用户名: 密码: 验证码:
铁道车辆结构耐撞性影响因素及优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外频繁发生的铁道车辆碰撞事故造成了严重的人员伤亡和财产损失,给人们带来了沉重和惨痛的教训,如何减小列车碰撞事故发生率、提高列车运行的安全性和最终实现人员财产安全保护,已成为现代轨道列车设计研发的关键课题之一。本文基于我国轨道交通的迅猛发展以及全社会对车辆运输安全关注程度日益增强这一背景,对越来越受到重视的铁道车辆碰撞被动安全保护问题进行了研究,主要开展的研究内容有:
     首先对铁道车辆吸能结构中常用的典型薄壁结构碰撞吸能的影响因素如结构横截面形状、结构尺寸、材料特性参数、结构预变形、加载方式、碰撞初始动能以及数值模拟中结构网格尺寸等进行了研究,探讨不同的影响因素对结构碰撞吸能特性的影响规律,为选择合适的影响参数、提高车辆的耐撞击性能提供依据。并通过不断归纳和总结影响因素研究结果获得了较为一般性的规律,开发了吸能结构影响因素和规律数据库系统,该系统涵盖了文献数据库、结构形状数据库、几何参数数据库、材料参数数据库、加载条件数据库、试验和计算条件数据库等,并以此为参考可方便、快捷地进行吸能结构耐撞性设计,加速其在车辆碰撞安全设计等领域中的应用。
     为了获得更加理想的铁道车辆耐撞性吸能结构,借助Kriging代理优化模型分别对铁道车辆中专用吸能结构和承载吸能结构进行了优化。在专用吸能结构比吸能SEA和比吸能与初始撞击力峰值之比REAF的优化过程中,分别构造了结构比吸能SEA和比值REAF关于设计参数的Kriging代理模型,与传统的响应面模型比较,Kriging模型具有较高的拟合精度,最后分别通过直观分析和遗传算法整体寻优得到了结构最优值;在铁道车辆承载吸能结构优化过程中,亦分别构造了比吸能SEA及比值REAF关于优化参数的Kriging模型,并结合遗传算法整体寻优分别得到结构比吸能SEA和比值REAF的最优值,结果表明模型得到比较理想的目标响应值,最后对比值REAF优化前后的车体耐撞击特性进行了对比,该优化后的车体耐撞击性能要优于优化前的结构。
     本文基于列车多体耦合撞击分析进行了多种工况的假人二次撞击研究:首先建立了整列车多车辆耦合撞击模型,通过多车辆耦合撞击分析得到了各节车辆的速度、加速度、乘员二次撞击速度等运动规律曲线,然后在Madymo中建立了车体-客室-假人耦合结构模型,根据我国传统客车的客室布置,分别选取了乘员对面有桌子,乘员对面无桌子(对面为椅子)、乘员对面为乘员等工况在列车多体耦合撞击分析基础上进行了二次撞击研究,为车体客室内部布置及客室结构优化提供了依据。
     研究了乘员二次碰撞损伤程度的影响因素:通过两种激励加速度对比分析表明采用AV/ST9001上限值计算的乘员各损伤参数要比采用Volpe的试验加速度计算的结果大;研究了加速度脉冲峰值和脉冲持续时间对乘员的损伤影响,同时分别研究了客室空间尺寸和结构接触刚度等对乘员损伤的影响情况以及乘员各碰撞损伤参数对这些空间结构参数的敏感性情况;最后采用Kriging模型构造了乘员各损伤参数对各影响参数的响应曲面,通过整体寻优分析得到了车辆客室空间尺寸和内部部件接触刚度最优配置,从而通过改善客室结构达到保护乘员的目的。研究结果可用于指导铁道车辆客室结构的布置。
     总之,本文研究内容具体充实,研究方案和技术途径在结合以前工作的基础上注重了创新,研究成果可为铁道车辆被动安全研究打下坚实的基础,具有重要的理论意义和工程应用价值。
The frequent occurrence of railway vehicle collision accidents both in domestic and foreign countries have caused serious casualties and property loss, which brings heavy and painful lessons to people. How to reduce the accident rate of train collision, improve the operation safety of train and finally realize the personnel and property protection has become a key technology in the design and development of modern rail train. In this paper, the railway vehicle passive safety protection problems which draw more and more attentions recently were studied on the basis of the rapid development of China's rail transit as well as the increasing concerns on the security of vehicle transport from the whole society. The main research contents are as follows:
     Firstly, the energy-absorbing influence factors (such as structural cross-section shape, structure dimensions, material property parameters, structural pre-deformation, loading mode, initial collision kinetic energy and structural mesh size in numerical simulation) of typical thin-walled structure used for railway vehicle energy-absorbing structure were studied, and the influence laws of different factors on the structural energy-absorbing characteristics were researched in order to provide basis for the choice of appropriate influence factors and the improvement of vehicle crashworthiness. Then the more general rule was obtained through the summary and conclusion of the research results above, and the influence-factors&laws database system for energy-absorbing structure was developed. The system covers literature database, structure shape database, geometric parameter database, material parameter database, loading condition database, testing and calculation condition database, etc. And as a reference, the crashworthiness design of energy-absorbing structure can be carried out conveniently and quickly, which accelerated its application in the field of vehicle safety design in collision.
     In order to obtain the ideal crashworthy energy-absorbing structure, special energy-absorbing structure and load-bearing energy-absorbing structure of railway vehicle were optimized respectively based on Kriging surrogate optimization model. In the optimization process of specific energy absorption (SEA) and ratio of SEA to initial peak force (REAF) of special energy-absorbing structure, the Kriging surrogate models of SEA and REAF with regard to the design parameters were respectively constructed. The Kriging model has higher fitting accuracy compared with the traditional response surface model. Finally, the structure optimal values were obtained respectively through visual analysis and overall optimization of genetic algorithm (GA). In the optimization process of load-bearing energy-absorbing structure of railway vehicle, the Kriging surrogate models of SEA and REAF with regard to the design parameters were also constructed, and the SEA and REAF optimal results of the structure were obtained by genetic algorithm(GA). Results show that the models can obtain ideal target response values and it indicates that the optimized vehicle body has better crashworthiness through the collision analysis of the vehicle bodies before and after optimization,.
     In this paper, research of occupant secondary impact was carried out under different conditions based on the analysis of multi-car coupling collision:multi-car coupling collision model was firstly built up, and motion curves of speed and acceleration of every car and curves of occupant second impact velocity (SIV) were obtained through the analysis of multi-car coupling collision. Then the car body-passenger compartment-dummy coupling model was set up in Madymo software, the research of occupant secondary impact was carried out under the conditions when occupant face to desk, occupant face to chair and occupant face to occupant respectively according to the traditional passenger compartment arrangement in China. The results provide the basis for passenger compartment arrangement and compartment structure optimization.
     Influence factors of occupant injury severity during secondary impact were researched:through comparative analysis of two type accelerations, it showed that the occupant injury parameters calculated by the AV/ST9001upper limit acceleration were lager than that by the Volpe testing acceleration; the effects of acceleration pulse peak value and pulse duration on occupant injury were researched; Besides, the effects of compartment space dimension and structure contact stiffness on occupant injury and the sensitivity of each occupant injury parameters on the spatial structure parameters were respectively studied; finally, the response surfaces between occupant injury parameters and influence parameters were set up based on Kriging model, and the optimal configuration of the compartment space dimension and inner parts contact stiffness were obtained through the overall optimization analysis, so the purpose of occupant protection could be realized by improving the passenger compartment structure. The results can be helpful to guide the structure design of railway vehicle compartment.
     In short, the contents of this paper are specific and enriched, research programs and technical approaches focus on innovation combined with previous work basis, and the research results lay a solid foundation for railway vehicle passive safety research, being of theoretical significance and practical value.
引文
[1]陈维.既有铁路运输供给评价研究[D].成都:西南交通大学,2010.
    [2]胡伟.交通运输与经济发展的良性互动[J].北方交通,2010,33(8):73-75.
    [3]Kirkpatrick S W, Schroeder M, Simons J W. Evaluation of passenger rail vehicle crashworthiness[J]. International Journal of Crashworthiness,2001,6(1): 95-106.
    [4]Simons J W, Kirkpatrick S W. High-speed passenger train crashworthiness and occupant survivability[J]. International Journal of Crashworthiness,1999,4(2): 121-132.
    [5]Scholes A, Lewis J H. Development of crashworthiness for railway vehicle structures[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,1993,207(1):1-16.
    [6]Oh J, Washington S P, Nam D. Accident prediction model for railway-highway interfaces[J]. Accident Analysis and Prevention,2006,38(2):346-356.
    [7]http://wenku.baidu.com/view/eb2241fa941ea76e58fa04d8.html[J].
    [8]http://www.gov.cn/gzdt/2011-12/29/content_2032986.htm[J].
    [9]http://en.wikipedia.org/wiki/List_of_rail_accidents[J].
    [10]段书华.列车大变形碰撞仿真与结构优化[D].大连:大连交通大学,2008.
    [11]杨慧芳.CRH3动车组被动安全性和耐撞性优化研究[D].大连:大连交通大学,2010.
    [12]张振淼,逢增祯.轨道车辆碰撞能量吸收装置原理及结构设计(待续)[J].国外铁道车辆,2001,38(3):13-19.
    [13]Cengiz B, Emin S, Sureyya E B, et al. Railroad passenger car collision analysis and modifications for improved crashworthiness[J]. International Journal of Crashworthiness,2011,16(3):319-329.
    [14]Han H S, Koo J S. Simulation of train crashes in three dimensions[J]. Vehicle System Dynamics,2003,40(6):435-450.
    [15]田红旗,许平.吸能列车与障碍物撞击过程的研究和分析[J].长沙铁道学院学报,2002,20(3):55-60.
    [16]伞军民.列车吸能结构碰撞仿真与分析[D].大连:大连交通大学,2009.
    [17]Hosseini-Tehrani P, Bayat V. Study on crashworthiness of wagon's frame under frontal impact[J]. International Journal of Crashworthiness,2011,16(1):25-39.
    [18]Nemeth I, Kovacs K, Reimerdes H G, et al. Crashworthiness study of railway vehicles-Developing of crash elements[C]. Hungary:Budapest University,2002.
    [19]Kim H J, Cho H, Jung H S, et al. Crashworthiness design and evaluation on the leading-cab structure of rolling stock using topology optimization[J]. International Journal of Precision Engineering and Manufacturing,2009,10(2):79-85.
    [20]Hosseini Tehrani P, Nankali A. Study on characteristics of a crashworthy high-speed train nose[J]. International Journal of Crashworthiness,2010,15(2): 161-173.
    [21]Wolter Wilfried,阎锋.铁道车辆的防碰撞要求、设计原理和初步结果[J].国外铁道车辆,2004,41(02):23-30.
    [22]Hecht Markus,祝华.有轨电车和轻轨车辆的防碰撞性[J].国外铁道车辆,2005,42(5):39-41.
    [23]张振淼,逢增祯.轨道车辆碰撞能量吸收装置原理及结构设计(续完)[J].国外铁道车辆,2001,38(4):16-19.
    [24]EN 15227:2008, Railway applications-Crashworthiness requirements for railway vehicle bodies[S]. British:Standards Policy and Strategy Committee,2009.
    [25]EN 12663:2000, Railway applications-Structural requirements of railway vehicle bodies[S]. British:Standards Committee,2000.
    [26]Xue X, Schmid F, Smith R A. A study of modelling approaches for rail vehicle collision behaviour[J]. International Journal of Crashworthiness,2004.9(5):515-525.
    [27]GM/RT 2100, Structural Requirements for Railway Vehicles[S]. London: Safety & Standards Directorate,2000.
    [28]AV/ST9001, Vehicle Interior Crashworthiness[S]. London:Railway Safety Evergreen House,2002.
    [29]Braun Johannes,陈铭.新型AGV电动车组[J].国外铁道车辆,2010,47(4):5-7.
    [30]Seitzberger Markus,崔培兴.城轨车辆碰撞安全性的现代设计理念[J].现代城市轨道交通,2005,2(1):1-6.
    [31]Muller Frank,钟连泉.轻轨车辆的制造[J].国外铁道车辆,2000,37(5):7-11.
    [32]Tyrell D C. US rail equipment crashworthiness standards[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,2002, 216(2):123-130.
    [33]Tyrell D C, Severson K J, Marquis B P. Train crashworthiness design for occupant survivability[C]. San Francisco:American Society of Mechanical Engineers, Applied Mechanics Division,1995.
    [34]Parent D, Tyrell D C, Perlman A B. Crashworthiness analysis of the Placentia, CA rail collision[J]. International Journal of Crashworthiness,2004,9(5):527-534.
    [35]Severson K J, Tyrell D C, Perlman A B, et al. Rail passenger equipment collision tests:analysis of structural measurements[C]. Orlando, Florida:American Society of Mechanical Engineers, Applied Mechanics Division,2000.
    [36],烟弘敏,刘克鲜.运用碰撞仿真技术进行提高铁道车辆安全性的研究[J].国外铁道车辆,2004,41(6):22-27.
    [37]烟弘敏,彭惠民.日本E233系车辆的车体结构与强度[J].国外铁道车辆,2009,46(5):8-11.
    [38]弘道石,彭惠民.日本铁道车辆技术的开发动向[J].国外铁道车辆,2010,47(3):1-3.
    [39]房加志.铁道车辆碰撞以及结构优化的仿真研究[D].北京:中国农业大学,2005.
    [40]贾宇.机车车体耐碰撞结构设计与碰撞仿真研究[D].成都:西南交通大学,2005.
    [41]王文斌.轨道车辆耐碰撞结构及乘员安全防护技术研究[D].上海:同济大学,2006.
    [42]戴嘉鹏.铝合金地铁车体静动态分析及碰撞仿真研究[D].南京:东南大学,2006.
    [43]李兰.城轨车辆耐碰撞结构设计及其乘员安全数字仿真研究[D].北京:铁道部科学研究院,2007.
    [44]王庆艳.铝型材地铁车车体耐撞性分析及吸能结构最优设计[D].大连:大连交通大学,2007.
    [45]陈汉珍.城际列车耐碰撞车体研究[D].成都:西南交通大学,2008.
    [46]高祥.基于ANYSY/LS-DYNA的铁道车辆单车碰撞问题建模与仿真研究[D].北京:北京交通大学,2008.
    [47]Gao G J, Tian H Q. Train's crashworthiness design and collision analysis[J]. International Journal of Crashworthiness,2007,12(1):21-28.
    [48]Tian H Q, Gao G J, Yao S, et al. Structure realization method for collapse threshold of plastic deformation in train collision condition[J]. Journal of Central South University of Technology,2011,18(1):244-249.
    [49]田红旗.客运列车耐冲击吸能车体设计方法[J].交通运输工程学报,2001,1(1):110-114.
    [50]高广军,田红旗,姚松.耐冲击吸能车体[J].交通运输工程学报,2003,3(3):50-53.
    [51]高广军,田红旗,姚松,等.列车多体耦合撞击分析[J].中国铁道科学,2005,26(4):93-97.
    [52]Milho J F, Ambrosio J A C, Pereira M F O S. Validated multibody model for train crash analysis[J]. International Journal of Crashworthiness,2003,8(4):339-352.
    [53]Eren I, Gur Y, Aksoy Z. Finite element analysis of collapse of front side rails with new types of crush initiators[J]. International Journal of Automotive Technology, 2009,10(4):451-457.
    [54]Zhu P, Zhang Y, Chen G L. Metamodeling development for reliability-based design optimization of automotive body structure[J]. Computers in Industry,2011, 62(7):729-741.
    [55]Duddeck F. Multidisciplinary optimization of car bodies[J]. Structural and Multidisciplinary Optimization,2008,35(4):375-389.
    [56]Milho J F, Ambrosio J A C. Design of train crash experimental tests by optimization procedures[J]. International Journal of Crashworthiness,2004,9(5): 483-493.
    [57]Zhong Z H. Finite element procedures for contact-impact problems[M]. Oxford: Oxford University Press,1993:96-213.
    [58]张金换,杜汇良,马春生.汽车碰撞安全性设计[M].北京:清华大学出版社,2010:87-110.
    [59]Bittencourt E, Creus G J. Finite element analysis of three-dimensional contact and impact in large deformation problems[J]. Computers and Structures,1998,69(2): 219-234.
    [60]Dias J P, Pereira M S. Optimization methods for crashworthiness design using multibody models[J]. Computers and Structures,2004,82(17-19):1371-1380.
    [61]Milho J F, Ambrosio J A C, Pereira M F O S. A multibody methodology for the design of anti-climber devices for train crashworthiness simulation.[J]. International Journal of Crashworthiness,2002,7(1):7-20.
    [62]Chatterjee S, Carney Iii J F. Passenger train crashworthiness-primary collisions[J]. Transportation Research Record,1996,18(1531):1-12.
    [63]Cuartero J, Lizaranzu M, Castejon L, et al. Evaluation of passenger railroad car roll over crashworthiness[J]. International Journal of Crashworthiness,2006,11(5): 419-424.
    [64]钟志华,张维刚,曹立波,等.汽车碰撞安全技术[M].北京:机械工业出版社,2003:4-5.
    [65]贾翠平.汽车与高速公路混凝土护栏碰撞事故分析及仿真研究[D].武汉:武汉理工大学,2007.
    [66]Tno A. MADYMO Theory Manual(V6.2.2)[M]. The Netherlands:TNO Automotive Madymo,2005:112-135.
    [67]胡耀华.汽车碰撞后乘员最佳保护姿态的仿真研究[D].杨凌:西北农林科技大学,2002.
    [68]Tyrell D C, Severson K J, Marquis B P. Analysis of occupant protection strategies in train collisions[J]. ASME Applied Mechanics Division,1995,210(3): 539-557.
    [69]Yasui Y, Hosomi K, Onitake A. Dynamic energy absorption of various thin-walled polygonal structural members under impact compressive load[J]. Journal of Japan Institute of Light Metals,2005,55(6):252-258.
    [70]Abramowicz W. Thin-walled structures as impact energy absorbers[J]. Thin-walled structures,2003,41(2-3):91-107.
    [71]Reyes A, Langseth M, Hopperstad O S. Crashworthiness of aluminum extrusions subjected to oblique loading:Experiments and numerical analyses[J]. International Journal of Mechanical Sciences,2002,44(9):1965-1984.
    [72]Nagel G M, Thambiratnam D P. Computer simulation and energy absorption of tapered thin-walled rectangular tubes[J]. Thin-Walled Structures,2005,43(8): 1225-1242.
    [73]Karagiozova D, Jones N. Dynamic effects on buckling and energy absorption of cylindrical shells under axial impact[J]. Thin-Walled Structures,2001,39(7): 583-610.
    [74]Wang B, Lu G. Mushrooming of circular tubes under dynamic axial loading[J]. Thin-Walled Structures,2002,40(2):167-182.
    [75]桂良进,范子杰,王青春.泡沫填充圆管的轴向压缩能量吸收特性[J].清华大学学报(自然科学版),2003,43(11):1526-1529.
    [76]刘金朝,王成国,房加志.薄壁圆柱在轴向冲击力作用下的动力学响应[J].中国铁道科学,2004,25(4):18-24.
    [77]荆友录.不同截面薄壁梁的轴向耐撞性对比研究[J].山东交通学院学报,2008,16(2):14-17.
    [78]谢素超,田红旗,姚松.车辆吸能部件的碰撞试验与数值仿真[J].交通运 输工程学报,2008,8(3):1-5.
    [79]Alexander J M. An approximate analysis of the collapse of thin cylindrical shells under axial loading[J]. The Quarterly Journal of Mechanics and Applied Mathematics,1960,13(1):10-15.
    [80]Langseth M, Hopperstad O S, Berstad T. Crashworthiness of aluminum extrusions:Validation of numerical simulation, effect of mass ratio and impact velocity[J]. International Journal of Impact Engineering,1999,22(9):829-854.
    [81]郝琪,吴胜军,马迅.结构参数对车辆薄壁结构碰撞性能影响的研究[J].机械科学与技术,2007,26(2):209-212.
    [82]谢素超,高广军.薄壁结构吸能预测的多元非线性回归分析[J].应用基础与工程科学学报,2010,18(4):714-721.
    [83]谢素超,田红旗,周辉.基于显式有限元的薄壁结构吸能特性预测[J].振动与冲击,2010,29(5):183-186.
    [84]Nagel G M, Thambiratnam D P. Dynamic simulation and energy absorption of tapered thin-walled tubes under oblique impact loading[J]. International Journal of Impact Engineering,2006,32(10):1595-1620.
    [85]侯淑娟,龙述尧,李光耀,等.材料参数对车身吸能元件抗撞性影响的数值分析[J].汽车工程,2008,30(5):416-419.
    [86]Marzbanrad J, Abdollahpoor A, Mashadi B. Effects of the triggering of circular aluminum tubes on crashworthiness[J]. International Journal of Crashworthiness, 2009,14(6):591-599.
    [87]Langseth M, Hopperstad O S, Hanssen A G. Crash behaviour of thin-walled aluminium members[J]. Thin-walled structures,1998,32(1-3):127-150.
    [88]Mahdi E, Mokhtar A S, Asari N A, et al. Nonlinear finite element analysis of axially crushed cotton fibre composite corrugated tubes[J]. Composite Structures, 2006,75(1-4):39-48.
    [89]王勖成.有限单元法[M].北京:清华大学出版社,2003:468-701.
    [90]姚松,田红旗,高广军.显式有限元法在车辆耐撞性研究中的应用[J].交通运输工程学报,2003,3(1):13-16.
    [91]林小苹,曹炳健,黄长江.海洋生态数据库管理系统的设计与实现[J].计算机应用与软件,2007,24(3):57-60.
    [92]张静秋,韩玉玮,胡燕瑜.MATLAB图形信息数据库应用程序的开发[J].计算机工程与设计,2005,26(6):1657-1659.
    [93]吴迪,刘军,徐朋,等.基于MATLAB及数据库技术的实验数据检验及存 取研究[J].大学物理实验,2010,23(4):67-69.
    [94]朱礼智,刘俊娜.常用木工机械数据库管理系统设计[J].林业机械与木工设备,2008,36(1):40-42.
    [95]邹艳红,毛先成.地测数据库的建立与应用[J].中南大学学报(自然科学版),2004,35(3):463-467.
    [96]张泽宇,潘和平,马火林.用Matlab实现跨平台多数据库系统查询[J].长江大学学报(自然科学版)理工卷,2009,6(4):57-60.
    [97]Redhe M, Giger M, Nilsson L. An investigation of structural optimization in crashworthiness design using a stochastic approach[J]. Structural and Multidisciplinary Optimization,2004,27(6):446-459.
    [98]Hou S, Li Q, Long S, et al. Crashworthiness design for foam filled thin-wall structures[J]. Materials and Design,2009,30(6):2024-2032.
    [99]Xiang Y J, Wang Q X, Fan Z J, et al. Optimal crashworthiness design of a spot-welded thin-walled hat section[J]. Finite Elements in Analysis and Design,2006, 42(10):846-855.
    [100]Jiang Z Y, Gu M T. Optimization of a fender structure for the crashworthiness design[J]. Materials and Design,2010,31(3):1085-1095.
    [101]Jansson N, Wakeman W D, Manson J A E. Optimization of hybrid thermoplastic composite structures using surrogate models and genetic algorithms[J]. Composite Structures,2007,80(1):21-31.
    [102]穆雪峰,姚卫星,余雄庆,等.多学科设计优化中常用代理模型的研究[J].计算力学学报,2005,22(5):608-612.
    [103]Azadi S, Azadi M, Zahedi F. NVH analysis and improvement of a vehicle body structure using DOE method[J]. Journal of Mechanical Science and Technology,2009, 23(11):2980-2989.
    [104]Simpson T W, Lin D K J, Chen W. Sampling strategies for computer experiments:design and analysis[J]. International Journal of Reliability and Applications,2001,2(3):209-240.
    [105]张维刚,廖兴涛,钟志华.基于逐步回归模型的汽车碰撞安全性多目标优化[J].机械工程学报,2007,43(8):142-147.
    [106]孙光永,李光耀,张勇,等.基于鲁棒性的概率优化设计在薄壁构件耐撞性中的应用[J].中国机械工程,2007,18(4):479-483.
    [107]Forsberg J, Nilsson L. On polynomial response surfaces and Kriging for use in structural optimization of crashworthiness[J]. Structural and multidisciplinary optimization,2005,29(3):232-243.
    [108]Zarei H, Kroger M. Optimum honeycomb filled crash absorber design[J]. Materials and Design,2008,29(1):193-204.
    [109]Kampolis I C, Giannakoglou K C. A multilevel approach to single- and multiobjective aerodynamic optimization[J]. Computer Methods in Applied Mechanics and Engineering,2008,197(33-40):2963-2975.
    [110]Yu K, Yang X, Yue Z. Aerodynamic and heat transfer design optimization of internally cooling turbine blade based different surrogate models[J]. Structural and Multidisciplinary Optimization,2011,44(1):75-83.
    [111]Forsberg J, Nilsson L. Evaluation of response surface methodologies used in crashworthiness optimization[J]. International Journal of Impact Engineering,2006, 32(5):759-777.
    [112]Yao Z H, Yuan M W, Liao X T, et al. Computational Methods in Engineering & Science[M]. China:Tsinghua University Press,2007:302.
    [113]Sakata S I, Ashida F, Zako M. Application of a gradient method to approximate structural optimization using Kriging method[J]. Transactions of the Japan Society of Mechanical Engineers, Part C,2003,69(5):1209-1215.
    [114]Bang I K, Han D S, Han G J, et al. Structural optimization for a jaw using iterative Kriging metamodels[J]. Journal of Mechanical Science and Technology, 2008,22(9):1651-1659.
    [115]Luo Z, Tong L, Kang Z. A level set method for structural shape and topology optimization using radial basis functions[J]. Computers and Structures,2009,87(7-8): 425-434.
    [116]Gholizadeh S, Salajegheh E, Torkzadeh P. Structural optimization with frequency constraints by genetic algorithm using wavelet radial basis function neural network[J]. Journal of Sound and Vibration,2008,312(1-2):316-331.
    [117]Gholizadeh S, Samavati O A. Structural optimization by wavelet transforms and neural networks[J]. Applied Mathematical Modelling,2011,35(2):915-929.
    [118]杨启红,尉强.基于神经网络的结构优化设计[J].山西建筑,2006,32(22):74-75.
    [119]Eom Y, Yoo K, Park J, et al. Reliability-based topology optimization using a standard response surface method for three-dimensional structures[J]. Structural and Multidisciplinary Optimization,2011,43(2):287-295.
    [120]Cho C, Choi E, Cho J, et al. Topology and parameter optimization of a foaming jig reinforcement structure by the response surface method[J]. Computer-Aided Design,2011,43(12):1707-1716.
    [121]李恩颖,李光耀,王琥.混合响应面法对汽车吸能部件优化关键技术[J].计算机应用研究,2008,25(2):368-375.
    [122]王琥,李光耀,李恩颖,等.基于响应面法的汽车吸能部件优化问题研究[J].系统仿真学报,2007,19(16):3824-3829.
    [123]廖兴涛,张维刚,李青,等.响应表面法在薄壁构件耐撞性优化设计中的应用研究[J].工程设计学报,2006,13(5):298-302.
    [124]侯淑娟,李青,龙述尧.端部圆锥形薄壁构件的抗撞性设计优化[J].湖南大学学报(自然科学版),2006,33(3):37-40.
    [125]Lanzi L, Airoldi A, Chirwa C. Application of an iterative global approximation technique to structural optimizations[J]. Optimization and Engineering,2009,10(1): 109-132.
    [126]Kaymaz I. Application of kriging method to structural reliability problems[J]. Structural Safety,2005,27(2):133-151.
    [127]Sakata S I, Ashida F, Zako M. Approximate structural optimization using kriging method and digital modeling technique considering noise in sampling data[J]. Computers and Structures,2008,86(13-14):1477-1485.
    [128]Lam X, Kim Y, Hoang A, et al. Coupled Aerostructural Design Optimization Using the Kriging Model and Integrated Multiobjective Optimization Algorithm[J]. Journal of Optimization Theory and Applications,2009,142(3):533-556.
    [129]Liu H, Maghsoodloo S. Simulation optimization based on Taylor Kriging and evolutionary algorithm[J]. Applied Soft Computing,2011,11(4):3451-3462.
    [130]张崎.基于Kriging方法的结构可靠性分析及优化设计[D].大连:大连理工大学,2005.
    [131]高云凯,孙芳,余海燕.基于Kriging模型的车身耐撞性优化设计[J].汽车工程,2010,32(1):17-21.
    [132]Sakata S, Ashida F, Zako M. Microstructural design of composite materials using fixed-grid modeling and noise-resistant smoothed Kriging-based approximate optimization[J]. Structural and Multidisciplinary Optimization,2008,36(3):273-287.
    [133]高月华.基于kriging代理模型的优化设计方法及其在注塑成型中的应用[D].大连:大连理工大学,2009.
    [134]Marcelin J L, Trompette P, Dornberger R. Optimization of composite beam structures using a genetic algorithm[J]. Structural Optimization,1995,9(3-4): 236-244.
    [135]Muc A, Gurba W. Genetic algorithms and finite element analysis in optimization of composite structures[J]. Composite Structures,2001,54(2-3): 275-281.
    [136]Prendes Gero M B, Garcia A B, Del Coz Diaz J J. Design optimization of 3D steel structures:Genetic algorithms vs. classical techniques[J]. Journal of Constructional Steel Research,2006,62(12):1303-1309.
    [137]Chen S Y. An approach for impact structure optimization using the robust genetic algorithm[J]. Finite Elements in Analysis and Design,2001,37(5):431-446.
    [138]Madeira J A, Rodrigues H C, Pina H. Multiobjective topology optimization of structures using genetic algorithms with chromosome repairing[J]. Structural and Multidisciplinary Optimization,2006,32(1):31-39.
    [139]Kelesoglu O. Fuzzy multiobjective optimization of truss-structures using genetic algorithm[J]. Advances in Engineering Software,2007,38(10):717-721.
    [140]Gazonas G A, Weile D S, Wildman R, et al. Genetic algorithm optimization of phononic bandgap structures [J]. International Journal of Solids and Structures,2006, 43(18-19):5851-5866.
    [141]Bao Z, Watanabe T. A novel genetic algorithm with different structure selection for circuit design optimization[J]. Artificial Life and Robotics,2009,14(2):266-270.
    [142]Almeida F S, Awruch A M. Design optimization of composite laminated structures using genetic algorithms and finite element analysis[J]. Composite Structures,2009,88(3):443-454.
    [143]Jin R, Chen W, Simpson T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization,2001,23(1):1-13.
    [144]龙述尧,陈仙燕,李青.矩形截面锥形薄壁管关于能量吸收和初始碰撞力峰值的优化[J].工程力学,2007,24(11):70-75.
    [145]王文斌,赵洪伦,刘学军.轨道车辆乘员二次碰撞伤害的研究[J].城市轨道交通研究,2007,10(9):23-27.
    [146]陈立平.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005:96-105.
    [147]Galganski R A. Collision Avoidance and Accident Survivability, Volume 3: Accident Survivability[R]. Washington, D.C.:Office of Research and Development, 1993.
    [148]黄靖,王健.汽车碰撞过程中加速度特征对乘员损伤的影响分析[J].汽车科技,2010,38(1):30-34.
    [149]李山,高卫民,沈建东,等DYNA-MADYMO耦合计算方法在车辆侧面碰撞模拟分析中的应用[J].上海汽车,2005,31(8):25-28.
    [150]Van Ingen-Dunn C, Manning J E. Commuter Rail Seat Testing and Analysis[R]. Washington, D.C.:Office of Research and Development,2002.
    [151]Tyrell D C, Severson K J. Crashworthiness Testing of Amtrak's Traditional Coach Seat[R]. Washington, D.C.:Office of Research and Development,1996.
    [152]Noureddine A, Eskandarian A, Digges K. Computer modeling and validation of a hybrid Ⅲ dummy for crashworthiness simulation [J]. Mathematical and computer modelling,2002,35(7-8):885-893.
    [153]高勇丽,徐立伟,董瑞强,等.基于多体动力学乘员约束系统的模拟研究[J].汽车技术,2006,37(S 1):65-68.
    [154]王亚军,陈超卓,吴沈荣FMVSS201规程在车辆内饰件与乘员头部碰撞中的应用[J].汽车安全与节能学报,2010,1(2):127-131.
    [155]王文斌,张光伟,赵洪伦,等.高速列车座椅间距对乘员二次碰撞伤害的影响[J].计算机辅助工程,2008,17(2):1-3.
    [156]葛如海,许栋,王桃英,等.客车座椅设计参数对乘员正面碰撞伤害影响的仿真研究[J].车辆与动力技术,2010,32(2):9-13.
    [157]朱航彬,刘学军.正面碰撞波形对乘员伤害值的影响[J].汽车工程,2008,30(11):964-968.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700