1967,46(12):141-146.
    [94] C. P. Kerr. Procedure estimates Benedict-Webb-Rubin constants. Oil and Gas Journal,1986,84(13):80-82.
    [95] R. T. Jacobsen, R. B. Stewart, R. D. Mccarty, el al. Thermophysical properties of nitrogen fromthe fusion line to3500R (1944K) for pressures to150,000psia (10342×10the fifth power N/msquared). National Bureau of Standards,1973, Technical Note648.
    [96] W. E. Wilson. Rotary-pupmp theory. ASME Transactions,1947,68(4):371-384.
    [97] W. E. Wilson. Positive-displacement pumps and fluid motors. New York: Pitmans PublishingCorp.,1950.
    [98] W. E. Wilson, C. D. Lemme. The hydromechanical transmission: Ideal and real. SAE Paper680605,1968.
    [99] W. M. J. Schlosser. Mathematical model for displacement pumps and motors. Hydraulic PowerTransimission,1961,252-257.
    [100] J. Thoma. Mathematic models and effective performance of hydrostatic machines and trans-missions. Hydraulic Pneumatic Power,1969,642-651.
    [101] D. McCandlish, R. Dorey. Steady state losses in hydrostatic pupmps and motors. Sixth Interna-tional Fluid Power Symposium,1981, C3:133-144.
    [102] D. McCandlish, R. Dorey. The mathematical modeling of hydrostatic pumps and motors. Pro-ceedings of Institution of Mechanical Engineers,1984,198B(10):164-174.
    [103] C. Lin, Z. Filipi, Y. Wang, et al. Integrated, feed-forward hybridelectric vehicle simulation inSIMULINK and its use for power management studies. SAE Technical Paper2001-01-1334,2001.
    [104] C. Lin, H. Peng, J.W. Grizzle. A Stochastic Control Strategy for Hybrid Electric Vehicles.Proceedings of American Control Conference, Boston, Massachusetts, USA,2004,4710-4715.
    [105] Y. Yan, G. Liu, J. Chen. Integrated modeling and optimization of a parallel hydraulic hybridbus. International Journal of Automotive Technology,2010,11(1):97-104.
    [106] Z. Filipi, L. Louca, B. Daran, et al. Combined optimisation of design and power managementof the hydraulic hybrid propulsion system for the6×6mudium truck. International Journal ofHeavy Vehicle Systems,2004,11(3/4)372-402.
    [107] C. lin, Z. Filipi, L. louca, et al. Modelling and control of a medium duty hybrid electric truck.Heavy Vehicle Systems, International Journal of Vehicle Design,2004,11(3/4):349-370.
    [108] T. O. Deppen, A. G. Alleyne, K. A. Stelson, et al. Predicted energy management for parallelhydraulic hybrid passenger vehicle. Proceedings of the ASME2010Dynamic Systems andControl Conference, Cambridge, Massachusetts, USA,2010,1-8.
    [109] H. A. borhan, C. Zhang, A. Vahidi, et al. Nonlinear model predictive control for power splithybrid electric vehicles.49th IEEE Conference on Decision and Control, Hilton Atlanta Hotel,Atlanta, GA, USA,2010,4890-4895.
    [110]闫叶翠,刘国庆,陈杰.液压混合动力公交车动力性能仿真与实验研究.汽车工程,2010,32(2):93-97,102.
    [111] M. Shan. Modeling and control strategy for series hydraulic hybrid vehicles:[Ph.D. Disserta-tion]. Toledo, USA: College of Engineering,2009.
    [112] E. Pe′rez, X. Blasco, S. Garc′a, et al. Diesel engine identification and predictive control usingWiener and Hammerstein models. Proceedings of the2006IEEE International Conference onControl Applications, Munich, Germany,2006,2417-2423.
    [113] H. J. Ferreau, G. Lorini, M. Diehl. Fast nonlinear model predictive control of gasoline engines.Proceedings of the2006IEEE International Conference on Control Applications, Munich, Ger-many,2006,2754-2759.
    [114] M. Herceg, T. Raff, R. Findeisen, et al. Nonlinear model predictive control of a turbochargeddiesel engine. Proceedings of the2006IEEE International Conference on Control Applications,Munich, Germany,2006,2766-2771.
    [115] S. Li, H. Chen, S. Yu. Nonlinear model predictive control for idle speed control of SI engine.Joint48th IEEE Conference on Decision and Control and28th Chinese Control Conference,Shanghai, P.R. China,2009,6590-6595.
    [116] F. U. Syed, M. L. Kuang, M. Smith, et al. Fuzzy gain scheduling PI control for improvingengine power and speed behavior in a hybrid electric vehicle. IEEE Transactions on VehicularTechnology,2009,58(1):69-84.
    [117] A. Rahiden, M. H. Shaheed, H. J. C. Huijberts. Stable adaptive model predictive control fornonlinear systems. In Proceedings of American Control Conference, Seattle, Washington, USA,1673-1678.
    [118] F. Wan, H. Shang, L. Wang. Fuzzy model based adaptive predictive control of nonaffine nonlin-ear systems: one-step-ahead and multi-step-ahead schemes.43rd IEEE Conference on Decisionand Control, Atlantis, Paradise Island, Bahamas,2004,5122-5127.
    [199] Nuno M. C. De Oliveira, Lorenz T. Biegler. An extension of newton type alogorithms for non-liner process control. Automatica,1995,31(2):281-286.
    [120] R. Johri, Z. Filipi. Low-cost pathway to ultra efficient city car: Series hydraulic hybrid systemwith optimized supervisory control. SAE Technical Paper2009-24-0065,2009.
    [121] Naeim A. Henein, Dinu Taraza, Nabil Chalhoub, et al. Exploration of the contribution of thestart/stop transients in HEV operation and emissions. SAE Paper2000-01-3086,2000.
    [122]黄开胜,金振华,张云龙.混合动力汽车发动机启动/停机控制.车用发动机,2006,4:45-48.
    [123] Y. J. Kim, Z. Filipi. Simulation study of a series hydraulic hybrid propulsion system for lighttruck. SAE2007Commercial Vehicle Engineering Congress and Exhibition, rosemont, IL,USA, SAE Paper2007-01-4151,2007.
    [124] A. Scottedward Hodel, charles E. Hall. Variable structure PID control to prevent integratorwindup. IEEE Transaction on Industrial Electronics,2001,48(2):442-451.
    [125] P. Caratozzolo, M. Serra, J. Riera. Energy management strategies for hybrid electric vehicles.IEEE International Electric Machines and Drives Conference, Cenidet, Morelos, Mexico,2003,1:241-248.
    [126] Nashat Jalil, Naim A. Kheir, Mutasim Salman. A rule based energy management strategy fora series hybrid vehicle. Proceedings of the American Control Conference, Albuquerque, NewMexico,1997,6889-693.
    [127] Niels J. Schouten, Mutasim A. Salman, Naim A. Kheir. Fuzzy logic control for parallel hybridvehicles. IEEE Transactions on Control Systems Technology,2002,10(3):460-468.
    [128] Choon-Young You, Won-Yong Park, Gu-min Jeong, et al. A comparative study of fuzzy logicbased control strategies for a parallel mild hybrid electric vehicle. International Conference onControl, automation and Systems, Coex, Seoul Korea,2008,1042-1046.
    [129] Bernd M. Baumann, Gregory Washington, Bradley C. Glenn, et al. Mechatronic design andcontrol of hybrid electric vehicles. IEEE/ASME Transactions on Mechatronics,5(1):58-72.
    [130] A. Kahrobaeian, B. Asaei, R. Amiri. Comparative investigation of charge-sustaining and fuzzylogic control strategies in parallel hybrid electric vehicles. IEEE Vehicle Power and PropulsionConference, Dearborn, MI, USA,2009,1632-1636.
    [131] C. Anderson, E.Pettit. The effects of APU characteristics on the design of hybrid control strate-gies for hybrid electic vehicles. SAE International Congress&Exposition, Detroit, MI, USA,SAE Technical Paper950493,1995.
    [132] C. Hochgraf, M. Ryan, H. Wiegman. Engine control strategy for a series hybrid electric vehicleincorporating load-leveling and computer controlled energy management. SAE InternationalCongress&Exposition, Detroit, MI, USA, SAE Paper960230,1996.
    [133] R. E. Kruse, T. A. Huls. Development of the federal urban driving schedule. SAE TechnicalPaper730053,1973.
    [134] B. Dunham. Automatic on/off switch gives10-percent gas saving. Popular Science,1974,205(4):170.
    [135] A. brahma, Y. Guezennec, G. rizzoni. Optimal energy management in series hybrid electricvehicles. Proceedings of American Control conference,2000,1(6):60-64.
    [136] Bin Wu, C. Lin, Zoran Filipi, et al. Optimization of power management strategies for a hy-draulic hybrid medium truck. Proceedings of the2002Advanced Vehicle Control Conference,Hiroshima, Japan,2002.
    [137] S. E. Levinson, L. R. Rabiner, M. M. Sondhi. An introduction to the application of the theoryof probabilistic function of a Markov process to automatic speech recognition. Bell SystemTechinical Journal,1983,62:1035-1074.
    [138] E. H. ruspini. Numerical methods for fuzzy clustering. Information Science,1970,2:319-350.
    [139] H. P. Tseng, M. J. Sabin, E. A. Lee. Fuzzy vector quantization applied to hidden Markov model-ing. Proceeding of International Conference Acoustics Speech, Sgnal Processing, Dllas,1987,641-644.
    [140] J. M. Koo, C. K. Un. Fuzzy smoothing of HMM parameters in speech recognition. ElectronicLetter,1990,26(11):743-744.
    [141] George E.P. Box, Gwilym M. Jenkins, Gregory C. Reinse. Time series analysis: Forecastingand control (3rd Edition). Englewood Cliffs: Prentice Hall,1994.
    [142] Peter J. Brockwell and Richard A. Davis. Time series: Theory and methods (2nd Edition). NewYork: Springer-Verlag,1991.
    [143] D. P. Bertsekas. Dynamic programing and optimal control, Belmont MA: Athena Scientific,1995.
    [144] M. L. Puterman. Markov decision processes: Discrete stochastic dynamic programming. NewYork: J. Wiley,1994.
    [145]钱积新,赵均.徐祖华.预测控制.北京:化学工业出版社,2007.
    [146] Eduardo F. Camacho, Carlos Bordons. Model predictive control. Berlin: Springer-Verlag,1999.
    [147] Luigi del Re, Frank Allgo¨wer, Luigi Glielmo, et al. Automotive model predictive control: mod-els, methods and applications. Berlin: Springer-Verlag,2010.
    [148] Lalo Magni, Davide Martino Raimondo, Frank Allgo¨wer. Nonlinear model predictive control:towards new challenging applications. Berlin: Springer-Verlag,2009.
    [149] Lars Gru¨ne, Ju¨rgen Pannek. Nonlinear model predictive control: theory and algorithms. Londonlimited: Springer-Verlag,2011.
    [150] M. Kothare, V. Balakrishnan, M. Morari. Robust constrained model predictive control usinglinear matrix inequalities. Automatica,1996,32(10):1361-1379.
    [151] P. Scokaert, D. Mayne. Min-max feedback model predictive control for constrained linear sys-tems. IEEE Trans. Automatic Control,1998,43:1136-1142.
    [152] A. Schwarm, M. Nikolaou. Chance-constrained model predictive control. AIChE Journal,1999,45(8):1743-1752.
    [153] D. van Hessem, O. Bosgra. A conic reformulation of model predictive control includingbounded and stochastic disturbances under state and input constraints. Proceedings of41thConference on Decision and Control, Las Vegas, NV,2002,4643-4648.
    [154] I. Batina, A. Stoorvogel, S. Weiland. Optimal control of linear stochastic systems with stateand input constraints. Proceedings of41th IEEE Conference on Decision and Control,2002,2:1564-1569.
    [155] D. Mun oz de la Pen a, A. Bemporad, T. Alamo. Stochastic programming applied to modelpredictive control. Proceedings of44th IEEE Conf. on Decision and Control and EuropeanControl Conference, Sevilla, Spain,2005,1360-1366.
    [156] P. couchman, M. Cannon, B. Kouvaritakis. Stochastic MPC with inequality stability constraints.Automatica,2006,42:2169-2174.
    [157] J. Primbs. Stochastic receding horizon control of constrained linear systems with state andcontrol multiplicative noise. Proceedings of American Control Conference, New York, NY,2007,4470-4475.
    [158] D. Bernardini, A. Bemporad. Scenario-based model predictive control of stochastic constrainedlinear systems. Proceedings of48th IEEE Conference on Decision and Control, Shanghai,China,2009,6333-6338.
    [159] K. H yland, S. Wallance. Generating scenario trees for multistage decision probelms. Manage-ment Scinece,2001,47(2):295-307.
    [160] J. Dupacˇova, G. Consigli, S. Wallace. Scenarios for multistage stochastic programs. Annals ofOperations Research,2004,100:25-53.
    [161] G. Goodwin, J. stergaard, D. euevedo, A. Feuer. A vector quantization approach to scenariogeneration for stochastic NMPC. Nonlinear Model Predictive Control: Lecture Notes in Controland Information Science,2009,384:235-248.
    [162] G. Ripaccioli, D. Bernardini, S. Di Cairano, et al. A stochastic model predictive control ap-proach for series hybrid electric vehicle power management. American Control Conference,Marriott Waterfront, Baltimore, MD, USA,2010,5844-5849.
    [163] S. J. Qin, T. A. Badgwell. An overview of nonlinear model predictive control application. Non-linear Model Predictive Control: Progress in Systems and Control Theory,2000,26:369-392.
    [164] A. Adams. Calculus: A complete cource, Fifth Edition. Toronto: Addison Wesley,2002.
    [165] R. W. H. Sargent, G.R. Sullivan. The development of an efficient optimal control package. Pro-ceedings of the8th IFIP Conference on Optimization Techniques (Part2), Heidelberg: Springer,1978.
    [166] L. T. Biegler. Solution of dynamic optimization problems by successive quadratic programmingand orthogonal collocation. Coomputers and Chemical Engineering,1984,8:243-248.
    [167] T. H. Tsang, D. M. Himmelblau, T. F. Edgar. Optimal control via collocation and non-linearprogramming. International Journal on Control,1975,21:763-768.
    [168] V. M. Zavala, L. T. Biegler. The advanced step NMPC controller: Optimality, stability androbustness. Automatica,2009,45(1):86-93.
    [169] H. G. Bock, K. J. Plitt. A multiple shooting algorithm for direct solution of optimal controlproblems. Proceedings9th IFAC World Congress Budapest, Pergamon: Oxford Press,1984,243-247.
    [170] D. B. Leineweber, I. bauer, A. A. S. Schafer, et al. An efficient multiple shooting based reducedSQP strategy for large-scale dynamic process optimization (Parts I and II). Computers andChemical Engineering,2003,27:157-174.
    [171] M. J. Tenny, J. B. Rawlings. Efficient moving horizon estimation and nonlinear model predic-tive control. Proceedings of the American Control Conference,2002,6:4475-4480.
    [172] P. Deuflhard. Newton methods for nonlinear problems. New York: Springer,2004.
    [173] M. J. D. Powell. A fast algorithm for nonlinearly constrained optimization calculations. Nu-merical Analysis: Lecture Notes in Mathematics,1978,630:144-157.
    [174] M. Diehl. Real-time optimization for large scale nonlinear process. NMPC of a DistillationColumn,2002,920:363-384.
    [175] H. G. Bock, M. Diehl, E. A. Kostina, et al. Constraned optimal feedback control of systemsgoverned by large differntial algebraic equations. SIAM Philadelphia,2007,3-22.
    [176] S. Boyd, L. Vandenbeghe. Convex optimization. Cambridge: Cambridge University Press,2004.
    [177] S. J. Wright. Primal-dual interior point methods. Philadelphis: SIAM Publications,1997.
    [178] Hassan K. Khalil. Nonlinear systems,2nd Edition. New Jersey: Prentice Hall,1996.
    [179] J. Nocedal, S. J. Wright. Numerical optimization. New York: Springer-Verlag,1999.
    [180] P. Bertsekas, A. Nedic, A. E. Ozdaglar. Converx Analysis and optimization. Belmont: AthenaScientific,2003.
    [181] R. Abrahamson, J. E. Marsden, T. Ratiu. Manifold, Tensor Analysis and Applications (2ndEdition), New York: Springer-Verlag,1988.
    [182] M. Diehl, H. G. Bock, J. P. Schlo¨der. A real-time iteration scheme for nonlinear optimization inoptimal feedback control. SIAM Journal of Control and Optimization,2005,43(5):1714-1736.
    [183] A. Helbig, O. Abel, W. Marquardt. Model predictive control for on-line optimization of semi-batch reactors. Proceedings of American Control Conference, Philadelphia,1998,1695-1699.
    [184] M. Diehl, H. G. Bock, J. P. Schlo¨der, et al. Real-time optimization and nonlinear model pre-dictive control of processes governed by differential algebraic equations. Journal of ProcessControl,2002,12(4):577-585.
    [185] M. J. Best. An algorithm for the solution of the parametric quadratic programming probelm.Applied Mathematics and Parallel Computing,1996,57-76.
    [186] H. J. Ferreau, H. G. Bock, M. Diehl. Anonline active set strategy to overcome the limitationsof explicit MPC. International Journal of Robust Nonlinear Control,2008,18(8):816-830.
    [187] T. Ohtsuka. A coontinuation/gmres method for fast computation of nonlinear receding horizoncontrol. Automatica,2004,40(4):563-574.
    [188] L. T. Biegler, J. B. Rawlings. Optimization approaches to nonlinear model predictive control.Proceeding of4th International Conference on Chemical Process Control,1991, CPC IV:543-571.
    [189] M. Diehl, L. Magni, G. De Nicolao. Online NMPC of unstable periodic systems using approx-imate infinite horizon closed loop costing, AnnualReviews in Control,2004,28:37-45.
    [190] W. C. Li and L. T. Biegler. Newton-type controllers for constrained nonlinear processes withuncertainty. Industrial and Engineering Chemistry Research,2003,29:1647-1657.
    [191] A. Mhamdi, A. Helbig, O. Abel, et al. Newton-type receding horizon control and state estima-tion. Proceeding of13rd IFAC World congress, San Francisco,1996,121-126.
    [192] H. G. Bock, M. Diehl, D. B. Leineweber, et al. Efficient direct multiple shooting in nonlinearmodel predictive control. Scientific Computing in Chemical Engineering,1999,2:218-227.
    [193] M. Cannon, W. H. Liao, B. Kouvaritakis. Efficient MPC optimization using Pontryagin’s Min-imum principle. Proceedings of the45th IEEE Conference on Decision&Control, San Diego,CA, USA,2006, FrB07.3:5459-5464.
    [194] D. Dougherty, D. Cooper. A practical multiple model adaptive strategy for multivairable modelpredictive control. Control Engineering Practice,2003,11:649-664.
    [195] Z. Wan, M. V. Kothare. Efficient scheduled stabilizing output feedback model predictive controlfor constraned nonlinear systems. IEEE Transaction on Automatic Control,2004,49(7):1172-1177.
    [196] H. Fukushima, T. H. Kim, T. Sugie. Adaptive model predictive control for a class of constrainedlinear systems based on the comparsion model. Automatica,2007,43:301-308.
    [197] B. Zhang, W. Zhang. Adaptive predictive functional control of a class of nonlinear systems.ISA Transactions,2006,45(2):175-183.
    [198] W. C. Li, L. T. Biegler. Multistep newton type control strategies for constrained nonlinear pro-cess. Chemical Engineering Research and Design,1989,67:562-577.
    [199] N. M. C. De Oliveira, L. T. Biegler. An extension of newton type algorithm for nonlinearprocess control. Automatica,1989,31(2):281-286.
    [200] A. Rahideh, M. H. Shaheed, H. J. C. Huijberts. Stable adaptive model predictive control fornonlinear systems. American Control Conference, Seattle, Washington, USA,2008, WeC13.3:1673-1678.
    [201] C. C. Lin, H. Peng, J. w. Grizzle, et al. Power manaement strategy for parallel hybrid electrictruck. IEEE Transactions on Control Systems Technology,2003,11:839-849.
    [202]朱道伟,谢辉,严英,等.基于道路工况自学习的混合动力城市客车控制策略动态优化.机械工程学报,46(6):33-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700